Skip to main content
Log in

A promising approach for the removal of hexavalent and trivalent chromium from aqueous solution using low-cost biomaterial

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Heavy metal pollution is an enduring environmental challenge that calls for sustainable and eco-friendly solutions. One promising approach is to harness discarded plant biomass as a highly efficient environmental friendly adsorbents. In this context, a noteworthy study has spotlighted the employment of Euryale ferox Salisbury seed coat (E.feroxSC) for the exclusion of trivalent and hexavalent chromium ions. This study aims to transform discarded plant residue into a novel, environmentally friendly, and cost-effective alternative adsorbent, offering a compelling alternative to more expensive adsorption methods. By repurposing natural materials, we can contribute to mitigating heavy-metal pollution while promoting sustainable and economically viable solutions in environmental remediation. The effect of different parameters, i.e., chromium ions’ initial concentration (5–25 mg L−1), solution pH (2–7), adsorbent dosage (0.2–2.4 g L−1), contact time (20–240 min), and temperature (298–313 K), were investigated. E.feroxSC proved highly effective, achieving 96.5% removal of Cr(III) ions at pH 6 and 97.7% removal of Cr(VI) ions at pH 2, with a maximum biosorption capacity of 18.33 mg/g for Cr(III) and 13.64 mg/g for Cr(VI), making it a promising, eco-friendly adsorbent for tackling heavy-metal pollution. The adsorption process followed the pseudo-second-order kinetic model, aligning well with the Langmuir isotherm, exhibited favorable thermodynamics, and was characterized as feasible, spontaneous, and endothermic with physisorption mechanisms. The investigation revealed that E.feroxSC effectively adsorbed Cr(VI) which could be rejuvenated in a basic solution with minimal depletion in its adsorption capacity. Conversely, E.feroxSC’s adsorption of Cr(III) demanded rejuvenation in an acidic milieu, exhibiting comparatively less efficient restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data and materials of the research are available and can be obtained on request.

Abbreviations

E.feroxSC:

Euryale ferox Seed coat

C 0 :

Initial concentration

C t :

Concentration at pre-specified time

q e :

Equilibrium adsorption capacity

V :

Volume of solution

M :

Mass of adsorbent

qt :

Adsorption capacity at any time

C e :

Equilibrium concentration

q 0 :

Maximum monolayer adsorption capacity

K L :

Langmuir constant

R L :

Dimensionless separation parameter

K f :

Freundlich constant

K DR :

Energy of biosorption

q m :

Maximum monolayer adsorption capacity

E :

Mean free energy

k 1 :

Pseudo-first-order rate constant

k 2 :

Pseudo-second-order rate constant

α:

Initial sorption rate

β:

Desorption constant

K p :

Intraparticle diffusion rate constant

C :

Boundary layer thickness constant

k id :

Adsorption rate constant

K 0 :

Equilibrium constant

H 0 :

Standard change in enthalpy

S 0 :

Standard change in entropy

G 0 :

Standard change in Gibb’s free energy

References

  • Abdel-Galil, E. A., Hussin, L. M. S., & El-Kenany, W. M. (2021). Adsorption of Cr (VI) from aqueous solutions onto activated pomegranate peel waste. Desalination Water Treat, 211, 250–266.

    Article  CAS  Google Scholar 

  • Aranda-García, E., & Cristiani-Urbina, E. (2020). Hexavalent chromium removal and total chromium biosorption from aqueous solution by Quercus crassipes acorn shell in a continuous up-flow fixed-bed column: Influencing parameters, kinetics, and mechanism. PLoS ONE, 15(1), e0227953.

    Article  Google Scholar 

  • Atemkeng, C. D., Kamgaing, T., Tchuifon, D. T., Doungmo, G., Amola, L. A., Kamdem, A. T., & Anagho, S. G. (2020). Chemical preparation and physicochemical characterization of powdered activated carbons based on safou (Dacryodes edulis) seeds. Journal of Materials and Environmental Science, 11, 896–910.

    CAS  Google Scholar 

  • Ayele, A., & Godeto, Y. G. (2021). Bioremediation of chromium by microorganisms and its mechanisms related to functional groups. Journal of Chemistry, 2021, 1–21.

    Google Scholar 

  • Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi, M. (2021). Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Frontiers in pharmacology, 227, 643972.

    Article  Google Scholar 

  • Basnet, P., Gyawali, D., Ghimire, K. N., & Paudyal, H. (2022). An assessment of the lignocellulose-based biosorbents in removing Cr (VI) from contaminated water: A critical review. Results in Chemistry, 4, 100406.

