Skip to main content
Log in

Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

There is continuing interest in the growing family of nanocellulosic materials prepared from plant cell wall material. While most of the research on cellulose nanocrystals has focused on the product of sulfuric acid hydrolysis stabilized by surface sulfate half-esters, cellulose nanocrystals with surface carboxyl groups have also been prepared by oxidation of lignocellulosic materials with ammonium persulfate. The major difference is that the persulfate oxidation leads to nanocrystals stabilized by surface carboxyl groups. Some properties of cellulose nanocrystals from cotton and wood, prepared by persulfate oxidation, are compared with those observed for nanocrystals prepared by sulfuric acid hydrolysis. Evidence from polarized light microscopy showed that the nanocrystal suspensions prepared by persulfate oxidation also form chiral nematic ordered phases in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abitbol T, Kloser E, Gray DG (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20(2):785–794

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17(1):21–27

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054

    Article  CAS  Google Scholar 

  • Bouligand Y (1973) Recherches sur les textures des états mésomorphes. 3. Les plages à éventails dans les cholestériques. J Physique 34(7):603–614

    Article  CAS  Google Scholar 

  • Chumbimuni-Torres KY, Coronado RE, Mfuh AM, Castro-Guerrero C, Silva MF, Negrete GR, Bizios R, Garcia CD (2011) Adsorption of proteins to thin-films of PDMS and its effect on the adhesion of human endothelial cells. RSC Adv 1(4):706–714

    Article  CAS  Google Scholar 

  • Chung C, Lee M, Choe EK (2004) Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr Polym 58(4):417–420

    Article  CAS  Google Scholar 

  • da Silva Perez D, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromolecules 4(5):1417–1425

    Article  Google Scholar 

  • de Feng X, Guo XQ, Qiu KY (1988) Study of the initiation mechanism of the vinyl polymerization with the system persulfate/N, N, N ‘,N ‘- tetramethylethylenediamin. Makromol Chem 189(1):77–83

    Article  CAS  Google Scholar 

  • De Nooy AEJ, Besemer AC, Van Bekkum H (1995) Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res 269(1):89–98

    Article  Google Scholar 

  • Dong XM, Gray DG (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13(8):2404–2409

    Article  CAS  Google Scholar 

  • Dong XM, Kimura T, Revol J-F, Gray DG (1996) Effects of ionic strength on the isotropic—chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082

    Article  CAS  Google Scholar 

  • Dorris A, Gray DG (2012) Gelation of cellulose nanocrystal suspensions in glycerol. Cellulose 19(3):687–694

    Article  CAS  Google Scholar 

  • Driemeier C, Calligaris GA (2011) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Cryst 44(1):184–192

    Article  CAS  Google Scholar 

  • Edgar C, Gray DG (2002) Influence of dextran on the phase behaviour of suspensions of cellulose nanocrystals. Macromolecules 35(19):7400–7406

    Article  CAS  Google Scholar 

  • Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11(11):1808–1814

    Article  CAS  Google Scholar 

  • Flory PJ (1956) Phase equilibria in solutions of rod-like particles. Proc R Soc Lond A 234(1196):73–89

    Article  CAS  Google Scholar 

  • Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13(6):679–687

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals. Chem Rev 110(6):3479–3500

    Article  CAS  Google Scholar 

  • Hanley SJ, Gray DG (1995) Atomic force microscopy. In: Conners TE, Banergee S (eds) Surface analysis of paper. CRC Press, Boca Raton, pp 301–324

  • Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4(11):2238–2244

    Article  CAS  Google Scholar 

  • Hayashi N, Kondo T, Ishihara M (2005) Enzymatically produced nano-ordered short elements containing cellulose Iβ crystalline domains. Carbohydr Polym 61(2):191–197

    Article  CAS  Google Scholar 

  • Kanno H (1990) Complete ionization of concentrated sulfuric acid at low temperatures. Chem Phys Lett 170(4):382–384

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393

    Article  CAS  Google Scholar 

  • Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26(16):13450–13456

    Article  CAS  Google Scholar 

  • Lahiji RR, Boluk Y, McDermott M (2012) Adhesive surface interactions of cellulose nanocrystals from different sources. J Mater Sci. doi:10.1007/s10853-012-6247-z

    Google Scholar 

  • Lam E, Leung ACW, Liu Y, Majid E, Hrapovic S, Male SKB, Luong JHT (2013) Green strategy guided by raman spectroscopy for the synthesis of ammonium carboxylated nanocrystalline cellulose and the recovery of byproducts. ACS Sustain Chem Eng 1(2):278–283

    Article  CAS  Google Scholar 

  • Leung ACW, Hrapovic S, Lam E, Liu Y, Male K, Mahmoud KA, Luong JHT (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7(3):302–305

