Skip to main content
Log in

Linear and Non-linear Modelling of Kinetics and Equilibrium Data for Cr(VI) Adsorption by Activated Carbon Prepared from Piliostigma reticulatum

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Activated carbon has been found to be useful for purification of liquids and gases via adsorption. Majority of the activated carbon which is utilized in our environment is imported and not produced locally. Activated carbon was prepared from the popular Sahel African plant; Piliostigma reticulatum and used for the extraction of hexavalent chromium [Cr(VI)] molecules from aqueous medium. The Piliostigma activated carbon was characterized using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The efficiency of this adsorbent to remove Cr(VI) molecules from aqueous medium was investigated at different initial concentrations, pH, contact time and adsorbent dosage. Kinetic studies showed that the adsorption process was described by pseudo-second order kinetic model and the equilibrium modelling results fitted best the Freundlich model. The maximum amount of uptake capacity achieved at pH 1.5 was 3.92 mg/g at equilibrium time of 20 min. The piliostigma activated carbon shows potential of being an environmentally friendly adsorbent for Cr(VI) extraction from contaminated water. Piliostigma reticulatum which is grown freely on the African continent can serve as a viable raw material for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fasanya OO, Adesina OB, Okoduwa UJ, Abdulkadir J, Winful E, Obidah TY, Adamun SI, Audu EA, Myint MTZ, Olabimtan OH, Barminas JT (2020) Characterization of Sansevieria Liberica & Urena Lobata fibers as potential sorbent materials for crude oil clean up. J Nat Fibers 1–16. https://doi.org/10.1080/15440478.2020.1788486

  2. Paulauskiene T, Uebe J, Karasu AU, Anne O (2020) Investigation of cellulose-based aerogels for oil spill removal. Water Air Soil Pollut 231(8):424

    Article  CAS  Google Scholar 

  3. Massai H, Djakba R, Sali MY, Yasin B, Teknologi U, Shah M (2020) Adsorption of copper ions (Cu++) in aqueous solution using activated carbon and biosorbent from Indian Jujube (Ziziphus mauritiana) seed hulls. Chem Sci Int J 29(5):13–24

  4. Naseem K, Huma R, Shahbaz A, Jamal J, Ur Rehman MZ, Sharif A, Ahmed E, Begum R, Irfan A, Al-Sehemi AG, Farooqi ZH (2019) Extraction of heavy metals from aqueous medium by husk biomass: adsorption isotherm, kinetic and thermodynamic study. Z Phys Chem 233(2):201–223

    Article  CAS  Google Scholar 

  5. Noor NM, Othman R, Mubarak NM, Abdullah EC (2017) Agricultural biomass-derived magnetic adsorbents: preparation and application for heavy metals removal. J Taiwan Inst Chem Eng 78:168–177

    Article  CAS  Google Scholar 

  6. Qin H, Hu T, Zhai Y, Lu N, Aliyeva J (2020) The improved methods of heavy metals removal by biosorbents: a review. Environ Pollut 258:113777

    Article  CAS  PubMed  Google Scholar 

  7. Şenol ZM (2020) Effective biosorption of Allura red dye from aqueous solutions by the dried-lichen (Pseudoevernia furfuracea) biomass. Int J Environ Anal Chem 1–15. https://doi.org/10.1080/03067319.2020.1785439

  8. Reza MS, Yun CS, Afroze S, Radenahmad N, Bakar MSA, Saidur R, Taweekun J, Azad AK (2020) Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review. Arab J Basic Appl Sci 27(1):208–238

    Article  Google Scholar 

  9. Danish M, Ahmad T (2018) A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew Sustain Energy Rev 87:1–21

    Article  CAS  Google Scholar 

  10. Rattanapan S, Srikram J, Kongsune P (2017) Adsorption of methyl orange on coffee grounds activated carbon. Energy Procedia 138:949–954

    Article  CAS  Google Scholar 

  11. Farnane M, Tounsadi H, Machrouhi A, Elhalil A, Mahjoubi FZ, Sadiq M, Abdennouri M, Qourzal S, Barka N (2017) Dye removal from aqueous solution by raw maize corncob and H3PO4 activated maize corncob. J Water Reuse Desalination 8:jwrd2017179

    Google Scholar 

  12. Djilani C, Zaghdoudi R, Djazi F, Bouchekima B, Lallam A, Modarressi A, Rogalski M (2015) Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon. J Taiwan Inst Chem Eng 53:112–121

