Skip to main content
Log in

Cooperativity of intermolecular hydrogen bonds in microsolvated DMSO and DMF clusters: a DFT, AIM, and NCI analysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) calculations are performed to study the hydrogen-bonding in the DMSO-water and DMF-water complexes. Quantitative molecular electrostatic potential (MESP) and atoms-in-molecules (AIM) analysis are applied to quantify the relative complexation of DMSO and DMF with water molecules. The interaction energy of DMSO with water molecules was higher than in DMF-water complexes. The existence of cooperativity effect helps in the strong complex formation. A linear dependence was observed between the hydrogen bond energies EHB, and the total electron densities in the BCP’s of microsolvated complexes which supports the existence of cooperativity effect for the complexation process. Due to the stronger DMSO/DMF and water interaction, the water molecules in the formed complexes have a different structure than the isolated water clusters. NCI analysis shows that the steric area is more pronounced in DMF-water complex than the DMSO-water complex which accounts for the low stability of DMF-water complexes compared to the DMSO-water complex.

NCI analysis shows that the steric area is more pronounced in DMF-water complex than the DMSO-water complex which accounts for the low stability of DMF-water complexes compared to the DMSO-water complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carpriotti K, Capriotti JA (2012) J Clin Asethet Dermatol 5:24

    Google Scholar 

  2. Li Q, An X, Gong B, Cheng J (2007) J PhysChem A 111:10166

    CAS  Google Scholar 

  3. Zhang C, Ren Z, Liu L, Yin Z (2013) Mol Simulat 39:875

    Article  CAS  Google Scholar 

  4. Chen X, Zhang Y, Liu C, Zhang Y, Zhou X, Zhou T, Mao Y, Kan B, Wei Y-Q, Li J (2010) Drug Deliv 17:385

    Article  CAS  Google Scholar 

  5. McAlphine AS, McEwan AG, Bailey S (1998) J Mol Biol 275:613

    Article  Google Scholar 

  6. Varnal T (1996) Struct Chem 7:111

    Article  Google Scholar 

  7. Venkataramanan NS (2012) Int J Quantum Chem 112:2599

    Article  CAS  Google Scholar 

  8. Clark T, Murray JS, Lane P, Politzer P (2008) J Mol Model 14:689

    Article  CAS  Google Scholar 

  9. Leszczynski J, Shukla MK (eds) (2010) Practical aspects of computational chemistry. Springer, Dordrecht

  10. Del Bene JE (1975) J Chem Phys 62:1314

    Article  Google Scholar 

  11. Fraser GT, Suenram RD, Lovas FJ (1988) J Mol Struct 189:165

    Article  CAS  Google Scholar 

  12. Jasie PG, Sevens WJ (1986) J Chem Phys 84:3271

    Article  Google Scholar 

  13. Fu A, Du D, Zhou Z (2003) J Mol Struct (THEOCHEM) 623:315

    Article  CAS  Google Scholar 

  14. Parreira RLT, Caramori GF, Morgon NH, Galembeck SE (2012) Int J Quantum Chem 112:1401

    Article  CAS  Google Scholar 

  15. Blanco S, López JC, Lesarri A, Alonso JL (2006) J Am Chem Soc 128:12111

    Article  CAS  Google Scholar 

  16. Liang W, Li H, Hu X, Han S (2004) J Phys Chem A 108:10219

    Article  CAS  Google Scholar 

  17. Vasudevan V, Mushrif SH (2015) J Mol Liq 206:338

    Article  CAS  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB et al. (2009) Gaussian 09, revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