    Article  CAS  Google Scholar 

  • Li W, Wang R, Liu S (2011) Nanocrystalline cellulose prepared from softwood kraft pulp via ultrasonic-assisted hydrolysis. BioResources 6(4):4271–4281

    CAS  Google Scholar 

  • Liang CY, Marchessault RH (1959) Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm−1. J Polym Sci 39(135):269–278

  • Male KB, Leung ACW, Montes J, Kamen A, Luong JHT (2012) Probing inhibitory effects of nanocrystalline cellulose: inhibition versus surface charge. Nanoscale 4(4):1373–1379

    Article  CAS  Google Scholar 

  • Man Z, Muhammad N, Sarwono A, Bustam MA, Kumar MV, Rafiq SJ (2011) Preparation of cellulose nanocrystals using an ionic liquid. J Polym Environ 19(3):726–731

    Article  CAS  Google Scholar 

  • Marrinan HJ, Mann J (1956) Infrared spectra of the crystalline modifications of cellulose. J Polym Sci 21(98):301–311

    Article  Google Scholar 

  • Montanari S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38(5):1665–1671

    Article  CAS  Google Scholar 

  • Nelson ML, O’Connor R (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8(3):1325–1341

    Article  CAS  Google Scholar 

  • Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann N Y Acad Sci 51(2):627–659

    Article  CAS  Google Scholar 

  • Payen A (1838) Sur la composition du tissu propre des plantes et du ligneux. Compt Rend 7(1):1052–1056

    Google Scholar 

  • Rånby BG (1949) Aqueous colloidal solutions of cellulose micelles. Acta Chem Scand 3(1):649–650

    Article  Google Scholar 

  • Rånby BG (1951) Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc 11(1):158–164

    Article  Google Scholar 

  • Rånby BG, Ribi E (1950) Über den feinbau der zellulose. Experientia 6(1):12–14

    Article  Google Scholar 

  • Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172

    Article  CAS  Google Scholar 

  • Revol JF, Godbout L, Dong XM, Gray DG, Chanzy H, Maret G (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16(1):127–134

    Article  CAS  Google Scholar 

  • Roman M, Gray DG (2005) Parabolic focal conics in self-assembled solid films of cellulose nanocrystals. Langmuir 21(12):5555–5561

    Article  CAS  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677

    Article  CAS  Google Scholar 

  • Sadeghifar H, Filpponen I, Clarke SP, Brougham DF, Argyropoulos DS (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46(22):7344–7355

    Article  CAS  Google Scholar 

  • Schenzel K, Fischer S (2001) NIR FT Raman spectroscopy—a rapid analytical tool for detecting the transformation of cellulose polymorphs. Cellulose 8(1):49–57

    Article  CAS  Google Scholar 

  • Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Göttingen 26:98–100

    Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  • Simon A, Richter HZ (1962) Raman- und ultrarotspektroskopische untersuchungen an salzen der peroxodischwfelsäure. Anorg Allg Chem 315(3–4):196–203

    Article  CAS  Google Scholar 

  • Sitterley G (2008) Poly-l-lysine cell attachment protocol. BioFiles 3(8):12

    Google Scholar 

  • Stenekes RJH, Hennink WE (2000) Complete ionization of concentrated sulfuric acid at low temperatures. Polymer 41(15):5563–5569

    Article  CAS  Google Scholar 

  • Tomikawa K, Kanno H (1998) Raman study of sulfuric acid at low temperatures. J Phys Chem A 102(30):6082–6088

    Article  CAS  Google Scholar 

  • Wada M, Heux L, Sugiyama J (2004) Polymorphism of cellulose I family: reinvestigation of cellulose IVI. Biomacromolecules 5(4):1385–1391

    Article  CAS  Google Scholar 

  • Wiley JH, Atalla RH (1987) Band assignments in the raman spectra of celluloses. Carbohydr Res 160(1):113–129

    Article  CAS  Google Scholar 

  • Zhou Y, Fuentes-Hernández C, Khan TM, Liu J-C, Hsu J, Shim JW, Dindar A, Youngblood JP, Moon RJ, Kippelen B (2013) Recyclable organic solar cells on cellulose nanocrystal substrates. Sci Rep. doi:10.1038/srep01536

    Google Scholar 

Download references

Acknowledgments

We thank NSERC Canada for support, and Bio Vision Technology Inc., Nova Scotia, for samples of cellulose nanocrystals prepared from wood pulp. M. Andrews and T. Gonzalez helped with the Raman spectroscopy. Helpful suggestions from a reviewer are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek G. Gray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro-Guerrero, C.F., Gray, D.G. Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate. Cellulose 21, 2567–2577 (2014). https://doi.org/10.1007/s10570-014-0308-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0308-1

Keywords

Navigation