Skip to main content
Log in

Methylglyoxal Bypass Identified as Source of Chiral Contamination in l(+) and d(−)-lactate Fermentations by Recombinant Escherichia coli

  • Original Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Two new strains of Escherichia coli B were engineered for the production of lactate with no detectable chiral impurity. All chiral impurities were eliminated by deleting the synthase gene (msgA) that converts dihydroxyacetone-phosphate to methylglyoxal, a precursor for both l(+)- and d(−)-lactate. Strain TG113 contains only native genes and produced optically pure d(−)-lactate. Strain TG108 contains the ldhL gene from Pediococcus acidilactici and produced only l(+)-lactate. In mineral salts medium containing 1 mM betaine, both strains produced over 115 g (1.3 mol) lactate from 12% (w/v) glucose, >95% theoretical yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal AK (2003) Advances in the production of poly(lactic acid) fibers. A review. J Macromol Sci Polym Rev 4:479–503

    Google Scholar 

  • Badia J, Gimenez R, Baldoma L, Barnes E, Fessner WD, Aguilar J (1991) l-Lyxose metabolism employs the l-rhamnose pathway in mutant-cells of Escherichia coli-adapted to grow on xylose. J Bacteriol 173:5144–5150

    PubMed  CAS  Google Scholar 

  • Bianchi MM, Brambilla L, Protani F, Liu C, Lievense, Porro D (2001) Efficient homolactic fermentation by Kluveromyces lactis strains defective in pyruvate utilization and transformed with heterologous LDH gene. Appl Environ Microbiol 67:5621–5625

    Article  PubMed  CAS  Google Scholar 

  • Booth IR, Ferguson GP, Miller S, Li C, Gunasekera B, Kinghorn S (2003) Bacterial production of methylglyoxal: a survival strategy or death by misadventure?. Biochem Soc Trans 31:1406–1408

    PubMed  CAS  Google Scholar 

  • Causey TB, Shanmugam KT, Yomano LP, Ingram LO (2004) Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proc Natl Acad Sci USA 101:2235–2240

    Article  PubMed  CAS  Google Scholar 

  • Chang DE, Jung HC, Rhee JS, Pan JG (1999) Homofermentative production of d(−) or l(+) lactate in metabolically engineered Escherichia coli RR1. Appl Environ Microbiol 65:1384–1389

    PubMed  CAS  Google Scholar 

  • Csonka LN (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45:569–606

    Article  PubMed  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  • Demirci A, Pometto AL (1992) Enhanced production of d(−)-lactic acid by mutants of Lactobacillus delbrueckii ATCC9649. J Ind Microbiol Biotechnol 11:23–28

    Article  CAS  Google Scholar 

  • Dien BS, Nichols NN, Bothast RJ (2001) Recombinant Escherichia coli engineered for production of l-lactic acid from hexose and pentose sugars. J Indus Microbiol Biotechnol 27:259–264

    Article  CAS  Google Scholar 

  • Eddington JM, Johnson KB, Liaw HJ, Rowe M, Yang Y (2004) Novel lactobacillus strains and use thereof in fermentation process for l-lactic acid production. US Patent Application No. 20040005677

  • Kyla-Nikkila K, Hujanen M, Leisola M, Palva A (2000) Metabolic engineering of Lactobacillus helveticus CNR32 for production of pure l(+)-lactic acid. Appl Environ Microbiol 66:3835–3841

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Hong SH, Lee SH, Park SJ (2004) Fermentative production of chemicals that can be used for polymer synthesis. Macromol Biosci 4:157–164

    Article  PubMed  CAS  Google Scholar 

  • Liaw HJ (2003) Novel strains of Rhizopus oryzae and uses thereof US Patent Application No. 20030003553

  • Liu CL, Lievense JC (2005) Lactic acid producing yeast. US Patent Application No. 20050112737

  • Martinez-Morales F, Borges AG, Martinez A, Shanmugam KT, Ingram LO (1999) Chromosomal integration of heterologous DNA in Escherichia coli with precise removal of markers and replicons during construction. J Bacteriol 181:7143–7148

    PubMed  CAS  Google Scholar 

  • Miller JH, (1992) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia Coli and related bacteria. Cold Spring Harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  • Narayanan N, Roychoudhury PK, Srivastava A (2004) l(+) lactic acid fermentation and its product polymerization. Electron J Biotechnol 7:167–179

    Google Scholar 

  • Porro D, Michele MB, Luca B, Rossella M, Davide B, Vittorio C, Jefferson L, Liu CL, Bianca MR, Laura F, Lillia A (1999) Replacement of a metabolic pathway for large-scale production of lactic acid from engineered yeasts. Appl Environ Microbiol 65:4211–4215