    Article  CAS  Google Scholar 

  • Bayuo, J., Abukari, M. A., & Pelig-Ba, K. B. (2020a). Desorption of chromium (VI) and lead (II) ions and regeneration of the exhausted adsorbent. Applied Water Science, 10(7), 171.

    Article  CAS  Google Scholar 

  • Bayuo, J., Abukari, M. A., & Pelig-Ba, K. B. (2020b). Optimization using central composite design (CCD) of response surface methodology (RSM) for biosorption of hexavalent chromium from aqueous media. Applied Water Science, 10(6), 1–12.

    Article  Google Scholar 

  • Bayuo, J., Pelig-Ba, K. B., & Abukari, M. A. (2019). Adsorptive removal of chromium (VI) from aqueous solution unto groundnut shell. Applied Water Science, 9(4), 107.

    Article  Google Scholar 

  • Bayuo J, Rwiza MJ & Mtei KM (2023a). Non-competitive and competitive detoxification of As (III) ions from single and binary biosorption systems and biosorbent regeneration. Biomass Conversion and Biorefinery 1–28

  • Bayuo, J., Rwiza, M. J., Sillanpää, M., & Mtei, K. M. (2023b). Removal of heavy metals from binary and multicomponent adsorption systems using various adsorbents–A systematic review. RSC Advances, 13(19), 13052–13093.

    Article  CAS  Google Scholar 

  • Bayuo, J., Rwiza, M., & Mtei, K. (2022a). A comprehensive review on the decontamination of lead (II) from water and wastewater by low-cost biosorbents. RSC Advances, 12(18), 11233–11254.

    Article  CAS  Google Scholar 

  • Bayuo, J., Rwiza, M., & Mtei, K. (2022b). Response surface optimization and modeling in heavy metal removal from wastewater—A critical review. Environmental Monitoring and Assessment, 194(5), 351.

    Article  Google Scholar 

  • Budiana, I. G. M. N., Jasman, J., Neolaka, Y. A., Riwu, A. A., Elmsellem, H., Darmokoesoemo, H., & Kusuma, H. S. (2021). Synthesis, characterization and application of cinnamoyl C-phenylcalix [4] resorcinarene (CCPCR) for removal of Cr (III) ion from the aquatic environment. Journal of Molecular Liquids, 324, 114776.

    Article  CAS  Google Scholar 

  • Cao, S., Yin, W., Yang, B., Zhu, Z., Sun, H., Sheng, Q., & Chen, K. (2022). Insights into the influence of temperature on the adsorption behavior of sodium oleate and its response to flotation of quartz. International Journal of Mining Science and Technology, 32(2), 399–409.

    Article  CAS  Google Scholar 

  • Chakraborty, R., Verma, R., Asthana, A., Vidya, S. S., & Singh, A. K. (2021). Adsorption of hazardous chromium (VI) ions from aqueous solutions using modified sawdust: Kinetics, isotherm and thermodynamic modelling. International Journal of Environmental Analytical Chemistry, 101(7), 911–928.

    Article  CAS  Google Scholar 

  • Chaturvedi S, Khare A, & Khurana SP (2021). Toxicity of hexavalent chromium and its microbial detoxification through bioremediation. Removal of Emerging Contaminants Through Microbial Processes 513–542

  • Chen, X., Hossain, M. F., Duan, C., Lu, J., Tsang, Y. F., Islam, M. S., & Zhou, Y. (2022). Isotherm models for adsorption of heavy metals from water-A review. Chemosphere, 107, 135545.

    Article  Google Scholar 

  • Chen, Y., Chen, Q., Zhao, H., Dang, J., Jin, R., Zhao, W., & Li, Y. (2020). Wheat straws and corn straws as adsorbents for the removal of Cr (VI) and Cr (III) from aqueous solution: Kinetics, isotherm, and mechanism. ACS Omega, 5(11), 6003–6009.

    Article  CAS  Google Scholar 

  • Das, E., Rabha, S., Talukdar, K., Goswami, M., & Devi, A. (2023). Propensity of a low-cost adsorbent derived from agricultural wastes to interact with cationic dyes in aqueous solutions. Environmental Monitoring and Assessment, 195(9), 1044.

    Article  CAS  Google Scholar 

  • Devi, B., Goswami, M., & Devi, A. (2024). Entrapment behaviours of trivalent and hexavalent chromium from aqueous medium using edible alkali-derived activated carbon of Eichhornia crassipes (water hyacinth). Environmental Science and Pollution Research, 31(4), 6025–6039.

