Skip to main content
Log in

Homofermentative production of d-lactic acid from sucrose by a metabolically engineered Escherichia coli

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Escherichia coli W, a sucrose-positive strain, was engineered for the homofermentative production of d-lactic acid through chromosomal deletion of the competing fermentative pathway genes (adhE, frdABCD, pta, pflB, aldA) and the repressor gene (cscR) of the sucrose operon, and metabolic evolution for improved anaerobic cell growth. The resulting strain, HBUT-D, efficiently fermented 100 g sucrose l−1 into 85 g d-lactic acid l−1 in 72–84 h in mineral salts medium with a volumetric productivity of ~1 g l−1 h−1, a product yield of 85 % and d-lactic acid optical purity of 98.3 %, and with a minor by-product of 4 g acetate l−1. HBUT-D thus has great potential for production of d-lactic acid using an inexpensive substrate, such as sugar cane and/or beet molasses, which are primarily composed of sucrose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Chang DE, Shin S, Rhee JS, Pan JG (1999) Homofermentative production of d- or l-lactate in metabolically engineered Escherichia coli RR1. Appl Environ Microbiol 65:1384–1389

    PubMed  CAS  Google Scholar 

  • Clark DP (1989) The fermentative pathways of Escherichia coli. FEMS Microbiol Lett 63(3):223–234

    Article  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640–6645

    Article  PubMed  CAS  Google Scholar 

  • Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies a review. J Chem Technol Biotechnol 81(7):1119–1129

    Article  CAS  Google Scholar 

  • Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84

    Article  CAS  Google Scholar 

  • Grabar TB, Zhou S, Shanmugam KT, Yomano LP, Ingram LO (2006) Methylglyoxal bypass identified as source of chiral contamination in l(+) and d(−)-lactate fermentations by recombinant Escherichia coli. Biotechnol Lett 28:1527–1535

    Article  PubMed  CAS  Google Scholar 

  • Hofvendahl K, Hahn-Hagerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol 26:87–107

    Article  PubMed  CAS  Google Scholar 

  • Jahreis K, Bentler L, Bockmann J, Hans S, Meyer A, Siepelmeyer J, Lengeler JW (2002) Adaption of sucrose metabolism in the Escherichia coli wild-type strain EC3132. J Bacteriol 184(19):5307–5316

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Lee SY, Park S (1997) Fed-batch culture of Escherichia coli W by exponential feeding of sucrose as a carbon source. Biotechnol Tech 11(1):59–62

    Article  CAS  Google Scholar 

  • Mazumdar S, Clomburg JM, Gonzalez R (2010) Escherichia coli strains engineered for homofermentative production of d-lactic acid from glycerol. Appl Environ Microbiol 76(13):4327–4336

    Article  PubMed  CAS  Google Scholar 

  • Posfai G, Koob MD, Kirkpatrick HA, Blattner FC (1999) Versatile insertion plasmids for targeted genome manipulations in bacteria: isolation, deletion, and rescue of the pathogenicity island LEE of the Escherichia coli O157:H7 genome. J Bacteriol 179:4426–4428

    Google Scholar 

  • Sahin-Toth M, Lengyel Z, Tsunekawa H (1999) Cloning, sequencing, and expression of cscA invertase from Escherichia coli B-62. Can J Microbiol 45:418–422

    PubMed  CAS  Google Scholar 

  • Shukla VB, Zhou S, Yomano LP, Shanmugam KT, Preston JF, Ingram LO (2004) Production of d(−)-lactate from sucrose and molasses. Biotechnol Lett 26:689–693

    Article  PubMed  CAS  Google Scholar 

  • Tsuji H (2002) Autocatalytic hydrolysis of amorphous-made polylactides: effects of lactide content, tacticity, and enantiomeric polymer blending. Polymer 43(6):1789–1796

    Article  CAS  Google Scholar 

  • Zhou S, Causey TB, Hasona A, Shanmugam KT, Ingram LO (2003) Production of optically pure d-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol 69(1):399–407

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Yomano LP, Shanmugam KT, Ingram LO (2005) Fermentation of 10 % (w/v) sugar to d-lactate by engineered Escherichia coli B. Biotechnol Lett 27:1891–1896

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Iverson AG, Grayburn WS (2010) Doubling the catabolic reducing power (NADH) output of Escherichia coli fermentation for production of reduced products. Biotechnol Prog 26(1):45–51

    PubMed  CAS  Google Scholar 

  • Zhu Y, Eiteman MA, DeWitt K, Altman E (2007) Homolactate fermentation by metabolically engineered Escherichia coli strains. Appl Environ Microbiol 73(2):453–464

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Hubei University of Technology and the Chutian Scholar Program of Hubei province, P. R. China, and the Northern Illinois University, USA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinhua Wang or Shengde Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Tian, T., Zhao, J. et al. Homofermentative production of d-lactic acid from sucrose by a metabolically engineered Escherichia coli . Biotechnol Lett 34, 2069–2075 (2012). https://doi.org/10.1007/s10529-012-1003-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-1003-7

Keywords

Navigation