  19. Truhlar DG, Zhao Y (2008) Theor Chem Acc 120:215

    Article  Google Scholar 

  20. Sedlak R, Janowski T, Pitoňák M, Řezáč J, Pulay P, Hobza P (2013) J Chem Theory Comput 9:3364

    Article  CAS  Google Scholar 

  21. Bulat FA, Toro-Labbė A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679

    Article  CAS  Google Scholar 

  22. Ji J, Zeng Y, Zhang X, Zheng S, Meng L (2013) J Mol Model 19:4887

    Article  CAS  Google Scholar 

  23. Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723

    Article  CAS  Google Scholar 

  24. Murray JS, Lane P, Clark T, Politzer P (2007) J Mol Model 13:1033

    Article  CAS  Google Scholar 

  25. O’Hair RAJ, Williams CM, Clark T (2010) J Mol Model 16:559

    Article  Google Scholar 

  26. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) J Mol Model 18:541

    Article  CAS  Google Scholar 

  27. Politzer P, Murray JS, Clark T (2015) J Mol Model 21:52

    Article  Google Scholar 

  28. Biegler-König F, Schönbohm J, Bayles D (2001) J Comp Chem 22:545

    Article  Google Scholar 

  29. Venkataramanan NS, Suvitha A (2015) J Inc Phenom Macrocylc Chem 83:387

    Article  CAS  Google Scholar 

  30. Houston S, Venkataramanan NS, Suvitha A, Wheate NJ (2016) Aust J Chem. doi:10.1071/CH16067

    Google Scholar 

  31. Venkatesan P, Rajakannan V, Venkataramanan NS, Ilangovan A, Sundius T, Thamotharan S (2016) J Mol Struct 119:259

    Article  Google Scholar 

  32. Esrafili MD, Fatehi P, Solimannejad M (2013) Comput Theor Chem 1022:115

    Article  CAS  Google Scholar 

  33. Esrafili MD, Esmailpour P, Mohammadian-Sabet F, Solimannejad M (2014) Int J Quantum Chem 114:295

    Article  CAS  Google Scholar 

  34. Alkorta I, Elguero J, Yáňez M, Mó O (2014) Phys Chem Chem Phys 16:4305

    Article  CAS  Google Scholar 

  35. Remya K, Suresh CH (2014) J Comput Chem 35:910

    Article  CAS  Google Scholar 

  36. Saha S, Sastry GN (2015) J Phys Chem B 119:11121

    Article  CAS  Google Scholar 

  37. Angelina EL, Peruchena NM (2011) J Phys Chem A 115:4701

    Article  CAS  Google Scholar 

  38. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178

    Article  CAS  Google Scholar 

  39. Bader RF (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  40. Venkataramanan NS, Suvitha A, Mizuseki H, Kawazoe Y (2015) Int J Quantum Chem 115:1515

    Article  CAS  Google Scholar 

  41. Duarte DJR, Angelina EL, Peruchena NM (2014) J Mol Model 20:2510

    Article  Google Scholar 

  42. Koch U, Popelier PLA (1995) J Phys Chem 99:9747

    Article  CAS  Google Scholar 

  43. Popelier PLA (1998) J Phys Chem A 102:1873

    Article  CAS  Google Scholar 

  44. Ziólkowski M, Grabowski SJ, Leszczynski J (2006) J Phys Chem A 110:6514

    Article  Google Scholar 

  45. Parthasarathi P, Subramanian V, Sathyamurthy N (2008) Syn React Inorg Met 38:18

    CAS  Google Scholar 

  46. Contreras-Garcia J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) J Chem Theory Comput 7:625

    Article  CAS  Google Scholar 

  47. Saleh G, Gatti C, Lo Presti L, Contreras-Garcia J (2012) Chem Eur J 18:15523

    Article  CAS  Google Scholar 

  48. Li Q-Z, Xu W-R, Li R, Liu X-F, Li W-Z, Cheng J-B (2012) Spectrochim Acta Part A 97:600

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks the SASTRA University for constant encouragement and for providing necessary infrastructure and a generous time slot on the high performance computing cluster. The author also register his thanks to CDAC-pune for providing computational resource through the PARAM Yuva II system.

Funding

The author thanks the SERB-DST, India for funding through a project (EMR-II-SB/S1/PC-047/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natarajan Sathiyamoorthy Venkataramanan.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 974 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkataramanan, N.S. Cooperativity of intermolecular hydrogen bonds in microsolvated DMSO and DMF clusters: a DFT, AIM, and NCI analysis. J Mol Model 22, 151 (2016). https://doi.org/10.1007/s00894-016-3022-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3022-0

Keywords

Navigation