    Article  CAS  Google Scholar 

  • Devi, B., Goswami, M., Rabha, S., Kalita, S., Sarma, H. P., & Devi, A. (2023). Efficacious sorption capacities for Pb (II) from contaminated water: A comparative study using biowaste and its activated carbon as potential adsorbents. ACS Omega, 8(17), 15141–15151.

    Article  CAS  Google Scholar 

  • Dinh, V. P., Le, H. M., Nguyen, V. D., Dao, V. A., Hung, N. Q., Tuyen, L. A., & Tan, L. V. (2019). Insight into the adsorption mechanisms of methylene blue and chromium (III) from aqueous solution onto pomelo fruit peel. RSC Advances, 9(44), 25847–25860.

    Article  CAS  Google Scholar 

  • Ekpete, O. A., & Horsfall, M. J. N. R. (2011). Preparation and characterization of activated carbon derived from fluted pumpkin stem waste (Telfairia occidentalis Hook F). Res J Chem Sci, 1(3), 10–17.

    CAS  Google Scholar 

  • El Nemr A, Aboughaly RM, El Sikaily A, Ragab S, Masoud MS, & Ramadan MS (2020). Microporous nano-activated carbon type I derived from orange peel and its application for Cr (VI) removal from aquatic environment. Biomass Conversion and Biorefinery, 1–19

  • Elahi, A., Arooj, I., Bukhari, D. A., & Rehman, A. (2020). Successive use of microorganisms to remove chromium from wastewater. Applied Microbiology and Biotechnology, 104, 3729–3743.

    Article  CAS  Google Scholar 

  • Elumalai, S., Prabhu, K., Selvan, G. P., & Ramasamy, P. (2023). Review on heavy metal contaminants in freshwater fish in South India: Current situation and future perspective. Environmental Science and Pollution Research, 30(57), 119594–119611.

    Article  CAS  Google Scholar 

  • Ge, Y., & Li, Z. (2018). Application of lignin and its derivatives in adsorption of heavy metal ions in water: A review. ACS Sustainable Chemistry & Engineering, 6(5), 7181–7192.

    Article  CAS  Google Scholar 

  • Gonçalves, A. C., Nacke, H., Schwantes, D., Campagnolo, M. A., Miola, A. J., Tarley, C. R. T., & Suquila, F. A. C. (2017). Adsorption mechanism of chromium (III) using biosorbents of Jatropha curcas L. Environmental Science and Pollution Research, 24, 21778–21790.

    Article  Google Scholar 

  • Goswami, M., Devi, B., Baruah, N. P., Rabha, S., Bharatwaj, A., Sarma, H. P., & Devi, A. (2024). Waste to wealth strategies for removal of Pb2+ ions from aqueous solution. Inorganic Chemistry Communications, 161, 112097.

    Article  CAS  Google Scholar 

  • Grabi, H., Ouakouak, A., Kadouche, S., Lemlikchi, W., Derridj, F., & Din, A. T. M. (2022). Mechanism and adsorptive performance of ash tree seeds as a novel biosorbent for the elimination of methylene blue dye from water media. Surfaces and Interfaces, 30, 101947.

    Article  CAS  Google Scholar 

  • GracePavithra, K., Jaikumar, V., Kumar, P. S., & SundarRajan, P. (2019). A review on cleaner strategies for chromium industrial wastewater: Present research and future perspective. Journal of Cleaner Production, 228, 580–593.

    Article  CAS  Google Scholar 

  • He, R., Yuan, X., Huang, Z., Wang, H., Jiang, L., Huang, J., & Li, H. (2019). Activated biochar with iron-loading and its application in removing Cr (VI) from aqueous solution. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 579, 123642.

    Article  CAS  Google Scholar 

  • Jasper, E. E., Ajibola, V. O., & Onwuka, J. C. (2020). Nonlinear regression analysis of the sorption of crystal violet and methylene blue from aqueous solutions onto an agro-waste derived activated carbon. Applied Water Science, 10(6), 1–11.

    Article  Google Scholar 

  • Jeppu, G., Girish, C. R., Prabhu, B., & Mayer, K. (2023). Multi-component adsorption isotherms: Review and modeling studies. Environmental Processes, 10(2), 1–52.

    Google Scholar 

  • Jonas, B. (2021). Decontamination of cadmium (II) from synthetic wastewater onto shea fruit shell biomass. Applied Water Science, 11(5), 84.

