Skip to main content
Log in

What is the hydrophobic interaction contribution to the stabilization of micro-hydrated complexes of trimethylamine oxide (TMAO)? A joint DFT-D, QTAIM, and MESP study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Micro-hydrated trimethylamine oxide (TMAO) has been investigated using a range-separated-hybrid functional including empirical dispersion correction. Electrophilic and nucleophilic sites on TMAO and water clusters have been identified using the molecular electrostatic potential (MESP). The nature of the chemical bonding in the different isomers of the micro-hydrated complexes has been investigated with the topological analysis of the electron density (QTAIM) method. For complexes containing one to four water molecules, the strongest intermolecular interactions consist in hydrogen bonding between the oxygen atom of the TMAO and hydrogen atoms of water molecules. From five water molecules, interactions between water molecules become the main source of stabilization of the most stable isomer. From four stationary points corresponding to the 1:1 (TMAO:H2O) complex, we determined the minimum distances between water molecules and central TMAO allowing the latter molecule to be encapsulated within a water clathrate-type cage. Optimization of TMAO encapsulated within two water cages (512 and 51262) suggests that only in the case of the 512 62 water cage the insertion of TMAO, the preservation of the hydrogen bonding between water molecules is energetically favorable. The interaction energy between one inserted TMAO and the 512 62 water cage was calculated to be around 150 kJ/mol with respect to the ground state of two partners. This result suggests that a thorough investigation of mono-hydrated complexes may be particularly relevant to identify the most suitable water cage for encapsulating a given solute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Franks F (1965) Hydrophobic hydration and the effect of hydrogen bonding solutes on the structure of water. Ann. N. Y. Acad. Sci. 125(2):277–289

    Article  CAS  Google Scholar 

  2. Stillinger FH (1973) Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory. In The Physical Chemistry of Aqueous System (pp. 43–60). Springer, Boston, MA

    Google Scholar 

  3. Djikaev YS, Ruckenstein E (2016) Recent developments in the theoretical, simulational, and experimental studies of the role of water hydrogen bonding in hydrophobic phenomena. Adv. Colloid Interf. Sci. 235:23–45

    Article  CAS  Google Scholar 

  4. Hajari T, Bandyopadhyay S (2017) Water structure around hydrophobic amino acid side chain analogs using different water models. J. Chem.Phys. 146(22):225104

    Article  Google Scholar 

  5. Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437(7059):640

    Article  CAS  Google Scholar 

  6. Remsing RC, Weeks JD (2013) Dissecting hydrophobic hydration and association. J. Phys. Chem.B 117(49):15479–15491

    Article  CAS  Google Scholar 

  7. Ohto T, Hunger J, Backus EH, Mizukami W, Bonn M, Nagata Y (2017) Trimethylamine-N-oxide: its hydration structure, surface activity, and biological function, viewed by vibrational spectroscopy and molecular dynamics simulations. Phys. Chem. Chem. Phys. 19(10):6909–6920

    Article  CAS  Google Scholar 

  8. Imoto S, Forbert H, Marx D (2018) Aqueous TMAO solutions as seen by theoretical THz spectroscopy: hydrophilic versus hydrophobic water. Phys. Chem. Chem. Phys. 20(9):6146–6158

    Article  CAS  Google Scholar 

  9. Stirnemann G, Duboué-Dijon E, Laage D (2017) Ab initio simulations of water dynamics in aqueous TMAO solutions: temperature and concentration effects. J. Phys. Chem.B 121(49):11189–11197

    Article  CAS  Google Scholar 

  10. Esser A, Belsare S, Marx D, Head-Gordon T (2017) Mode specific THz spectra of solvated amino acids using the AMOEBA polarizable force field. Phys. Chem. Chem. Phys. 19(7):5579–5590

    Article  CAS  Google Scholar 

  11. Munroe KL, Magers DH, Hammer NI (2011) Raman spectroscopic signatures of noncovalent interactions between trimethylamine N-oxide (TMAO) and water. J. Phys. Chem.B 115(23):7699–7707

    Article  CAS  Google Scholar 

  12. Murray JS, Politzer P (2011) The electrostatic potential: an overview. Wiley Interdisciplinary Reviews: Computational Molecular Science 1(2):153–163

    CAS  Google Scholar 

  13. Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J. Mol. Model. 21(3):52

    Article  Google Scholar 

  14. Politzer P, Murray JS (2018) The Hellmann-Feynman theorem: a perspective. J. Mol. Model. 24(9):266

    Article  Google Scholar 

  15. Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371(6499):683

    Article  CAS  Google Scholar 

  16. Savin A, Nesper R, Wengert S, Fässler TF (1997) ELF: the electron localization function. Angew. Chem. International Ed. 36(17):1808–1832

