Skip to main content
Log in

A theoretical study on intermolecular hydrogen bonds of isopropanol-water clusters

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this work, the possible molecular association structure in isopropanol-water solution has been analyzed by density functional theory (DFT) calculations. The properties of the isopropanol-water clusters with different number of water molecules, including optimal structure, intermolecular hydrogen bonding, binding energy and theoretical Raman spectra, are particularly investigated in the gas phase with B3LYP/6–31 + G (d, p) basis set. According to the simulated optimal structure, we found that the influence of hydration in the molecular configuration of isopropanol is mainly reflected in the O–H bond, which increases with the augment of water molecules. Meanwhile, in terms of the most stable structure, isopropanol-(H2O)5 will show the transition from a two-dimensional planar ring structure to a three-dimensional cage structure. In addition, the position and intensity of intermolecular hydrogen bonds interaction between the isopropanol and water molecules have been investigated by atoms in molecule (AIM) analysis and reduced density gradient (RDG) methods. The theoretical Raman spectra of isopropanol-(H2O)n (n = 1–5) clusters show the redshifts of the O–H bond tensile peak, which indicates that the O–H tensile strength is weakened and the hydrogen bonds interaction is strengthened with the increase in water molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Romero-Montalvo E, Dilabio GA (2021) Computational study of hydrogen bond interactions in water cluster-organic molecule complexes. J Phys Chem A 125:3369–3377. https://doi.org/10.1021/acs.jpca.1c01377

    Article  CAS  PubMed  Google Scholar 

  2. Zhong J, Kumar M, Francisco JS, Zeng XC (2018) Insight into chemistry on cloud/aerosol water surfaces. Acc Chem Res 51:1229–1237. https://doi.org/10.1021/acs.accounts.8b00051

    Article  CAS  PubMed  Google Scholar 

  3. Zhong J, Kumar M, Zhu CQ, Francisco JS, Zeng XC (2017) Surprising stability of larger criegee intermediates on aqueous interfaces. Angew Chemie - Int Ed 56:7740–7744. https://doi.org/10.1002/anie.201702722

    Article  CAS  Google Scholar 

  4. Shi Y, Zhang Z, Jiang W, Wang Z (2017) Theoretical study on electronic and vibrational properties of hydrogen bonds in glycine-water clusters. Chem Phys Lett 684:53–59. https://doi.org/10.1016/j.cplett.2017.06.039

    Article  CAS  Google Scholar 

  5. Jalili S, Akhavan M (2007) Study of hydrogen-bonded clusters of 2-methoxyphenol-water. Theor Chem Acc 118:947–957. https://doi.org/10.1007/s00214-007-0378-3

    Article  CAS  Google Scholar 

  6. Saenger W (1979) Circular hydrogen bonds. Nature 279:343–344. https://doi.org/10.1038/279343a0

    Article  CAS  Google Scholar 

  7. Xantheas SS, Dunning TH (1993) Ab initio studies of cyclic water clusters (H2O)n, n=1–6. I. Optimal structures and vibrational spectra. J Chem Phys 99:8774–8792. https://doi.org/10.1063/1.465599

    Article  CAS  Google Scholar 

  8. Guevara-Vela JM, Romero-Montalvo E, Mora Gómez VA, Chávez-Calvillo R, García-Revilla M, Francisco E, Pendás ÁM, Rocha-Rinza T (2016) Hydrogen bond cooperativity and anticooperativity within the water hexamer. Phys Chem Chem Phys 18:19557–19566. https://doi.org/10.1039/c6cp00763e

    Article  CAS  PubMed  Google Scholar 

  9. Xantheas SS, Dunning TH (1993) The structure of the water trimer from ab initio calculations. J Chem Phys 98:8037–8040. https://doi.org/10.1063/1.464558

    Article  CAS  Google Scholar 

  10. Farrell AE, Plevin RJ, Turner BT, Jones AD, Michael OH, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508. https://doi.org/10.1126/science.1121416

    Article  CAS  PubMed  Google Scholar 

  11. Raina G, Kulkarni GU, Rao CNR (2001) Surface enrichment in alcohol−water mixtures. J Phys Chem A 105:10204–10207. https://doi.org/10.1021/jp011190i

    Article  CAS  Google Scholar 

  12. Mejía SM, Flórez E, Mondragón F (2012) An orbital and electron density analysis of weak interactions in ethanol-water, methanol-water, ethanol and methanol small clusters. J Chem Phys. https://doi.org/10.1063/1.3701563