    Article  Google Scholar 

  • Kalita, S., Pathak, M., Devi, G., Sarma, H. P., Bhattacharyya, K. G., Sarma, A., & Devi, A. (2017). Utilization of Euryale ferox Salisbury seed shell for removal of basic fuchsin dye from water: Equilibrium and kinetics investigation. RSC Advances, 7(44), 27248–27259.

    Article  CAS  Google Scholar 

  • Kerur, S. S., Bandekar, S., Hanagadakar, M. S., Nandi, S. S., Ratnamala, G. M., & Hegde, P. G. (2021). Removal of hexavalent Chromium-Industry treated water and wastewater: A review. Mater Today Proc, 42, 1112–1121.

    Article  CAS  Google Scholar 

  • Khalil, A., Salem, M., Ragab, S., Sillanpää, M., & El Nemr, A. (2023). Orange peels magnetic activate carbon (MG-OPAC) composite formation for toxic chromium absorption from wastewater. Scientific Reports, 13(1), 3402.

    Article  CAS  Google Scholar 

  • Kibami, D., Hesielie, R., Zhimomi, N., Houzha, N., & Nyuwi, C. M. (2022). Synthesis and characterization of a bio waste material as an effective low-cost adsorbent. European Journal of Engineering and Technology Research, 7(3), 106–113.

    Article  Google Scholar 

  • Kocaoba, S., & Akcin, G. (2002). Removal and recovery of chromium and chromium speciation with MINTEQA2. Talanta, 57(1), 23–30.

    Article  CAS  Google Scholar 

  • Kumar, S., Shahnaz, T., Selvaraju, N., & Rajaraman, P. V. (2020). Kinetic and thermodynamic studies on biosorption of Cr (VI) on raw and chemically modified Datura stramonium fruit. Environmental Monitoring and Assessment, 192, 1–24.

    Article  Google Scholar 

  • Lima, E. C., Hosseini-Bandegharaei, A., Moreno-Piraján, J. C., & Anastopoulos, I. (2019). A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. Journal of Molecular Liquids, 273, 425–434.

    Article  CAS  Google Scholar 

  • Liu, Z., Hedayati, P., Sudhölter, E. J., Haaring, R., Shaik, A. R., & Kumar, N. (2020). Adsorption behavior of anionic surfactants to silica surfaces in the presence of calcium ion and polystyrene sulfonate. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 602, 125074.

    Article  CAS  Google Scholar 

  • López-Luna, J., Ramírez-Montes, L. E., Martinez-Vargas, S., Martínez, A. I., Mijangos-Ricardez, O. F., González-Chávez, M. D. C. A., & Vázquez-Hipólito, V. (2019). Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles. SN Applied Sciences, 1, 1–19.

    Article  Google Scholar 

  • Lv, D., Jiang, G., Li, C., Zhu, Q., & Wang, Z. (2022). Ultrafast removal of methylene blue from water by Fenton-like pretreated peanut hull as biosorbent. Green Chemistry Letters and Reviews, 15(1), 93–107.

    Article  Google Scholar 

  • Maaloul, N., Oulego, P., Rendueles, M., Ghorbal, A., & Díaz, M. (2021). Enhanced Cu (II) adsorption using sodium trimetaphosphate–modified cellulose beads: Equilibrium, kinetics, adsorption mechanisms, and reusability. Environmental Science and Pollution Research, 28(34), 46523–46539.

    Article  CAS  Google Scholar 

  • Mahmoud, A. E. D. (2020). Graphene-based nanomaterials for the removal of organic pollutants: Insights into linear versus nonlinear mathematical models. Journal of Environmental Management, 270, 110911.

    Article  Google Scholar 

  • Maneechakr, P., & Mongkollertlop, S. (2020). Investigation on adsorption behaviors of heavy metal ions (Cd2+, Cr3+, Hg2+ and Pb2+) through low-cost/active manganese dioxide-modified magnetic biochar derived from palm kernel cake residue. Journal of Environmental Chemical Engineering, 8(6), 104467.

    Article  CAS  Google Scholar 

  • Martini, S., Afroze, S., & Roni, K. A. (2020). Modified eucalyptus bark as a sorbent for simultaneous removal of COD, oil, and Cr (III) from industrial wastewater. Alexandria Engineering Journal, 59(3), 1637–1648.