    PubMed  CAS  Google Scholar 

  • Purvis JE, Yomano LP, Ingram LO (2005) Enhanced trehalose production improves growth of Escherichia coli under osmotic stress. Appl Environ Microbiol 71:3761–3769

    Article  PubMed  CAS  Google Scholar 

  • Posfai G., Koob MD, Kirkpatrick HA, Blattner FC (1997) Versatile insertion plasmids for targeted genome manipulations in bacteria: Isolation, deletion, and rescue of the pathogenicity island LEE of the Escherichia coli O157:H7 genome. J Bacteriol 179:4426–4428

    PubMed  CAS  Google Scholar 

  • Rajgarhia V, Dundon CA, Olson S, Suominen P, Hause B (2004) Methods and materials for the production of d-lactic acid in yeast. US Patent Application No. 20040029256

  • Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nano composites: in greening the 21st century world. Prog Mat Sci 50:962–1079

    Article  CAS  Google Scholar 

  • Saitoh S, Ishida N, Onishi T, Tokuhiro, Nagamori E, Kitamota K, Takahashi H (2005) Genetically engineered wine yeast produces a high concentration of l-lactic acid of extremely high optical purity. Appl Environ Microbiol 71:2789–2792

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  • Skory CD (2000) Isolation and expression of lactate dehydrogenase genes from Rhizopus oryzae. Appl Environ Microbiol 66:2343–2348

    Article  PubMed  CAS  Google Scholar 

  • Totemeyer S, Booth NA, Nichols WW, Dunbar B, Booth IR (1998) From famine to feast: the role of methylglyoxal production in Escherichia coli. Mol Microbiol 27:553–562

    Article  PubMed  CAS  Google Scholar 

  • Vaidya AN, Pandey RA, Mudliar S, Kumar MS, Chakrabarti T, Devotta S (2005) Production and recovery of lactic acid for polylactide—an overview. Crit Rev Environ Sci Technol 35:429–467

    Article  CAS  Google Scholar 

  • van Maris AJA, Winkler AA, Porro D, van Dijken JP, Pronk JT (2004) Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export. Appl Environ Microbiol 70:2898–2905

    Article  PubMed  CAS  Google Scholar 

  • Wasewar KL (2005) Separation of lactic acid: recent advances. Chem Biochem Eng Quart 19:159–172

    CAS  Google Scholar 

  • Weber J, Kayser A, Rinas U (2005) Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. II. Dynamic response to famine and feast, activation of the methylglyoxal pathway and oscillatory behaviour. Microbiology 151:707–716

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Causey TB, Hasona A, Shanmugam KT, Ingram LO (2003a) Production of optically pure d-lactic acid in mineral salt medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol 69:399–407

    Article  CAS  Google Scholar 

  • Zhou S, Shanmugam KT, Ingram LO (2003b) Functional replacement of the Escherichia coli d(-)-lactate dehydrogenase gene (ldhA) with the l(+)-lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici. Appl Environ Microbiol 69:2237–2244

    Article  CAS  Google Scholar 

  • Zhou S, Yomano LP, Shanmugam KT, Ingram LO (2005) Fermentation of 10% (w/v) sugar to d(−)-lactate by engineered Escherichia coli B. Biotechnol Lett 27:1891–1896

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Grabar TB, Shanmugam KT, Ingram LO (2006a) Betaine tripled the volumetric productivity of d(−)-lactate by Escherichia coli B strain SZ132 in mineral salts medium. Biotechnol Lett 28:000–000

    Google Scholar 

  • Zhou S, Shanmugam KT, Yomano LP, Grabar TB, Ingram LO (2006b) Fermentation of 12% (w/v) glucose to 1.2 M lactate by Escherichia coli B strain SZ194 using mineral salts medium. Biotechnol Lett 28:000–000

    Google Scholar 

  • Zhu MM, Skraly FA, Cameron DC (2001) Accumulation of methylglyoxal in anaerobically grown Escherichia coli and its detoxification by expression of the Pseudomonas putida glyoxalase I gene. Metab Eng 3:218–225

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the U.S. Department of Agriculture (01-35504-10669 and 00-52104-9704), the U.S. Department of Energy (FG02-96ER20222 and FG36-04GO14019), BioEnergy International, LLC, and the Florida Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. O. Ingram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabar, T.B., Zhou, S., Shanmugam, K.T. et al. Methylglyoxal Bypass Identified as Source of Chiral Contamination in l(+) and d(−)-lactate Fermentations by Recombinant Escherichia coli . Biotechnol Lett 28, 1527–1535 (2006). https://doi.org/10.1007/s10529-006-9122-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-006-9122-7

Keywords

Navigation