Skip to main content
Log in

Genetic dissection of wheat panicle traits using linkage analysis and a genome-wide association study

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Coincident regions on chromosome 4B for GW, on 5A for SD and TSS, and on 3A for SL and GNS were detected through an integration of a linkage analysis and a genome-wide association study (GWAS). In addition, six stable QTL clusters on chromosomes 2D, 3A, 4B, 5A and 6A were identified with high PVE% on a composite map.

Abstract

The panicle traits of wheat, such as grain number per spike and 1000-grain weight, are closely correlated with grain yield. Superior and effective alleles at loci related to panicles developments play a crucial role in the progress of molecular improvement in wheat yield breeding. Here, we revealed several notable allelic variations of seven panicle-related traits through an integration of genome-wide association mapping and a linkage analysis. The linkage analysis was performed using a recombinant inbred line (RIL) population (173 lines of F8:9) with a high-density genetic map constructed with 90K SNP arrays, Diversity Arrays Technology (DArT) and simple sequence repeat (SSR) markers in five environments. Thirty-five additive quantitative trait loci (QTL) were discovered, including eleven stable QTLs on chromosomes 1A, 2D, 4B, 5B, 6B, and 6D. The marker interval between EX_C101685 and RAC875_C27536 on chromosome 4B exhibited pleiotropic effects for GW, SL, GNS, FSN, SSN, and TSS, with the phenotypic variation explained (PVE) ranging from 5.40 to 37.70%. In addition, an association analysis was conducted using a diverse panel of 205 elite wheat lines with a composite map (24,355 SNPs) based on the Illumina Infinium assay in four environments. A total of 73 significant marker-trait associations (MTAs) were detected for panicle traits, which were distributed across all wheat chromosomes except for 4D, 5D, and 6D. Consensus regions between RAC875_C27536_611 and Tdurum_contig4974_355 on chromosome 4B for GW in multiple environments, between QTSS5A.7-43 and BS00021805_51 on 5A for SD and TSS, and between QSD3A.2-164 and RAC875_c17479_359 on 3A for SL and GNS in multiple environments were detected through linkage analysis and a genome-wide association study (GWAS). In addition, six stable QTL clusters on chromosomes 2D, 3A, 4B, 5A, and 6A were identified with high PVE% on a composite map. This study provides potentially valuable information on the dissection of yield-component traits and valuable genetic alleles for molecular-design breeding or functional gene exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

RIL:

Recombinant inbred line

QTL:

Quantitative trait locus

PVE:

Phenotypic variation explained

MTAs:

Significant marker-trait associations

GWAS:

Genome-wide association study

GW:

Grain weight

SL:

Spike length

GNS:

Grain number per spike

FSN:

Fertile spikelet number per spike

SSN:

Sterile spikelet number per spike

TSS:

Total spike number per spike

SD:

Spikelet density

GD:

Genetic distance

SNP:

Single-nucleotide polymorphism

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang SY, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet 119:507–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamin B, Nathalie F, Matt H, Emilie F, Adeline V, Magnus N, Joy B, Joel C, Fabrice R (2010) Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet 6:155–160

    Google Scholar 

  • Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M (1997) Mapping QTLs controlling yield and yield components in a spring barley (Hordeum vulgare L.) cross using marker regression. Mol Breed 3:29–38

    Article  CAS  Google Scholar 

  • Boden SA, Cavanagh C, Cullis BR, Ramm K, Greenwood J, Finnegan EJ, Trevaskis B, Swain SM (2015) Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nat Plants 1(2):14016

    Article  CAS  PubMed  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, Holland JB, Flint-Garcia S, McMullen MD, Buckler ES, Rocheford TR (2011) Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet 7:1276–1280

    Article  Google Scholar 

  • Cadalen T, Sourdille P, Charmet G, Tixier MH, Gay G, Boeuf C, Bernard S, Leroy P, Bernard M (1998) Molecular markers linked to genes affecting plant height in wheat using a double haploid population. Theor Appl Genet 96:933–940

    Article  CAS  Google Scholar 

  • Chen JS, Chen GF, Li QF, Zhang H, Shi CL, Sun CL, Deng ZY, Liu K, Gu ZQ, Tian JC (2014) Construction of genetic map using genotyping chips and QTL analysis of grain weight. Sci Agric Sin 47:4769–4779

