Skip to main content
Log in

Surface modification and chemical functionalization of carbon dots: a review

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Surface functional groups strongly affect the properties of carbon dots (CDs). Amino, carboxy, and hydroxy groups are most commonly encountered in CDs, and they can be introduced via covalent and noncovalent modification. This article (with 116 refs.) reviews the progress made in the past few years. Following an introduction into the field, a large section covers methods for covalent modification (via amide coupling reactions, silylation, and other reactions including esterification, sulfonylation and copolymerization). Next section reviews methods for noncovalent modifications (π interactions, complexation/chelation, and electrostatic interactions). The resulting modified CDs are powerful nanomaterials for targeting and extracting analytes, and in drug release. The modification of the surface also affects fluorescence quantum yields, complexation capacity, the color of fluorescence, and their quenching capability. Current challenges are critically assessed in the concluding section.

The modification methods of carbon dots (CDs) includes covalent and noncovalent. Covalent modifications include amidation, silylation, esterification, sulfonylation and copolymerization reaction. Noncovalent modifications include electrostatic interactions, complexation and π interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61

Similar content being viewed by others

References

  1. Zhou J, Zhou H, Tang J, Deng S, Yan F, Li W, Qu M (2017) Carbon dots doped with heteroatoms for fluorescent bioimaging: a review. Microchim Acta 184:343–368

    Article  CAS  Google Scholar 

  2. Hao T, Wei X, Nie Y, Xu Y, Yan Y, Zhou Z (2016) An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol. Microchim Acta 183(7):2197–2203

    Article  CAS  Google Scholar 

  3. Simões EF, Leitão JM, da Silva JCE (2016) Carbon dots prepared from citric acid and urea as fluorescent probes for hypochlorite and peroxynitrite. Microchim Acta 183(5):1769–1777

    Article  CAS  Google Scholar 

  4. Li L, Wang C, Liu K, Zhu R, Qiang H, Lin Y (2015) Synthesis of nitrogen-doped and amino acid-functionalized graphene quantum dots from glycine, and their application to the fluorometric deter-mination of ferric ion. Microchim Acta 182(3–4):763–770

    Article  CAS  Google Scholar 

  5. Li F, Li T, Sun C, Xia J, Jiao Y, Xu H (2017) Selenium-doped carbon quantum dots for free-radical scavenging. Angew Chem Int Ed Eng 56(33):9910–9914

    Article  CAS  Google Scholar 

  6. Sudolská M, Dubecký M, Sarkar S, Reckmeier CJ, Zbořil R, Rogach AL, Otyepka M (2015) Nature of absorption bands in oxygen-functionalized graphitic carbon dots. J Phys Chem C 119(23):13369–13373

    Article  CAS  Google Scholar 

  7. Das K, Maiti S, Das PK (2014) Probing enzyme location in water-in-oil microemulsion using enzyme-carbon dot conjugates. Langmuir 30(9):2448–2459

    Article  CAS  PubMed  Google Scholar 

  8. Anjana RR, Devi JA, Jayasree M, Aparna RS, Aswathy B, Praveen GL, Sony G (2018) S,N-doped carbon dots as a fluorescent probe for bilirubin. Microchim Acta 185(1):11

    Article  CAS  Google Scholar 

  9. Liu X, Wei S, Diao Q, Ma P, Xu L, Xu S, Sun Y, Song D, Wang X (2017) Hydrothermal synthesis of N-doped carbon dots for selective fluorescent sensing and cellular imaging of cobalt (II). Microchim Acta 184(10):3825–3831

    Article  CAS  Google Scholar 

  10. Xiao Q, Liang Y, Zhu F, Lu S, Huang S (2017) Microwave-assisted one-pot synthesis of highly luminescent N-doped carbon dots for cellular imaging and multi-ion probing. Microchim Acta 184(7):2429–2438

    Article  CAS  Google Scholar 

  11. Sun Y, Wang X, Wang C, Tong D, Wu Q, Jiang K, Jiang Y, Wang C, Yang M (2018) Red emitting and highly stable carbon dots with dual response to pH values and ferric ions. Microchim Acta 185(1):83

    Article  CAS  Google Scholar 

  12. Jia X, Han Y, Pei M, Zhao X, Tian K, Zhou T, Liu P (2016) Multi-functionalized hyaluronic acid nanogels crosslinked with carbon dots as dual receptor-mediated targeting tumor theranostics. Carbohydr Polym 152:391–397

    Article  CAS  PubMed  Google Scholar 

  13. Kalaiyarasan G, Joseph J (2017) Determination of vitamin B12 via pH-dependent quenching of the fluorescence of nitrogen doped carbon quantum dots. Microchim Acta 184(10):3883–3891

    Article  CAS  Google Scholar 

  14. Xia J, Zhuang YT, Yu YL, Wang JH (2017) Highly fluorescent carbon polymer dots prepared at room temperature, and their application as a fluorescent probe for determination and intracellular imaging of ferric ion. Microchim Acta 184(4):1109–1116. https://doi.org/10.1007/s00604-017-2104-8