    Article  CAS  Google Scholar 

  13. Kwiatkowski M, Broniek E (2017) An analysis of the porous structure of activated carbons obtained from hazelnut shells by various physical and chemical methods of activation. Colloids Surf A Physicochem Eng 529:443–453

    Article  CAS  Google Scholar 

  14. Valentín-Reyes J, García-Reyes RB, García-González A, Soto-Regalado E, Cerino-Córdova F (2019) Adsorption mechanisms of hexavalent chromium from aqueous solutions on modified activated carbons. J Environ Manag 236:815–822

    Article  Google Scholar 

  15. Wilbur S, Abadin H, Fay M, Yu D, Tencza B, Ingerman L, Klotzbach J, James S (2012) Toxicological profile for chromium. Agency for Toxic Substances and Disease Registry (US), Atlanta

    Google Scholar 

  16. Ma J, Li J, Guo Q, Han H, Zhang S, Han R (2020) Waste peanut shell modified with polyethyleneimine for enhancement of hexavalent chromium removal from solution in batch and column modes. Bioresour Technol Rep 12:100576

    Article  Google Scholar 

  17. Saha R, Nandi R, Saha B (2011) Sources and toxicity of hexavalent chromium. J Coord Chem 64(10):1782–1806

    Article  CAS  Google Scholar 

  18. Mondal MH, Begum W, Nasrollahzadeh M, Ghorbannezhad F, Antoniadis V, Levizou E, Saha B (2021) A comprehensive review on chromium chemistry along with detection, speciation, extraction and remediation of hexavalent chromium in contemporary science and technology. Vietnam J Chem 59(6):711–732

    CAS  Google Scholar 

  19. Wang B, Sun Y-C, Sun R-C (2019) Fractionational and structural characterization of lignin and its modification as biosorbents for efficient removal of chromium from wastewater: a review. J Leather Sci Eng 1(1):5

    Article  Google Scholar 

  20. Owlad M, Aroua MK, Daud WAW, Baroutian S (2009) Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Pollut 200(1):59–77

    Article  CAS  Google Scholar 

  21. Qhubu MC, Methula B, Xaba T, Moyo M, Pakade VE (2021) Iron-zinc impregnated biochar composite as a promising adsorbent for toxic hexavalent chromium remediation: kinetics, isotherms and thermodynamics. Chem Afr. https://doi.org/10.1007/s42250-021-00273-5

  22. Ugwu EI, Agunwamba JC (2020) A review on the applicability of activated carbon derived from plant biomass in adsorption of chromium, copper, and zinc from industrial wastewater. Environ Monit Assess 192(4):240

    Article  CAS  PubMed  Google Scholar 

  23. Yin W, Guo Z, Zhao C, Xu J (2019) Removal of Cr(VI) from aqueous media by biochar derived from mixture biomass precursors of Acorus calamus Linn. and feather waste. J Anal Appl Pyrolysis 140:86–92

    Article  CAS  Google Scholar 

  24. Lace A, Ryan D, Bowkett M, Cleary J (2019) Chromium monitoring in water by colorimetry using optimised 1,5-diphenylcarbazide method. Int J Environ Res Public Health 16(10):1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bright MBH, Diedhiou I, Bayala R, Assigbetse K, Chapuis-Lardy L, Ndour Y, Dick RP (2017) Long-term Piliostigma reticulatum intercropping in the Sahel: crop productivity, carbon sequestration, nutrient cycling, and soil quality. Agric Ecosyst Environ 242:9–22

    Article  Google Scholar 

  26. Boualam K, Ndiaye B, Harhar H, Tabyaoui M, Ayessou N, Taghzouti K (2021) Study of the phytochemical composition, the antioxidant and the anti-inflammatory effects of two sub-saharan plants: Piliostigma reticulatum and Piliostigma thonningii. Adv Pharmacol Sci 2021:5549478

    CAS  Google Scholar 

  27. Kayiwa R, Kasedde H, Lubwama M, Kirabira JB (2021) The potential for commercial scale production and application of activated carbon from cassava peels in Africa: a review. Bioresour Technol Rep 15:100772

    Article  Google Scholar 

  28. Abatan OG, Oni BA, Agboola O, Efevbokhan V, Abiodun OO (2019) Production of activated carbon from African star apple seed husks, oil seed and whole seed for wastewater treatment. J Clean Prod 232:441–450

