Skip to main content
Log in

Genetic mapping and development of near-isogenic lines with genes conferring mutant phenotypes in Aegilops tauschii and synthetic hexaploid wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Mutant genes conferring triple glume and ligulelessness were mapped in Aegilops tauschii (Coss.) Schmal. (2n = 2x = 14, DD genome), the D genome donor to common wheat (Triticum aestivum L., 2n = 6x = 42, BBAADD genome) using microsatellite probes. The trg (tr iple g lume) locus was linked (21.6 cM) with the Br t (B rittle r achis in Ae. tauschii) locus in an F2 population of Ae. tauschii G3489 (tough rachis mutant)/Triple Glume Mutant. The trg gene was 8.6 cM distal to marker Xwmc656 in chromosome 3DL. Ligulelessness was a dominant trait in Ae. tauschii. The Lg t (L i g uleless in Ae. t auschii) gene was 9.3 cM distal to marker Xbarc159 in chromosome 2DL in an F2 population of Ae. tauschii KU2126/Liguleless Mutant. Gene Iw2 for non-glaucousness was linked to Xbarc124 located in the distal part of chromosome 2DS. Near-isogenic lines Brittle-G3489 and Liguleless-G3489 were developed from crosses of G3489 with wild type (brittle rachis) and Liguleless Mutant by backcrossing to G3489. Six synthetic hexaploid lines were developed using two lines of durum and five lines of Ae. tauschii. When compared with SynW-3 (LD222/G3489), SynW-1 (LD222/Liguleless-G3489) was liguleless due to the dominant gene, Lg t. The rachides of SynW-3 (LD222/G3489) and SynW-4 (LD222/Brittle-G3489) were tough. Ligules were present in synthetics SynW-5 (ANW 12A/G3489) and SynW-6 (ANW 12A/KU2126) indicating that G3489 and KU2126 had Lg 2 gene on chromosome 2D. Lg 2 was flanked 21.4 cM proximally by Xbarc228 and 13.0 cM distally by Xgdm6 in chromosome 2DL in the F2 of ANK-33/Syn-W5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amagai Y, Aliyeva AJ, Aminov NKh, Martinek P, Watanabe N, Kuboyama T (2014) Microsatellite mapping of the genes for sham ramification and extra glume in spikelets in tetraploid wheat. Genet Res Crop Evol 61:491–498

    Article  CAS  Google Scholar 

  • Amagai Y, Watanabe N, Kuboyama T (2015) Genetic mapping and development of near-isogenic lines for genes governing a liguleless phenotype in tetraploid wheat. Euphytica. doi:10.1007/s10681-015-1421-4

  • Ausemus ER, Harrington JB, Reitz LP, Worzella WW (1946) A summary of genetic studies in hexaploid and tetraploid wheats. J Am Soc Agron 38:1082–1099

    Google Scholar 

  • Bagnara D, Rossi L (1972) A liguleless mutation radioinduced in Triticum durum Desf. Wheat Inform Serv 33:1–3

    Google Scholar 

  • Bagnara D, Rossi L, Ligato L (1972) Induced liguleless mutation in durum wheat. Genet Agric 26:278–290

    Google Scholar 

  • Cox TS, Hatcher JH, Gill BS, Raupp WJ, Sears RG (1990) Agronomic performance of hexaploid wheat lines derived from direct crosses between wheat and Aegilops squarrosa. Plant Breed 105:271–277

    Article  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Dudnikov AJ (2011) Waxiness in Aegilops tauschii: its occurrence in natural habitats of the species. Cereal Res Commun 39:283–288

    Article  Google Scholar 

  • Fritz AK, Cox TS, Gill BS, Sears RG (1995a) Molecular marker-facilitated analysis of introgression in winter wheat × Triticum tauschii populations. Crop Sci 35:1691–1695