    Article  PubMed  Google Scholar 

  13. Li F, Men Z, Li S, Wang S, Li Z, Sun C (2018) Study of hydrogen bonding in ethanol-water binary solutions by Raman spectroscopy. Spectrochim. Acta - Part A Mol. Biomol Spectrosc 189:621–624. https://doi.org/10.1016/j.saa.2017.08.077

    Article  CAS  Google Scholar 

  14. Gereben O, Pusztai L (2017) Cluster formation and percolation in ethanol-water mixtures. Chem Phys 496:1–8. https://doi.org/10.1016/j.chemphys.2017.09.003

    Article  CAS  Google Scholar 

  15. Das S, Naskar B, Ghosh S (2014) Influence of temperature and organic solvents (isopropanol and 1,4-dioxane) on the micellization of cationic gemini surfactant (14–4–14). Soft Matter 10:2863–2875. https://doi.org/10.1039/c3sm52938j

    Article  CAS  PubMed  Google Scholar 

  16. Iriondo A, Tainta M, Saldias J, Arriba M, Ochoa B, Goñi FM, Martinez-Lage P, Abad-García B (2019) Isopropanol extraction for cerebrospinal fluid lipidomic profiling analysis. Talanta 195:619–627. https://doi.org/10.1016/j.talanta.2018.11.101

    Article  CAS  PubMed  Google Scholar 

  17. Papaspyrides CD, Tingas SG (1998) Comparison of isopropanol and isooctane as food simulants in plasticizer migration tests. Food Addit Contam 15:681–689. https://doi.org/10.1080/02652039809374698

    Article  CAS  PubMed  Google Scholar 

  18. Thongson C, Davidson PM, Mahakarnchanakul W, Weiss J (2004) Antimicrobial activity of ultrasound-assisted solvent-extracted spices. Lett Appl Microbiol 39:01–406. https://doi.org/10.1111/j.1472-765X.2004.01605.x

    Article  Google Scholar 

  19. Medina-Valtierra J, Frausto-Reyes C, Camarillo-Martínez G, Ramírez-Ortiz JA (2009) Complete oxidation of isopropanol over Cu4O3 (paramelaconite) coating deposited on fiberglass by CVD. Appl Catal A Gen 356:36–42. https://doi.org/10.1016/j.apcata.2008.12.014

    Article  CAS  Google Scholar 

  20. Wei Y, Zou W, Shen CH, Yang JG (2020) Basic flavor types and component characteristics of Chinese traditional liquors: A review. J Food Sci 85:4096–4107. https://doi.org/10.1111/1750-3841.15536

    Article  CAS  PubMed  Google Scholar 

  21. Aher A, Cai Y, Majumder M, Bhattacharyya D (2017) Synthesis of graphene oxide membranes and their behavior in water and isopropanol. Carbon N Y 116:145–153. https://doi.org/10.1016/j.carbon.2017.01.086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Devi DA, Smitha B, Sridhar S, Aminabhavi TM (2005) Pervaporation separation of isopropanol/water mixtures through crosslinked chitosan membranes. J Memb Sci 262:91–99. https://doi.org/10.1016/j.memsci.2005.03.051

    Article  CAS  Google Scholar 

  23. Yang B, Cao X, Wang S, Sun C (2020) Exploring molecular association of isopropanol-water binary solution by Raman spectroscopy. Optik (Stuttg) 204:163544. https://doi.org/10.1016/j.ijleo.2019.163544

    Article  CAS  Google Scholar 

  24. McGregor J, Li R, Zeitler JA, D’Agostino C, Collins JHP, Mantle MD, Manyar H, Holbrey JD, Falkowska M, Youngs TGA, Hardacre C, Stitt EH, Gladden LF (2015) Structure and dynamics of aqueous 2-propanol: A THz-TDS, NMR and neutron diffraction study. Phys Chem Chem Phys 17:30481–30491. https://doi.org/10.1039/c5cp01132a

    Article  CAS  PubMed  Google Scholar 

  25. Pothoczki S, Pusztai L, Bakó I (2019) Molecular dynamics simulation studies of the temperature-dependent structure and dynamics of isopropanol-water liquid mixtures at low alcohol content. J Phys Chem B 123:7599–7610. https://doi.org/10.1021/acs.jpcb.9b05631

    Article  CAS  PubMed  Google Scholar 

  26. Han C, Yao Y, Lv S, Wu Y, Lu A, Yan C, Liu Y, Luo X, Ni X (2018) Study on the components of isopropanol aqueous solution. Optik (Stuttg) 155:307–314. https://doi.org/10.1016/j.ijleo.2017.10.164