    Article  CAS  Google Scholar 

  17. Silvi B (2015) The relevance of the ELF topological approach to the Lewis, Kossel, and Langmuir bond model. In The Chemical Bond II (pp. 213–247). Springer, Cham

    Book  Google Scholar 

  18. Gillespie RJ, Robinson EA (2007) Gilbert N. Lewis and the chemical bond: the electron pair and the octet rule from 1916 to the present day. J. Comput. Chem. 28(1):87–97

    Article  CAS  Google Scholar 

  19. Bader RF, Streitwieser A, Neuhaus A, Laidig KE, Speers P (1996) Electron delocalization and the Fermi hole. J. Am. Chem. Soc. 118(21):4959–4965

    Article  CAS  Google Scholar 

  20. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09 (Gaussian, Inc., Wallingford CT, 2009)

  21. Vydrov OA, Scuseria GE (2006) Assessment of a long-range corrected hybrid functional. J. Chem.Phys. 125(23):234109

    Article  Google Scholar 

  22. Vydrov OA, Heyd J, Krukau AV, Scuseria GE (2006) Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. J. Chem.Phys. 125(7):074106

    Article  Google Scholar 

  23. Vydrov OA, Scuseria GE, Perdew JP (2007) Tests of functionals for systems with fractional electron number. J. Chem.Phys. 126(15):154109

    Article  Google Scholar 

  24. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7):1456–1465

    Article  CAS  Google Scholar 

  25. Noury S, Krokidis X, Fuster F, Silvi B (1999) Computational tools for the electron localization function topological analysis. Comput. Chem. 23(6):597–604

    Article  CAS  Google Scholar 

  26. AIMAll (Version 17.11.14), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, 2017 (aim.tkgristmill.com)

  27. Sun N, Li Z, Qiu N, Yu X, Zhang X, Li Y, Yang L, Luo K, Huang Q, Du S (2017) Ab initio studies on the clathrate hydrates of some nitrogen-and sulfur-containing gases. J. Phys. Chem.A 121(13):2620–2626

    Article  CAS  Google Scholar 

  28. Wang K, Li W, Li S (2014) Generalized energy-based fragmentation CCSD (T)-F12a method and application to the relative energies of water clusters (H2O)20. J. Chem. Theory Comput. 10(4):1546–1553

    Article  CAS  Google Scholar 

  29. Arunan E et al (2011) Definition of the hydrogen bond (IUPAC recommendations 2011). Pure Appl. Chem. 83(8):1637–1641

    Article  CAS  Google Scholar 

  30. Pérez C, Neill JL, Muckle MT, Zaleski DP, Peña I, Lopez JC, Alonso JL, Pate BH (2015) Water–water and water–solute interactions in microsolvated organic complexes. Angew. Chem. International Ed. 127(3):993–996

    Article  Google Scholar 

  31. Riffet V, Frison G, Bouchoux G (2018) Quantum-chemical modeling of the first steps of the Strecker synthesis: from the gas-phase to water solvation. J. Phys. Chem.A 122(6):1643–1657

    Article  CAS  Google Scholar 

  32. Fanourgakis GS, Apra E, Xantheas SS (2004) High-level ab initio calculations for the four low-lying families of minima of (H2O)20. I. Estimates of MP2/CBS binding energies and comparison with empirical potentials. J. Chem. Phys. 121(6):2655–2663

    Article  CAS  Google Scholar 

  33. Xantheas SS (2000) Cooperativity and hydrogen bonding network in water clusters. Chem. Phys. 258(2–3):225–231

    Article  CAS  Google Scholar 

  34. A discussion on this point, as well as "limit cases" are presented in the following article: Guevara-Vela, J. M. et al. (2016). Hydrogen bond cooperativity and anticooperativity within the water hexamer. Phys. Chem. Chem. Phys., 18(29), 19557–19566

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Esmaïl Alikhani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to Topical Collection QUITEL 2018 (44th Congress of Theoretical Chemists of Latin Expression)

Electronic supplementary material

ESM 1

(DOCX 10499 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derbali, I., Zins, EL. & Alikhani, M.E. What is the hydrophobic interaction contribution to the stabilization of micro-hydrated complexes of trimethylamine oxide (TMAO)? A joint DFT-D, QTAIM, and MESP study. J Mol Model 25, 363 (2019). https://doi.org/10.1007/s00894-019-4217-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4217-y

Keywords

Navigation