    Article  CAS  Google Scholar 

  29. Rahman A, Hango HJ, Daniel LS, Uahengo V, Jaime SJ, Bhaskaruni SVHS, Jonnalagadda SB (2019) Chemical preparation of activated carbon from Acacia erioloba seed pods using H2SO4 as impregnating agent for water treatment: an environmentally benevolent approach. J Clean Prod 237:117689

    Article  CAS  Google Scholar 

  30. Omorogie MO, Babalola JO, Ismaeel MO, McGettrick JD, Watson TM, Dawson DM, Carta M, Kuehnel MF (2021) Activated carbon from Nauclea diderrichii agricultural waste—a promising adsorbent for ibuprofen, methylene blue and CO2. Adv Powder Technol 32(3):866–874

    Article  CAS  Google Scholar 

  31. Prakash MO, Raghavendra G, Ojha S, Panchal M (2021) Characterization of porous activated carbon prepared from arhar stalks by single step chemical activation method. Mater Today Proc 39:1476–1481

    Article  Google Scholar 

  32. Nagy B, Măicăneanu A, Indolean C, Mânzatu C, Silaghi-Dumitrescu L, Majdik C (2014) Comparative study of Cd(II) biosorption on cultivated Agaricus bisporus and wild Lactarius piperatus based biocomposites. Linear and nonlinear equilibrium modelling and kinetics. J Taiwan Inst Chem Eng 45(3):921–929

    Article  CAS  Google Scholar 

  33. Bopda A, Raoul TD, Tchuifon T, Ndifor-Angwafor N, Doungmo G, Gabche A (2019) Non-linear equilibrium and kinetic study of the adsorption of 2,4-dinitrophenol from aqueous solution using activated carbon derived from a olives stones and cotton cake. Afr J Environ Sci Technol 13:365–380

    Article  CAS  Google Scholar 

  34. Kim JY, Balathanigaimani MS, Moon H (2015) Adsorptive removal of nitrate and phosphate using MCM-48, SBA-15, chitosan, and volcanic pumice. Water Air Soil Pollut 226(12):431

    Article  Google Scholar 

  35. Hossain MD, Ngo H, Guo W (2013) Introductory of Microsoft Excel SOLVER function-Spreadsheet method for isotherm and kinetics modelling of metals biosorption in water and wastewater. J Water Sustain 3:223–237

    CAS  Google Scholar 

  36. Amrhar O, Nassali H, Elyoubi M (2015) Application of nonlinear regression analysis to select the optimum absorption isotherm for Methylene Blue adsorption onto Natural Illitic Clay. Bull Soc R Sci Liege 84:116–130

    CAS  Google Scholar 

  37. Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chem 2017:3039817

    Article  Google Scholar 

  38. Sangkarak S, Phetrak A, Kittipongvises S, Kitkaew D, Phihusut D, Lohwacharin J (2020) Adsorptive performance of activated carbon reused from household drinking water filter for hexavalent chromium-contaminated water. J Environ Manag 272:111085

    Article  CAS  Google Scholar 

  39. Zhao J, Yu L, Ma H, Zhou F, Yang K, Wu G (2020) Corn stalk-based activated carbon synthesized by a novel activation method for high-performance adsorption of hexavalent chromium in aqueous solutions. J Colloid Interface Sci 578:650–659

    Article  CAS  PubMed  Google Scholar 

  40. Rai MK, Shahi G, Meena V, Meena R, Chakraborty S, Singh RS, Rai BN (2016) Removal of hexavalent chromium Cr (VI) using activated carbon prepared from mango kernel activated with H3PO4. Resour Eff Technol 2:S63–S70

    Google Scholar 

  41. Zhou H, Bhattarai R, Li Y, Li S, Fan Y (2019) Utilization of coal fly and bottom ash pellet for phosphorus adsorption: sustainable management and evaluation. Resour Conserv Recycl 149:372–380

    Article  Google Scholar 

  42. Enniya I, Rghioui L, Jourani A (2018) Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels. Sustain Chem Pharm 7:9–16

    Article  Google Scholar 

  43. Sun L, Yan C, Chen Y, Wang H, Wang Q (2012) Preparation of amorphous carbon nanotubes using attapulgite as template and furfuryl alcohol as carbon source. J Noncryst Solids 358(18):2723–2726

    Article  CAS  Google Scholar 

  44. Wibawa PJ, Nur M, Asy’ari M, Nur H (2020) SEM, XRD and FTIR analyses of both ultrasonic and heat generated activated carbon black microstructures. Heliyon 6(3):e03546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ivanova T, Gesheva K, Cziraki A, Szekeres A, Vlaikova E (2008) Structural transformations and their relation to the optoelectronic properties of chromium oxide thin films. J Phys Conf Ser 113:012030