    CAS  Google Scholar 

  • Chen GF, Chen JS, Tian JC (2015) Genome-wide association analysis between SNP markers and plant height related traits in wheat. Acta Agron Sin 41:1500–1509

    Article  CAS  Google Scholar 

  • Cui F, Ding AM, Li J, Zhao CH, Wang L, Wang XQ, Qi XL, Li XF, Li GY, Gao JR, Wang HG (2012) QTL detection of seven spike-related traits and their genetic correlations in wheat using two related RIL populations. Euphytica 186:177–192

    Article  Google Scholar 

  • Cui F, Zhao CH, Ding AM, Li J, Wang L, Li XF, Bao YG, Li JM, Wang HG (2014) Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet 127:659–675

    Article  PubMed  Google Scholar 

  • Deng SM, Wu XR, Wu YY, Zhou RH, Wang HG, Jia JZ, Liu SB (2011) Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat. Theor Appl Genet 122:281–289

    Article  PubMed  Google Scholar 

  • Ding AM, Li J, Cui F, Zhao CH, Ma HY, Wang HG (2011) QTL mapping for yield related traits using two associated RIL populations of wheat. Acta Agron Sin 37:1511–1524

    CAS  Google Scholar 

  • Eagles HA, Cane K, Kuchel H, Hollamby GJ, Vallance N, Eastwood RF, Gororo NN, Martin PJ (2010) Photoperiod and vernalization gene effects in southern Australian wheat. Crop Pasture Sci 61:721–730

    Article  Google Scholar 

  • Edwards D, Batley J, Snowdon RJ (2012) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126:1–11

    Article  PubMed  Google Scholar 

  • Gadaleta A, Giancaspro A, Nigro D, Giove SL, Incerti O, Simeone R, Piarulli L, Colasuonno P, Valè G, Cattivelli L, Blanco A (2014) A new genetic and deletion map of wheat chromosome 5A to detect candidate genes for quantitative traits. Mol Breed 34:1599–1611

    Article  Google Scholar 

  • Hai L, Guo HJ, Wagner C, Xiao SH (2008) Genomic regions for yield and yield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested under varying environments correspond to QTL in widely different wheat materials. Plant Sci 175:226–232

    Article  CAS  Google Scholar 

  • Huang XQ, Kempf H, Canal MW, Roder MS (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109:933–943

    Article  CAS  PubMed  Google Scholar 

  • Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS, Somers DJ, Brown PD (2006) Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheat (Triticum aestivum L.). Theor Appl Genet 113:753–766

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li J, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Wan H, Yang S, Zhang Z, Kong Z, Xue S, Zhang L, Ma Z (2013) Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theor Appl Genet 126:2123–2139

    Article  CAS  PubMed  Google Scholar 

  • Johnson EB, Nalam VJ, Zemetra RS, Riera-Lizarazu O (2008) Mapping the compactum locus in wheat (Triticum aestivum L.) and its relationship to other spike morphology genes of the Triticeae. Euphytica 163:193–201

    Article  Google Scholar 

  • Kato K, Miura H, Sawada S (1999) QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. Theor Appl Genet 98:472–477

    Article  CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121

    Article  CAS  Google Scholar 

  • Lai YP, Li J, Liu XC, Peng ZS, Hu XR, Yang WY (2011) Association analysis of main agronomic traits in wheat of Nanda2419 and its derivatives. Mol Plant Breeding 19:85–86

    Google Scholar 

  • Langer SM, Longin CFH, Würschum T (2014) Flowering time control in European winter wheat. Front Plant Sci 5:537. https://doi.org/10.3389/fpls.2014.00537

    Article  PubMed  PubMed Central  Google Scholar 

  • Li WC, Li T, Zhao FT, Li XF, Wang HG (2005) QTL of wheat yield traits in D genome. Acta Agric Boreali Sin 20:23–26

    Google Scholar 

  • Li QF, Zhang Y, Liu TT, Wang FF, Liu K, Chen JS, Tian JC (2015) Genetic analysis of kernel weight and kernel size in wheat (Triticum aestivum L) using unconditional and conditional QTL mapping. Mol Breed 35:194