    Article  CAS  Google Scholar 

  15. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914

    Article  CAS  Google Scholar 

  16. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44(1):362–381

    Article  CAS  PubMed  Google Scholar 

  17. Yan F, Kong D, Luo Y, Ye Q, He J, Guo X, Chen L (2016) Carbon dots serve as an effective probe for the quantitative determination and for intracellular imaging of mercury (II). Microchim Acta 183(5):1611–1618

    Article  CAS  Google Scholar 

  18. Kiran S, Misra RD (2015) Mechanism of intracellular detection of glucose through nonenzymatic and boronic acid functionalized carbon dots. J Biomed Mater Res A 103(9):2888–2897

    Article  CAS  PubMed  Google Scholar 

  19. Yang H, Li F, Zou C, Huang Q, Chen D (2017) Sulfur-doped carbon quantum dots and derived 3D carbon nanoflowers are effective visible to near infrared fluorescent probes for hydrogen peroxide. Microchim Acta 184(7):2055–2062

    Article  CAS  Google Scholar 

  20. Xu Y, Wu M, Feng XZ, Yin XB, He XW, Zhang YK (2013) Reduced carbon dots versus oxidized carbon dots: photo- and electrochemiluminescence investigations for selected applications. Chemistry 19(20):6282–6288

    Article  CAS  PubMed  Google Scholar 

  21. Wang F, Xie Z, Zhang H, C-y L, Y-G Z (2011) Highly luminescent Organosilane-functionalized carbon dots. Adv Funct Mater 21(6):1027–1031

    Article  CAS  Google Scholar 

  22. Fu C, Qian K, Fu A (2017) Arginine-modified carbon dots probe for live cell imaging and sensing by increasing cellular uptake efficiency. Mater Sci Eng C Mater Biol Appl 76:350–355

    Article  CAS  PubMed  Google Scholar 

  23. Wang F, Hao Q, Zhang Y, Xu Y, Lei W (2016) Fluorescence quenchometric method for determination of ferric ion using boron-doped carbon dots. Microchim Acta 183(1):273–279

    Article  CAS  Google Scholar 

  24. Ma H, Liu X, Wang X, Li X, Yang C, Iqbal A, Qin W (2017) Sensitive fluorescent light-up probe for enzymatic determination of glucose using carbon dots modified with MnO2 nanosheets. Microchim Acta 184(1):177–185

    Article  CAS  Google Scholar 

  25. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11(14):1620–1636

    Article  CAS  PubMed  Google Scholar 

  26. Park Y, Yoo J, Lim B, Kwon W, Rhee SW (2016) Improving the functionality of carbon nanodots: doping and surface functionalization. J Mater Chem A 4(30):11582–11603

    Article  CAS  Google Scholar 

  27. Zhang H, Huang Y, Hu Z, Tong C, Zhang Z, Hu S (2017) Carbon dots codoped with nitrogen and sulfur are viable fluorescent probes for chromium (VI). Microchim Acta 184(5):1547–1553

    Article  CAS  Google Scholar 

  28. Farshbaf, M. Davaran, S. Rahimi, F. (2018). “Carbon quantum dots: recent progresses on synthesis, surface modification and applications.” Artif Cells Nanomed Biotechnol 46(7): 1331–1348

  29. Chandan, H. R. and B. R. Geetha (2018). “Quantum dots as fluorescent probes: synthesis, surface chemistry, energy transfer mechanisms, and applications.” Sensors Actuators B Chem 258:1191–1214

  30. Wu H, Jiang J, Gu X, Tong C (2017) Nitrogen and sulfur co-doped carbon quantum dots for highly selective and sensitive fluorescent detection of Fe (III) ions and L-cysteine. Microchim Acta 184(7):2291–2298

    Article  CAS  Google Scholar 

  31. Dong W, Zhou S, Dong Y, Wang J, Ge X, Sui L (2015) The preparation of ethylenediamine-modified fluorescent carbon dots and their use in imaging of cells. Luminescence 30(6):867–871

    Article  CAS  PubMed  Google Scholar 

  32. do D’Angelis ESBC, Correa JR, Medeiros GA, Barreto G, Magalhaes KG, de Oliveira AL, Spencer J, Rodrigues MO, Neto BA (2015) Carbon dots (C-dots) from cow manure with impressive subcellular selectivity tuned by simple chemical modification. Chemistry 21(13):5055–5060

    Article  CAS  Google Scholar 

  33. Cayuela A, Soriano ML, Valcárcel M (2015) Reusable sensor based on functionalized carbon dots for the detection of silver nanoparticles in cosmetics via inner filter effect. Anal Chim Acta 872:70–76

    Article  CAS  PubMed  Google Scholar 

  34. Yang R, Guo X, Jia L, Zhang Y (2017) A fluorescent “on-off-on” assay for selective recognition of cu (II) and glutathione based on modified carbon nanodots, and its application to cellular imaging. Microchim Acta 184(4):1143–1150

    Article  CAS  Google Scholar 

  35. Chen J, Li Y, Lv K, Zhong W, Wang H, Wu Z, Yi P, Jiang J (2016) Cyclam-functionalized carbon dots sensor for sensitive and selective detection of copper (II) ion and sulfide anion in aqueous media and its imaging in live cells. Sensors Actuators B Chem 224:298–306