    Article  Google Scholar 

  • Mihayo D, Vegi MR, & Vuai SAH. (2022). Attenuation of nitrate from aqueous solution using raw and surface modified biosorbents from Adansonia digitata fruit pericarp. Heliyon 8(8)

  • Mondal, N. K., & Chakraborty, S. (2020). Adsorption of Cr (VI) from aqueous solution on graphene oxide (GO) prepared from graphite: Equilibrium, kinetic and thermodynamic studies. Applied Water Science, 10, 1–10.

    Article  Google Scholar 

  • Mouhamadou, S., Dalhatou, S., Dobe, N., Djakba, R., Fasanya, O. O., Bansod, N. D., & Harouna, M. (2023). Linear and non-linear modelling of kinetics and equilibrium data for Cr (VI) adsorption by activated carbon prepared from Piliostigma reticulatum. Chem Africa, 6(2), 719–731.

    Article  CAS  Google Scholar 

  • Munagapati VS, Wen HY, Gollakota AR, Wen JC, Shu CM, Liu KY & Zyryanov, GV. (2022). Magnetic Fe3O4 nanoparticles loaded papaya (Carica papaya L.) seed powder as an effective and recyclable adsorbent material for the separation of anionic azo dye (Congo Red) from liquid phase: Evaluation of adsorption properties. J Mol Liq 345 118255

  • Njoya, O., Zhao, S., Qu, Y., Shen, J., Wang, B., Shi, H., & Chen, Z. (2020). Performance and potential mechanism of Cr (VI) reduction and subsequent Cr (III) precipitation using sodium borohydride driven by oxalate. Journal of Environmental Management, 275, 111165.

    Article  CAS  Google Scholar 

  • Pant BD, Neupane D, Paudel DR, Lohani PC, Gautam, SK, Pokhrel MR, & Poudel BR (2022). Efficient biosorption of hexavalent chromium from water by modified arecanut leaf sheath. Heliyon 8(4)

  • Peng, H., & Guo, J. (2020). Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: A review. Environmental Chemistry Letters, 18, 2055–2068.

    Article  CAS  Google Scholar 

  • Pholosi, A., Naidoo, E. B., & Ofomaja, A. E. (2020). Batch and continuous flow studies of Cr (VI) adsorption from synthetic and real wastewater by magnetic pine cone composite. Chemical Engineering Research and Design, 153, 806–818.

    Article  CAS  Google Scholar 

  • Prasad, S., Yadav, K. K., Kumar, S., Gupta, N., Cabral-Pinto, M. M., Rezania, S., & Alam, J. (2021). Chromium contamination and effect on environmental health and its remediation: A sustainable approaches. Journal of Environmental Management, 285, 112174.

    Article  CAS  Google Scholar 

  • Pu, S., Hou, Y., Yan, C., Ma, H., Huang, H., Shi, Q., & Chu, W. (2018). In situ coprecipitation formed highly water-dispersible magnetic chitosan nanopowder for removal of heavy metals and its adsorption mechanism. ACS Sustainable Chemistry & Engineering, 6(12), 16754–16765.

    Article  CAS  Google Scholar 

  • Qhubu MC (2020). Adsorption of Cr (VI) by iron oxide functionalized polyethyleneimine (PEI) coated activated carbon-silica composites (Doctoral dissertation, Vaal University of Technology)

  • Rabha, S., Devi, B., Goswami, M., Das, E., Sarma, N., & Devi, A. (2023). Ecologically safe removal of lead ions and basic Fuchsin dye from an aqueous solution using Lippia alba leaves. ChemistrySelect, 8(43), e202302149.

    Article  CAS  Google Scholar 

  • Rai R, Aryal RL, Paudyal H, Gautam SK, Ghimire KN, Pokhrel MR, & Poudel BR (2023). Acid-treated pomegranate peel; An efficient biosorbent for the excision of hexavalent chromium from wastewater Heliyon 9(5)

  • Samaraweera, A. P. G. M. V., Priyantha, N., Gunathilake, W. S. S., Kotabewatta, P. A., & Kulasooriya, T. P. K. (2020). Biosorption of Cr (III) and Cr (VI) species on NaOH-modified peel of Artocarpus nobilis fruit 1. Investigation of kinetics. Applied Water Science, 10(5), 1–11.

    Google Scholar 

  • Shi, X., Gong, B., Liao, S., Wang, J., Liu, Y., Wang, T., & Shi, J. (2020). Removal and enrichment of Cr (VI) from aqueous solutions by lotus seed pods. Water Environment Research, 92(1), 84–93.