    Article  Google Scholar 

  46. Abdullah MM, Rajab F, Al-Abbas S (2014) Structural and optical characterization of Cr2O3 nanostructures: evaluation of its dielectric properties. AIP Adv 4:027121

    Article  CAS  Google Scholar 

  47. de la Luz-Asunción M, Pérez-Ramírez EE, Martínez-Hernández AL, Castano VM, Sánchez-Mendieta V, Velasco-Santos C (2019) Non-linear modeling of kinetic and equilibrium data for the adsorption of hexavalent chromium by carbon nanomaterials: dimension and functionalization. Chin J Chem Eng 27(4):912–919

    Article  Google Scholar 

  48. He X, Min X, Peng T, Zhao F, Ke Y, Wang Y, Jiang G, Xu Q, Wang J (2020) Mechanochemically activated microsized zero-valent iron/pyrite composite for effective hexavalent chromium sequestration in aqueous solution. J Chem Eng Data 65(4):1936–1945

    Article  CAS  Google Scholar 

  49. Lam YY, Lau SSS, Wong JWC (2019) Removal of Cd(II) from aqueous solutions using plant-derived biochar: kinetics, isotherm and characterization. Bioresour Technol Rep 8:100323

    Article  Google Scholar 

  50. Fotsing PN, Woumfo ED, Măicăneanu SA, Vieillard J, Tcheka C, Ngueagni PT, Siéwé JM (2020) Removal of Cu(II) from aqueous solution using a composite made from cocoa cortex and sodium alginate. Environ Sci Pollut 27(8):8451–8466

    Article  CAS  Google Scholar 

  51. Yang J, Huang B, Lin M (2020) Adsorption of hexavalent chromium from aqueous solution by a chitosan/bentonite composite: isotherm, kinetics, and thermodynamics studies. J Chem Eng Data 65(5):2751–2763

    Article  CAS  Google Scholar 

  52. Jia D, Cai H, Duan Y, Xia J, Guo J (2021) Efficient adsorption to hexavalent chromium by iron oxalate modified D301: characterization, performance and mechanisms. Chin J Chem Eng 33:61–69

    Article  CAS  Google Scholar 

  53. Liang F-B, Song Y-L, Huang C-P, Zhang J, Chen B-H (2013) Adsorption of hexavalent chromium on a lignin-based resin: equilibrium, thermodynamics, and kinetics. J Environ Chem Eng 1(4):1301–1308

    Article  CAS  Google Scholar 

  54. Wang XS, Chen LF, Li FY, Chen KL, Wan WY, Tang YJ (2010) Removal of Cr(VI) with wheat-residue derived black carbon: reaction mechanism and adsorption performance. J Hazard Mater 175(1):816–822

    Article  CAS  PubMed  Google Scholar 

  55. Zhou L, Chi T, Zhou Y, Lv J, Chen H, Sun S, Zhu X, Wu H, Hu X (2022) Efficient removal of hexavalent chromium through adsorption-reduction-adsorption pathway by iron-clay biochar composite prepared from Populus nigra. Sep Purif Technol 285:120386

    Article  CAS  Google Scholar 

  56. Tsai WT, Chang CY, Lin MC, Chien SF, Sun HF, Hsieh MF (2001) Adsorption of acid dye onto activated carbons prepared from agricultural waste bagasse by ZnCl2 activation. Chemosphere 45(1):51–58

    Article  CAS  PubMed  Google Scholar 

  57. Kumar KV, Sivanesan S (2005) Prediction of optimum sorption isotherm: comparison of linear and non-linear method. J Hazard Mater 126(1):198–201

    Article  CAS  PubMed  Google Scholar 

  58. Mouhamadou S, Tcheka C, Djakba R, Dobe N, Mando G, Harouna M (2021) Investigation of Cr(VI) ions adsorptive removal from aqueous solution onto TiO2-AC composite: non-linear equilibrium modeling and kinetics. Int J Eng Sci Res Technol 10(1):41–54

    CAS  Google Scholar 

  59. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  60. Walter JW, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89(2):31–59

    Article  Google Scholar 

  61. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    Article  CAS  Google Scholar 