    Article  CAS  Google Scholar 

  • Liu S, Zhou R, Dong Y, Li P, Jia J (2006) Development, utilization of introgression lines using synthetic wheat as donor. Theor Appl Genet 112:1360–1373

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Deng ZY, Zhang Y, Wang FF, Liu TT, Li QF, Shao W, Zhao B, Tian JC, Chen JS (2017a) Linkage analysis and genome-wide association study of QTLs controlling stem-breaking-strength-related traits in wheat. Acta Agron Sin 43:483–495

    Article  Google Scholar 

  • Liu TT, An YL, Liu K, Wang FF, Xie CP, Zhang Y, Guan X, Tian JC, Chen JS (2017b) A genetic analysis of the quality of northern-style Chinese steamed bread. Mol Breed 37:41

    Article  Google Scholar 

  • Lu YL, Zhang SH, Sha T, Xie CX, Hao ZF, Li XH, Farkhari M, Ribaut JM, Cao MJ, Rong TZ, Xu YB, Zhang QF (2010) Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. PNAS 107:19585–19590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma ZQ, Zhao DM, Zhang CQ, Zhang ZZ, Xue SL, Lin F, Kong ZX, Tian DG, Luo QY (2007) Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genom 277:31–42

    Article  CAS  Google Scholar 

  • Ma L, Li T, Hao C, Wang Y, Chen X, Zhang X (2016) TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnol J 14(5):1269–1280

    Article  CAS  PubMed  Google Scholar 

  • Neumann K, Kobiljski B, Dencˇic S, Varshney RK, Börner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27:37–58

    Article  Google Scholar 

  • Nordborg M, Weigel D (2008) Next-generation genetics in plants. Nature 456:720–723

    Article  CAS  PubMed  Google Scholar 

  • Patil RM, Tamhankar SA, Oak MD (2013) Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.). Euphytica 190:117–129

    Article  Google Scholar 

  • Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  CAS  PubMed  Google Scholar 

  • Qin WW, Li YX, Wu X, Li X, Chen L, Shi YS, Song YCH, Zhang DF, Wang TY, Li Y (2016) Fine mapping of qKL1.07, a major QTL for kernel length in maize. Mol Breed 36:1–9

    Article  CAS  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragués R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  CAS  PubMed  Google Scholar 

  • Qurat A, AwaisRasheed A, Tariq M, Muhammad I, Tariq M, Xia XCH, He ZHH, Umar MQ (2015) Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Front Plant Sci 6:743

    Google Scholar 

  • Rao MVP (1977) Mapping of the Sphaerococcum gene ‘S’ on chromosome 3D of wheat. Cereal Res Commun 5:15–17

    Google Scholar 

  • Reynolds MP, Borlaug NE (2006) Applying innovations and new technologies for international collaborative wheat improvement. J Agric Sci 144:95–110

    Article  Google Scholar 

  • Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 80:1516–1517

    Article  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, GanalM W (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  PubMed Central  Google Scholar 

  • Song YX, Jing RL, Huo NX, Ren ZL, Jia JZ (2006) Detection of QTL for heading in common wheat (Triticum aestivum L.) using different populations. Sci Agric Sin 39:2186–2193

    Google Scholar 

  • Sourdille P, Tixier MH, Charmet G, Gay G, Cadalen T, Bernard S, Bernard M (2000) Location of genes involved in ear compactness in wheat (Triticum aestivum L.) by means of molecular markers. Mol Breed 6:247–255

    Article  CAS  Google Scholar 

  • Su ZQ, Hao CY, Wang LF, Dong YC, Zhang XY (2011) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet 122:211–223

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Zhang F, Yan X, Zhang X, Dong Z, Cui D, Chen F (2016) Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China. Plant Biotechnol J 15:953–969

    Article  Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

    Article  CAS  PubMed  Google Scholar 

  • Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264

    Article  Google Scholar 

  • Wang RX, Zhang XY, Wu L, Wang R, Hai L, You GX, Yan CS, Xiao SH (2009) QTL analysis of grain size and related traits in winter wheat under different ecological environments. Sci Agric Sin 42:398–407

    CAS  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 SNP array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Zhang X, Chen F, Cui D (2015) A single-nucleotide polymorphism of Tags5 gene revealed its association with kernel weight in Chinese bread wheat. Front Plant Sci 6:1166