    Article  CAS  Google Scholar 

  • Sogut, E. G., & Caliskan, N. (2017). Isotherm and kinetic studies of Pb (II) adsorption on raw and modified diatomite by using non-linear regression method. Fresenius Environmental Bulletin, 26(4), 2721–2729.

    CAS  Google Scholar 

  • Soliman, N. K., & Moustafa, A. F. (2020). Industrial solid waste for heavy metals adsorption features and challenges; a review. Journal of Materials Research and Technology, 9(5), 10235–10253.

    Article  CAS  Google Scholar 

  • Su, G., Yang, S., Jiang, Y., Li, J., Li, S., Ren, J. C., & Liu, W. (2019). Modeling chemical reactions on surfaces: The roles of chemical bonding and van der Waals interactions. Progress in Surface Science, 94(4), 100561.

    Article  CAS  Google Scholar 

  • Tamjidi, S., & Esmaeili, H. (2019). Chemically modified CaO/Fe3O4 nanocomposite by sodium dodecyl sulfate for Cr (III) removal from water. Chemical Engineering & Technology, 42(3), 607–616.

    Article  CAS  Google Scholar 

  • Tandon, R. K., Crisp, P. T., Ellis, J., & Baker, R. S. (1984). Effect of pH on chromium (VI) species in solution. Talanta, 31(3), 227–228.

    Article  CAS  Google Scholar 

  • Tran, H. N., Nguyen, D. T., Le, G. T., Tomul, F., Lima, E. C., Woo, S. H., & Chao, H. P. (2019). Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents: A systematic in-depth review. Journal of Hazardous Materials, 373, 258–270.

    Article  CAS  Google Scholar 

  • Wang, J., Tong, X., Chen, Y., Sun, T., Liang, L., & Wang, C. (2020). Enhanced removal of Cr (III) in high salt organic wastewater by EDTA modified magnetic mesoporous silica. Microporous and Mesoporous Materials, 303, 110262.

    Article  CAS  Google Scholar 

  • Wang, L., Li, J., Jin, Y., Chen, M., Luo, J., Zhu, X., & Zhang, Y. (2019). Study on the removal of chromium (III) from leather waste by a two-step method. Journal of Industrial and Engineering Chemistry, 79, 172–180.

    Article  CAS  Google Scholar 

  • Weni NK & Oktavia B. (2021, February). Optimization of hexavalent chromium ion adsorption using natural silica modified with DMA (Dimethylamine) by batch method. In Journal of Physics: Conference Series (Vol. 1788, No. 1, p. 012014). IOP Publishing

  • Yang, H., Ding, H., Zhang, X., Luo, X., & Zhang, Y. (2019). Immobilization of dopamine on Aspergillus niger microspheres (AM/PDA) and its effect on the U (VI) adsorption capacity in aqueous solutions. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 583, 123914.

    Article  CAS  Google Scholar 

  • Zhang, Y. N., Guo, J. Z., Wu, C., Huan, W. W., Chen, L., & Li, B. (2022). Enhanced removal of Cr (VI) by cation functionalized bamboo hydrochar. Bioresource Technology, 347, 126703.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors offer their sincere thanks to Department of Science and Technology (DST), Govt. of India, for providing financial support in execution of the work. The authors also thank Sophisticated Analytical Instrumentation Centre (SAIC), Institute of Advanced Study in Science and Technology (IASST), Guwahati (under the Department of Science & Technology, Government of India) and CSIR-NEIST for providing the instrumental facilities.

Funding

The work was funded by the Department of Science and Technology (DST), Govt. of India (SR/WOS-A/EA-11/2019(G)).

Author information

Authors and Affiliations

Authors

Contributions

Manisha Goswami: conceptualization, investigation, visualization, writing, review, and editing. Bhaswati Devi: investigation, editing. Emee Das: investigation, editing. Suprakash Rabha: investigation, editing. Hari Prasad Sarma: supervision. Arundhuti Devi: conceptualization, writing, review, editing, and supervision.

Corresponding author

Correspondence to Arundhuti Devi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent for publication

All authors, funding agencies, and the institute where the analysis was done have the consent for the publication and have no objections.

Conflict of interest

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable as the study did not include human subjects.

Consent for publication

All authors read and approve this submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, M., Devi, B., Das, E. et al. A promising approach for the removal of hexavalent and trivalent chromium from aqueous solution using low-cost biomaterial. Environ Monit Assess 196, 461 (2024). https://doi.org/10.1007/s10661-024-12617-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12617-y

Keywords

Navigation