  62. Freundlich H (1907) Über die adsorption in Lösungen. Z Phys Chem 57U(1):385–470

    Article  Google Scholar 

  63. Dąbrowski A (2001) Adsorption—from theory to practice. Adv Colloid Interface Sci 93(1):135–224

    Article  PubMed  Google Scholar 

  64. Dubinin M (1947) The equation of the characteristic curve of activated charcoal. Proc USSR Acad Sci 55:327–329

    CAS  Google Scholar 

  65. Li P, Fu T, Gao X, Zhu W, Han C, Liu N, He S, Luo Y, Ma W (2019) Adsorption and reduction transformation behaviors of Cr(VI) on mesoporous polydopamine/titanium dioxide composite nanospheres. J Chem Eng Data 64(6):2686–2696

    Article  CAS  Google Scholar 

  66. Vilardi G, Ochando-Pulido JM, Verdone N, Stoller M, Di Palma L (2018) On the removal of hexavalent chromium by olive stones coated by iron-based nanoparticles: equilibrium study and chromium recovery. J Clean Prod 190:200–210

    Article  CAS  Google Scholar 

  67. Qu J, Wang Y, Tian X, Jiang Z, Deng F, Tao Y, Jiang Q, Wang L, Zhang Y (2021) KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: affecting factors, mechanisms and reusability exploration. J Hazard Mater 401:123292

    Article  CAS  PubMed  Google Scholar 

  68. Ren B, Jin Y, Zhao L, Cui C, Song X (2022) Enhanced Cr(VI) adsorption using chemically modified dormant Aspergillus niger spores: process and mechanisms. J Environ Chem Eng 10(1):106955

    Article  CAS  Google Scholar 

  69. Rafiaee S, Samani MR, Toghraie D (2020) Removal of hexavalent chromium from aqueous media using pomegranate peels modified by polymeric coatings: effects of various composite synthesis parameters. Synth Met 265:116416

    Article  CAS  Google Scholar 

  70. Nithya K, Sathish A, Pradeep K, Baalaji SK (2019) Algal biomass waste residues of Spirulina platensis for chromium adsorption and modeling studies. J Environ Chem Eng 7(5):103273

    Article  CAS  Google Scholar 

  71. Rambabu K, Bharath G, Banat F, Show PL (2020) Biosorption performance of date palm empty fruit bunch wastes for toxic hexavalent chromium removal. Environ Res 187:109694

    Article  CAS  PubMed  Google Scholar 

  72. Jain M, Garg VK, Kadirvelu K (2010) Adsorption of hexavalent chromium from aqueous medium onto carbonaceous adsorbents prepared from waste biomass. J Environ Manag 91(4):949–957

    Article  CAS  Google Scholar 

  73. Rambabu K, Thanigaivelan A, Bharath G, Sivarajasekar N, Banat F, Show PL (2021) Biosorption potential of phoenix dactylifera coir wastes for toxic hexavalent chromium sequestration. Chemosphere 268:128809

    Article  CAS  PubMed  Google Scholar 

  74. Tu B, Wen R, Wang K, Cheng Y, Deng Y, Cao W, Zhang K, Tao H (2020) Efficient removal of aqueous hexavalent chromium by activated carbon derived from Bermuda grass. J Colloid Interface Sci 560:649–658

    Article  CAS  PubMed  Google Scholar 

  75. Thangagiri B, Sakthivel A, Jeyasubramanian K, Seenivasan S, Raja JD, Yun K (2022) Removal of hexavalent chromium by biochar derived from Azadirachta indica leaves: batch and column studies. Chemosphere 286:131598

    Article  CAS  PubMed  Google Scholar 

  76. Wang Q, Zhou C, Kuang Y-J, Jiang Z-H, Yang M (2020) Removal of hexavalent chromium in aquatic solutions by pomelo peel. Water Sci Eng 13(1):65–73

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the Laboratory of Biochemistry and Biological Chemistry, University of Maroua, Cameroon for providing facilities to carry out this study.

Funding

No research Grant was utilized in carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Opeoluwa O. Fasanya.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable as no human or animal test subjects were used in the entirety of this work.

Informed consent

Not applicable as no human test subjects were used in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouhamadou, S., Dalhatou, S., Dobe, N. et al. Linear and Non-linear Modelling of Kinetics and Equilibrium Data for Cr(VI) Adsorption by Activated Carbon Prepared from Piliostigma reticulatum. Chemistry Africa 6, 719–731 (2023). https://doi.org/10.1007/s42250-022-00324-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00324-5

Keywords

Navigation