    Article  CAS  Google Scholar 

  27. Evangelisti L, Gou Q, Feng G, Caminati W, Mead GJ, Finneran IA, Carroll PB, Blake GA (2017) Conformational equilibrium and internal dynamics in the iso-propanol-water dimer. Phys Chem Chem Phys 19:568–573. https://doi.org/10.1039/c6cp06315b

    Article  CAS  Google Scholar 

  28. T. Lu, Molclus program, Version 1.9.5, http://www.keinsci.com/research/molclus.html.

  29. J.J.P. Stewart, MOPAC2016, http://OpenMOPAC.net.

  30. Temelso B, Archer KA, Shields GC (2011) Benchmark structures and binding energies of small water clusters with anharmonicity corrections. J Phys Chem A 115:12034–12046. https://doi.org/10.1021/jp2069489

    Article  CAS  PubMed  Google Scholar 

  31. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566. https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  32. Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University Press, New York, NY

  33. Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  34. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506. https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://www.tapbiosystems.com/tap/products/index.htm

  36. Carbonniere P, Barone V (2004) Performances of different density functionals in the computation of vibrational spectra beyond the harmonic approximation. Chem Phys Lett 399:226–229. https://doi.org/10.1016/j.cplett.2004.10.020

    Article  CAS  Google Scholar 

  37. Carbonniere P, Lucca T, Pouchan C, Rega N, Barone V (2005) Vibrational computations beyond the harmonic approximation: performances of the B3LYP density functional for semirigid molecules. J Comput Chem 26:384–388. https://doi.org/10.1002/jcc.20170

    Article  CAS  PubMed  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, and Fox DJ (2010) Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford CT

  39. White RP, Mayne HR (1998) An investigation of two approaches to basin hopping minimization for atomic and molecular clusters. Chem Phys Lett 289:463–468. https://doi.org/10.1016/S0009-2614(98)00431-X

    Article  CAS  Google Scholar 

  40. Takeuchi H (2008) Development of an efficient geometry optimization method for water clusters. J Chem Inf Model 48:2226–2233. https://doi.org/10.1021/ci800238w

    Article  CAS  PubMed  Google Scholar 

  41. Lu QL, Luo QQ, Huang SG, De Li Y, Wan JG (2016) Analysis of the structures and properties of (GaSb)n (n = 4–9) clusters through density functional theory. J Phys Chem A 120:4560–4564. https://doi.org/10.1021/acs.jpca.6b05529

    Article  CAS  PubMed  Google Scholar 

  42. Llanio-Trujillo JL, Marques JMC, Pereira FB (2013) New insights on lithium-cation microsolvation by solvents forming hydrogen-bonds: Water versus methanol. Comput Theor Chem 1021:124–134. https://doi.org/10.1016/j.comptc.2013.06.043

    Article  CAS  Google Scholar 

  43. Pérez C, Muckle MT, Zaleski DP, Seifert NA, Temelso B, Shields GC, Kisiel Z, Pate BH (2012) Structures of cage, prism, and book isomers of water hexamer from broadband rotational spectroscopy. Science 336:897–901. https://doi.org/10.1126/science.1220574

    Article  CAS  PubMed  Google Scholar 

  44. Akman F, Issaoui N, Kazachenko AS (2020) Intermolecular hydrogen bond interactions in the thiourea/water complexes (Thio-(H2O)n) (n = 1,…, 5): X-ray, DFT, NBO, AIM, and RDG analyses. J Mol Model 26:161. https://doi.org/10.1007/s00894-020-04423-3

    Article  CAS  PubMed  Google Scholar 

  45. Espinosa E, Souhassou M, Lachekar H, Lecomte C (1999) Topological analysis of the electron density in hydrogen bonds. Acta Crystallogr Sect B Struct Sci 55:563–572. https://doi.org/10.1107/S0108768199002128

    Article  CAS  Google Scholar 

  46. Grabowski SJ (2001) An estimation of strength of intramolecular hydrogen bonds - Ab initio and AIM studies. J Mol Struct 562:137–143. https://doi.org/10.1016/S0022-2860(00)00863-2

    Article  CAS  Google Scholar 

  47. Popelier A, Bader W (1992) The existence of an intramolecular C-H···O hydrogen bond in creatine and carbamoyl sarcosine. Chem Phys Lett 189:542–548. https://doi.org/10.1016/0009-2614(92)85247-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China [Grand Number 2018YFD0400402]; and the Key Research and Development Program of Jiangsu Province [Grand Number BE2020756].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1780 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Zhu, C., Chen, G. et al. A theoretical study on intermolecular hydrogen bonds of isopropanol-water clusters. Theor Chem Acc 141, 6 (2022). https://doi.org/10.1007/s00214-022-02865-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02865-x

Keywords

Navigation