    Article  Google Scholar 

  • Fritz AK, Cox TS, Gill BS, Sears RG (1995b) Molecular marker-based analysis of quantitative traits in winter wheat × Triticum tauschii populations. Crop Sci 35:1695–1699

    Article  Google Scholar 

  • Gill BS, Raupp WJ (1987) Direct genetic transfers from Aegilops squarrosa L. to hexaploid wheat. Crop Sci 27:445–450

    Article  Google Scholar 

  • Gowayed S (2009) Egyptian wheat. Doctoral Dissertation, University Kassel, Witzenhausen, Cuvillier Verlag, Göttingen, Germany

  • Guyomarc’h H, Sourdille P, Charmet G, Edwards KJ, Bernard M (2002) Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D genome of bread wheat. Theor Appl Genet 104:1164–1172

    Article  PubMed  Google Scholar 

  • Jones H, Gosman N, Horsnell R, Rose GA, Everest LA, Bentley AR, Tha S, Uauy C, Kowalski A, Novoselovic D, Simek R, Kobiljski B, Kondic-Spika A, Brbaklic L, Mitrofanova O, Chesnokov Y, Bonnett D, Greenland A (2013) Strategy for exploiting exotic germplasm using genetic, morphological, and environmental diversity: the Aegilops tauschii Coss. example. Theor Appl Genet 126:1793–1808

    Article  CAS  PubMed  Google Scholar 

  • Kihara H (1944) Discovery of the DD-analyzer, one of the ancestors of vulgare wheats. Nogyo oyobi Engei (Agric & Hortic) 19:889–890 in Japanese

    Google Scholar 

  • Kihara H, Yamashita K, Tanaka M (1965) Morphological, physiological and cytological studies in Aegilops and Triticum collected from Pakistan, Afghanistan and Iran. In: Yamashita K (ed), Cultivated plants and their relatives (Results of the Kyoto University Scientific Expedition to the Karakoram and Hindukush, 1955), vol. 1. The Committee of the Kyoto University Scientific Expedition to the Karakoram and Hindukush, Kyoto University, Kyoto, Japan, pp 1–140

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Koval SF (1997) The catalogue of near-isogenic lines of Novosibirskaya 67 common wheat and principles of their use in experiments. Russ J Genet 33:995–1000

    CAS  Google Scholar 

  • Kumar A, Simons K, Iqbal MJ, Michalak de Jiménez M, Bassi FM, Ghavami F, Al-Azzam O, Drader T, Wang Y, Luo MC, Gu YQ, Denton A, Lazo GR, Xu SS, Dvorak J, Penny MA, Kianian DMA, Kianian SF (2012) Physical mapping resources for large plant genomes: radiation hybrids for wheat D-genome progenitor Aegilops tauschii. BMC Genomics 13:597. http://www.biomedcentral.com/1471-2164/13/597

  • Lage J, Skovmand B, Peña RJ, Anderson SB (2006) Grain quality of emmer wheat derived synthetic hexaploid wheats. Genet Resour Crop Evol 53:955–962

    Article  Google Scholar 

  • Li W, Gill BS (2006) Multiple genetic pathways for seed shattering in the grasses. Funct Integr Genomics 6:300–309

    Article  CAS  PubMed  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  CAS  PubMed  Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37(81–90):107–116

    Google Scholar 

  • McIntosh RA, Baker EP (1968) A linkage map for chromosome 2D. In: Findlay KW, KW Shepherd (eds) Proceeding 3rd international wheat genet symp, Australian Academy of Science, Canberra, Australia, pp 305–309

  • Metzger RJ, Silbaugh BA (1968/1969) Aneuploid studies at Oregon State University. Eur Wheat Aneuploid Coop Newslett 2:60

  • Mujeeb-Kazi A, Rosas V, Roldán S (1996) Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non. L.) in synthetic hexaploid wheats (T. turgidum L. s. lat. × T. tauschii; 2n = 6x = 42, AAABBDD) and its potential utilization for wheat improvement. Genet Resour Crop Evol 43:129–143

