Skip to main content
Log in

Semi-industrial scale (30 m3) fed-batch fermentation for the production of d-lactate by Escherichia coli strain HBUT-D15

  • Fermentation, Cell Culture and Bioengineering - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

d(−)-lactic acid is needed for manufacturing of stereo-complex poly-lactic acid polymer. Large scale d-lactic acid fermentation, however, has yet to be demonstrated. A genetically engineered Escherichia coli strain, HBUT-D, was adaptively evolved in a 15% calcium lactate medium for improved lactate tolerance. The resulting strain, HBUT-D15, was tested at a lab scale (7 L) by fed-batch fermentation with up to 200 g L−1 of glucose, producing 184–191 g L−1 of d-lactic acid, with a volumetric productivity of 4.38 g L−1 h−1, a yield of 92%, and an optical purity of 99.9%. The HBUT-D15 was then evaluated at a semi-industrial scale (30 m3) via fed-batch fermentation with up to 160 g L−1 of glucose, producing 146–150 g L−1 of d-lactic acid, with a volumetric productivity of 3.95–4.29 g L−1 h−1, a yield of 91–94%, and an optical purity of 99.8%. These results are comparable to that of current industrial scale l(+)-lactic acid fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31:877–902

    Article  CAS  PubMed  Google Scholar 

  2. Calabia BP, Tokiwa Y (2007) Production of d-lactic acid from sugarcane molasses, sugarcane juice and sugar beet juice by Lactobacillus delbrueckii. Biotechnol Lett 29:1329–1332

    Article  CAS  PubMed  Google Scholar 

  3. Chang DE, Jung HC, Rhee JS, Pan JG (1999) Homofermentative production of d- or l-lactate in metabolically engineered Escherichia coli RR1. Appl Environ Microbiol 65:1384–1389

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies-a review. J Chem Technol Biotechnol 81(7):1119–1129

    Article  CAS  Google Scholar 

  5. Demirci A, Pometto AL III (1992) Enhanced production of d-lactic acid by mutants of Lactobacillus delbrueckii ATCC9649. J Ind Microbiol 11:23–28

    Article  CAS  Google Scholar 

  6. Eiteman MA, Ramalingam S (2015) Microbial production of lactic acid. Biotechnol Lett 37:955–972

    Article  CAS  PubMed  Google Scholar 

  7. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  8. Grabar TB, Zhou S, Shanmugam KT, Yomano LP, Ingram LO (2006) Methylglyoxal bypass identified as source of chiral contamination in l(+) and d(−)-lactate fermentations by recombinant Escherichia coli. Biotechnol Lett 28:1527–1535

    Article  CAS  PubMed  Google Scholar 

  9. Hofvendahl K, Hahn-Hagerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzym Microb Technol 26:87–107

    Article  CAS  Google Scholar 

  10. John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process development and future perspectives. Appl Microbiol Biotechnol 74:524–534

    Article  CAS  PubMed  Google Scholar 

  11. Joshi DS, Singhvi MS, Khire JM, Gokhale DV (2010) Strain improvement of Lactobacillus lactis for d-lactic acid production. Biotechnol Lett 32:517–520

    Article  CAS  PubMed  Google Scholar 

  12. Liu Y, Gao W, Zhao X, Wang J, Garza E, Manow R, Zhou S (2014) Pilot scale demonstration of d-lactic acid fermentation facilitated by Ca(OH)2 using a metabolically engineered Escherichia coli. Bioresour Technol 169:559–565

    Article  CAS  PubMed  Google Scholar 

  13. Okano K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotechnol 85(3):413–423

    Article  CAS  PubMed  Google Scholar 

  14. Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008) Production of d-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78:449–454

    Article  CAS  PubMed  Google Scholar 

  15. Tokiwa Y, Calabia BP (2006) Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 72:244–251

    Article  CAS  PubMed  Google Scholar 

  16. Tsuge Y, Yamamoto S, Kato N, Suda M, Vertès AA, Yukawa H, Inui M (2015) Overexpression of the phosphofructokinase encoding gene is crucial for achieving high production of d-lactate in Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 99:4679–4689

    Article  CAS  PubMed  Google Scholar 

  17. Tsuge Y, Kawaguchi H, Sasaki K, Kondo A (2016) Engineering cell factories for producing building block chemicals for bio-polymer synthesis. Microb Cell Factories 15:19

    Article  Google Scholar 

  18. Tsuji H (2002) Autocatalytic hydrolysis of amorphous-made polylactides: effects of lactide content, tacticity, and enantiomeric polymer blending. Polymer 43:1789–1796

    Article  CAS  Google Scholar 

  19. Wang LM, Zhao B, Li FS, Xu K, Ma CQ, Li QG, Xu P (2011) Highly efficient production of d-lactate by Sporolactobacillus sp. CASD with simultaneous enzymatic hydrolysis of peanut meal. Appl Microbiol Biotechnol 89:1009–1017

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Tian T, Zhao J, Wang J, Yan T, Xu L, Liu Z, Garza E, Iverson A, Manow R, Finan C, Zhou S (2012) Homofermentative production of d-lactic acid from sucrose by a metabolically engineered Escherichia coli. Biotechnol Lett 34(11):2069–2075

    Article  CAS  PubMed  Google Scholar 

  21. Wang LM, Zhao B, Li FS, Xu K, Ma CQ, Li QG, Xu P (2011) Highly efficient production of d-lactate by Sporolactobacillus sp. CASD with simultaneous enzymatic hydrolysis of peanut meal. Appl Microbiol Biotechnol 89:1009–1017

    Article  CAS  PubMed  Google Scholar 

  22. Zheng HJ, Gong JX, Chen T, Chen X, Zhao XM (2010) Strain improvement of Sporolactobacillus inulinus ATCC15538 for acid tolerance and production of d-lactic acid by genome shuffling. Appl Microbiol Biotechnol 85:1541–1549

    Article  CAS  PubMed  Google Scholar 

  23. Zhou L, Niu DD, Tian KM, Chen XZ, Prior BA, Shen W, Shi GY, Singh S, Wang ZX (2012) Genetically switched d-lactate production in Escherichia coli. Metab Eng 14:560–568

    Article  CAS  PubMed  Google Scholar 

  24. Zhou S, Yomano LP, Shanmugam KT, Ingram LO (2005) Fermentation of 10% (w/v) sugar to d-lactate by engineered Escherichia coli B. Biotechnol Lett 27:1891–1896

    Article  CAS  PubMed  Google Scholar 

  25. Zhou S, Shanmugam KT, Yomano LP, Grabar TB, Ingram LO (2006) Fermentation of 12% (w/v) glucose to 1.2 M lactate by Escherichia coli strain SZ194 using mineral salts medium. Biotechnol Lett 28:663–670

    Article  CAS  PubMed  Google Scholar 

  26. Zhu Y, Eiteman MA, DeWitt K, Altman E (2007) Homolactate fermentation by metabolically engineered Escherichia coli strains. Appl Environ Microbiol 73(2):456–464

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hubei Provincial Science Foundation (2011CDA008), Hubei University of Technology, P. R. China, and Northern Illinois University, USA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinhua Wang or Shengde Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

X. Fu and Y. Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Wang, Y., Wang, J. et al. Semi-industrial scale (30 m3) fed-batch fermentation for the production of d-lactate by Escherichia coli strain HBUT-D15. J Ind Microbiol Biotechnol 44, 221–228 (2017). https://doi.org/10.1007/s10295-016-1877-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1877-9

Keywords

Navigation