    PubMed  PubMed Central  Google Scholar 

  • Wang S, Yan X, Wang Y, Liu H, Cui D, Chen F (2016) Haplotypes of the TaGS5-A1 gene are associated with thousand-kernel weight in Chinese bread wheat. Front Plant Sci 7:783

    PubMed  PubMed Central  Google Scholar 

  • Weir A, Bragg P, Porter J, Rayner J (1984) A winter wheat crop simulation model without water or nutrient limitations. J Agric Sci 102:371–382

    Article  Google Scholar 

  • Wu Y, Wu C, Qin B, Wang Z, Huang W, Yang M, Yin Y (2012) Diversity of 175 wheat varieties from Yellow and Huai River Valleys facultative wheat zone and association of SSR markers with plant height and yield related traits. Acta Agron Sin 38:1018–1028

    Article  CAS  Google Scholar 

  • Wu QH, Chen JJ, Chen YX, Zhou SH, Zhang DY, Wang GX, Wang ZZ, Wang LX, Yuan CG, You MS, Liu ZY (2015) Mapping quantitative trait loci related to spike traits using a rils population of Yanda 1817 × Beinong 6 in wheat (Triticum aestivum L.). Acta Agron Sin 41:349–358

    Article  CAS  Google Scholar 

  • Wu QH, Chen YX, Fu L, Zhou SH, Chen JJ, Zhao XJ, Zhang D, Ouyang SH, Wang ZZ, Li D, Wang GX, Zhang DY, Yua CG, Wang LX, You MS, Han J, Liu ZY (2016) QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Euphytica 208:337–351

    Article  CAS  Google Scholar 

  • Yang J, Zhu J (2005) Methods for predicting superior genotypes under multiple environments based on QTL effects. Theor Appl Genet 110:1268–1274

    Article  PubMed  Google Scholar 

  • Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527–1536

    Article  CAS  PubMed  Google Scholar 

  • Yano M, Sasaki T (1997) Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol 35:145–153

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Wang LX, Liu LH, Zhao CP, Zheng YL (2009) Association mapping of agronomic traits on chromosome 2A of wheat. Genetica 137:67–75

    Article  CAS  PubMed  Google Scholar 

  • Yao Q, Zhou RH, Pan YM, Fu TH, Jia JZ (2010) Construction of genetic linkage map and QTL analysis of agronomic important traits based on a RIL population derived from common wheat variety Yanzhan 1 and Zaosui 30. Sci Agric Sin 43:4130–4139

    Google Scholar 

  • Yu JM, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    Article  CAS  PubMed  Google Scholar 

  • Zhang KP, Xu XB, Tian JC (2009) QTL mapping for grain yield and spike related traits in common wheat. Acta Agron Sin 35:270–278

    Article  Google Scholar 

  • Zhang J, Dell B, Biddulph B, Drake-Brockman F, Walker E, Khan N, Wong D, Hayden M, Appels R (2013) Wild-type alleles of Rht-B1 and Rht-D1 as independent determinants of thousand-grain weight and kernel number per spike in wheat. Mol Breed 32:771–783

    Article  Google Scholar 

  • Zheng J, Liu H, Wang Y, Wang L, Chang X, Jing R, Hao C, Zhang X (2014) TEF-7A, a transcript elongation factor gene, influences yield-related traits in bread wheat (Triticum aestivum L.). J Exp Bot 65:5351–5365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology of Shandong project GG201703200178, 2017CXGC0308 and the Shandong Major Agricultural Technology Innovation Projects 2017 and 2016LZGC023. The SNP analysis and the construction of genetic maps were kindly conducted by Dr. Mingcheng Luo from the University of California, Davis, and by Dr. Jirui Wang of Sichuan Agricultural University. Prof. Wolfgang Friedt from University Giessen provided valuable revision suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jichun Tian or Jiansheng Chen.

Ethics declarations

Conflict of interest

We declare no conflicts of interest involving this manuscript.

Ethical standards

We declare that these experiments comply with the ethical standards in China.

Additional information

Communicated by Ian Mackay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Sun, X., Ning, T. et al. Genetic dissection of wheat panicle traits using linkage analysis and a genome-wide association study. Theor Appl Genet 131, 1073–1090 (2018). https://doi.org/10.1007/s00122-018-3059-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3059-9

Navigation