    Article  Google Scholar 

  • Multani DS, Sharma SK, Dhaliwal HS, Gill KS (1992) Inheritance of induced morphological mutants in Triticutn monococcum L. Plant Breed 109:259–262

    Article  Google Scholar 

  • Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  CAS  PubMed  Google Scholar 

  • Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    CAS  PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998a) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  PubMed Central  Google Scholar 

  • Röder MS, Korzun V, Gill BS, Ganal MW (1998b) The physical mapping of microsatellite markers in wheat. Genome 41:278–283

    Article  Google Scholar 

  • Sehgal SK, Kaur S, Gupta S, Sharma A, Kaur R, Bains NS (2011) A direct hybridization approach to gene transfer from Aegilops tauschii Coss. to Triticum aestivum L. Plant Breed 130:98–100

    Article  CAS  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fikus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  CAS  PubMed  Google Scholar 

  • Sourdille P, Tavaud M, Charmet G, Bernard M (2001) Transferability of microsatellites to diploid Triticeae species carrying the A, B and D genomes. Theor Appl Genet 103:346–352

    Article  CAS  Google Scholar 

  • Torada A, Koike M, Mochida K, Ogihara Y (2006) SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet 112:1042–1051

    Article  CAS  PubMed  Google Scholar 

  • Udachin RA, Shakmedov ISh (1976) New materials in the research of genus Triticum. Trudy po Prikl Bot Genet i Selekst 56:147–150 (in Russian)

    Google Scholar 

  • Udachin RA, Shakmedov ISh (1977) A new wheat species, Triticum jakubzineri. Vestn S kh Nauki Mosc 2:41–43 (in Russian)

    Google Scholar 

  • Watanabe N (1983) Variation of D genomes affecting the morphological characters of common wheat. Jpn J Breed 33:296–302

    Article  Google Scholar 

  • Watanabe N (1994) Near-isogenic lines of durum wheat: their development and plant characteristics. Euphytica 72:143–147

    Article  Google Scholar 

  • Watanabe N, Nakayama A, Ban T (2004) Cytological and microsatellite mapping of the gene for liguleless phenotype in durum wheat. Euphytica 140:163–170

    Article  CAS  Google Scholar 

  • Watanabe N, Takesada N, Shibata Y, Ban T (2005) Genetic mapping of the genes for glaucous leaf and tough rachis in Aegilops tauschii, the D-genome progenitor of wheat. Euphytica 144:119–123

    Article  CAS  Google Scholar 

  • Watanabe N, Takesada N, Fujii Y, Martinek P (2006) Cytological and microsatellite mapping of the gene for brittle rachis in a Triticum aestivum-Aegilops tauschii introgression line. Euphytica 151:63–69

    Article  Google Scholar 

  • Zhang P, Dreisigacker S, Melchinger AE, Reif JC, Mujeeb-Kazi A, van Ginkel M, Hoisington D, Warburton ML (2005) Quantifying novel sequence variation and selective advantage in synthetic hexaploid wheats and their backcross-derivative lines using SSR markers. Mol Breed 15:1–10

    Article  Google Scholar 

Download references

Acknowledgments

N. W. acknowledges donations of Ae. tauschii seed by Dr. J. G. Waines, University of California, Riverside, California, USA, and Dr. T. Kawahara, the Plant Germplasm Institute, Kyoto University, Mozume, Japan. We thank Dr. D. L. Klindworth, USDA-ARS, Northern Crop Science Laboratory, Fargo for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Watanabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amagai, Y., Watanabe, N. & Kuboyama, T. Genetic mapping and development of near-isogenic lines with genes conferring mutant phenotypes in Aegilops tauschii and synthetic hexaploid wheat. Euphytica 205, 859–868 (2015). https://doi.org/10.1007/s10681-015-1424-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1424-1

Keywords

Navigation