Skip to main content
Log in

Cytological and microsatellite mapping of the genes determining liguleless phenotype in durum wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Liguleless phenotypes of wheat lack ligule and auricle structures on all leaves of the plant. Two recessive genes principally control the liguleless character in tetraploid wheat. The F2 progenies of k17769 (liguleless mutant)/Triticum dicoccoides and k17769/T. dicoccum segregated in a 15:1 ratio, whereas the F2 progenies of k17769/T. durum and k17769/T. turgidum segregated in a 3:1 ratio. A new gene, lg 3, was found on chromosome 2A. Segregation of F2 progenies between k17769 and chromosome substitution lines for homoeologous group 2 chromosomes suggested that the liguleless genotype had occurred by mutation at the lg 3 locus on chromosome 2A, and then by mutation at the lg 1 locus on chromosome 2B, in the process of domestication of tetraploid wheat. The gene (lg 1) was linked to Tc 2 (11.9 cM), which determines phenol colour reaction of kernels, on the long arm of chromosome 2B. The distance of lg 1 to the centromere was found to be 60.4 cM, and microsatellite mapping established the gene order, centromere – Xgwm382Xgwm619Tc 2lg 1 on the long arm of chromosome 2B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, S.N. & S.D. Tanksley, 1993. Comparative linkage map of the rice and maize genomes. Proc Natl Acad Sci, USA 90: 7980–7984.

    PubMed  CAS  Google Scholar 

  • Ausemus, E.R., J.B. Harrington, L.P. Reitz & W.W. Worzella, 1946. A summary of genetic studies in hexaploid and tetraploid wheats. J Amer Soc Agron 38: 1082–1099.

    Google Scholar 

  • Bagnara, D. & L. Rossi, 1972. A liguleless mutation radioinduced in Triticum durum Desf Wheat Inform Serv 33: 34:1–3.

    Google Scholar 

  • Causse, M., T.M. Fulton, Y.G. Cho, S.N. Ahn, J. Chunwongs, K. Wu, J. Xiao, D. Yu, P.C. Ronald, S.B. Harrington, G.A. Second, S.R. McCouch & S.D. Tanksley, 1994. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138: 1251–1274.

    CAS  PubMed  Google Scholar 

  • Filatenko, A.A., A. Diederichsen & K. Hammer, 1998. Vavilov’s theories of crop domestication in the ancient Mediterranean area. In: A.B. Damania, J. Valkoun, G. Willcox & C.O. Qualset (Eds.), The Origin of Agriculture and Crop Domestication, pp. 9–24. International Center for Agriculture in the Dry Areas, Aleppo, Syria.

    Google Scholar 

  • Joppa, L.R. & R.G. Cantrell, 1990. Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Sci 30: 1059–1064.

    Article  CAS  Google Scholar 

  • Korzun, V., S. Malyshev, A. Voylokov & A. Börner, 1997. RFLP-based mapping of three mutant loci in rye (Secale cereale L.) and their relation to homoeologous loci within Gramineae. Theor Appl Genet 95: 468–473.

    Article  CAS  Google Scholar 

  • Korzun, V., M.S. Röder, K. Wendehake, A. Pasqualone, C. Lotti, M.W. Ganal & A. Blanco, 1999. Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat. Theor Appl Genet 98: 1202–1207.

    CAS  Google Scholar 

  • Kosambi, D.D., 1944. The estimation of map distances from recombination values Ann Eugenics 12:172–175.

    Google Scholar 

  • McIntosh, R.A. & E.P. Baker, 1968. A linkage map for chromosome 2D. In: K.W. Findlay & K.W. Shepherd (Eds.), Proceeding of the Third International Wheat Genetic Symposium, pp. 305–309. Australian Academy of Science, Canberra, Australia.

    Google Scholar 

  • Nagao, S. & M.E. Takahashi, 1952. Genetical studies on rice plant. The order and distance of some genes belonging to Pl-linkage group. Japan J Breed 1: 237–140.

    Google Scholar 

  • Plaschke, J., M.W. Ganal & M.S. Röder, 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91: 1001–1007.

    CAS  Google Scholar 

  • Pratchett, N. & D.A. Laurie, 1994. Genetic map location of barley developmental mutant liguleless in relation to RFLP markers. Hereditas 120: 35–39.

    CAS  Google Scholar 

  • Raupp, W.J., B. Friebe & B.S. Gill, 1995. Suggested guidelines for the nomenclature and abbreviation of the gentic stocks of wheat, Triticum aestivum L. em Thell., and its relatives. Wheat Inform Serv 81: 50–55.

    Google Scholar 

  • Röder, M.S., V. Korzun, K. Wendehake, J. Plaschke, M.-H. Tixier, P.H. Leroy & M. Ganal, 1998. A microsatellite map of wheat. Genetics 149: 2007–2023.

    PubMed  Google Scholar 

  • Takeda, K. & C.L. Chang, 1996. Inheritance and geographical distribution of phenol reaction-less varieties of barley. Euphytica 90: 217–221.

    Google Scholar 

  • Watanabe, N., A. Tekeuchi & A. Nakayama, 2004. Inheritance and chromosomal location of the homoeologous genes affecting phenol colour reaction of kernels in durum wheat. Euphytica 139: 87–93.

    CAS  Google Scholar 

  • Zwick, M.S., M.N. Nurul Islam-Faridi, D.G. Czeschin Jr, R.A. Wing, G.E. Hart, D.M. Stelly & H.J. Price, 1998. Physical mapping of the liguleless linkage group in Sorghum bicolor using rice RFLP-selected sorghum BACs. Genetics 148: 1983–1992.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, N., Nakayama, A. & Ban, T. Cytological and microsatellite mapping of the genes determining liguleless phenotype in durum wheat. Euphytica 140, 163–170 (2004). https://doi.org/10.1007/s10681-004-2425-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-004-2425-7

Key words

Navigation