    Article  CAS  Google Scholar 

  36. Palanisamy S, Ku S, Chen SM (2013) Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite. Microchim Acta 180(11–12):1037–1042

    Article  CAS  Google Scholar 

  37. Arreguin S, Nelson P, Padway S, Shirazi M, Pierpont C (2009) Dopamine complexes of iron in the etiology and pathogenesis of Parkinson’s disease. J Inorg Biochem 103:87–93

    Article  CAS  PubMed  Google Scholar 

  38. Chai L, Zhou J, Feng H, Tang C, Huang Y, Qian Z (2015) Functionalized carbon quantum dots with dopamine for Tyrosinase activity monitoring and inhibitor screening: in vitro and intracellular investigation. ACS Appl Mater Interfaces 7(42):23564–23574

    Article  CAS  PubMed  Google Scholar 

  39. Zhong D, Zhuo Y, Feng Y, Yang X (2015) Employing carbon dots modified with vancomycin for assaying gram-positive bacteria like Staphylococcus aureus. Biosens Bioelectron 74:546–553

    Article  CAS  PubMed  Google Scholar 

  40. Jiang Y, Wang Y, Meng F, Wang B, Cheng Y, Zhu C (2015) N-doped carbon dots synthesized by rapid microwave irradiation as highly fluorescent probes for Pb2+ detection. New J Chem 39(5):3357–3360

    Article  CAS  Google Scholar 

  41. Wang R, Xu Y, Zhang T, Jiang Y (2015) Rapid and sensitive detection of Salmonella typhimurium using aptamer-conjugated carbon dots as fluorescence probe. Anal Methods 7(5):1701–1706

    Article  CAS  Google Scholar 

  42. Mohammadi S, Salimi A, Hamd-Ghadareh S, Fathi F, Soleimani F (2018) A FRET immunosensor for sensitive detection of CA 15-3 tumor marker in human serum sample and breast cancer cells using antibody functionalized luminescent carbon-dots and AuNPs-dendrimer aptamer as donor-acceptor pair. Anal Biochem 557:18–26

    Article  CAS  PubMed  Google Scholar 

  43. Sun Q, Fang S, Fang Y, Qian Z, Feng H (2017) Fluorometric detection of cholesterol based on beta-cyclodextrin functionalized carbon quantum dots via competitive host-guest recognition. Talanta 167:513–519

    Article  CAS  PubMed  Google Scholar 

  44. Luo M, Hua Y, Liang Y, Han J, Liu D, Zhao W, Wang P (2017) Synthesis of novel beta-cyclodextrin functionalized S, N codoped carbon dots for selective detection of testosterone. Biosens Bioelectron 98:195–201

    Article  CAS  PubMed  Google Scholar 

  45. Vazquez-Gonzalez M et al (2017) Mimicking horseradish peroxidase functions using Cu2+ modified carbon nitride nanoparticles or Cu2+ modified carbon dots as heterogeneous catalysts. ACS Nano 11(3):3247–3253

    Article  CAS  PubMed  Google Scholar 

  46. Wang H, Lu Q, Liu Y, Li H, Zhang Y, Yao S (2017) A dual-signal readout sensor for highly sensitive detection of iodide ions in urine based on catalase-like reaction of iodide ions and N-doped C-dots. Sensors Actuators B Chem 250:429–435

    Article  CAS  Google Scholar 

  47. Liang P, Peng L (2010) Determination of silver(I) ion in water samples by graphite furnace atomic absorption spectrometry after preconcentration with dispersive liquid-liquid microextraction. Microchim Acta 168(1):45–50

    Article  CAS  Google Scholar 

  48. Hao A, Guo X, Wu Q, Sun Y, Cong C, Liu W (2016) Exploring the interactions between polyethyleneimine modified fluorescent carbon dots and bovine serum albumin by spectroscopic methods. J Lumin 170:90–96

    Article  CAS  Google Scholar 

  49. Lu X, Zhang Z, Xia Q, Hou M, Yan C, Chen Z, Xu Y, Liu R (2018) Glucose functionalized carbon quantum dot containing organic radical for optical/MR dual-modality bioimaging. Mater Sci Eng C Mater Biol Appl 82:190–196

    Article  CAS  PubMed  Google Scholar 

  50. Zhao Y, Shi L, Fang J, Feng X (2015) Bio-nanoplatforms based on carbon dots conjugating with F-substituted nano-hydroxyapatite for cellular imaging. Nanoscale 7(47):20033–20041

    Article  CAS  PubMed  Google Scholar 

  51. Jiao L et al (2016) Enhanced amperometric immunoassay for the prostate specific antigen using Pt-cu hierarchical trigonal bipyramid nanoframes as a label. Microchim Acta 184(2):423–429

    Article  CAS  Google Scholar 

  52. Zhao Y, Mu L, Su Y, Shi L, Feng X (2017) Pt–Ni nanoframes functionalized with carbon dots: an emerging class of bio-nanoplatforms. J Mater Chem B 5(31):6233–6236

    Article  CAS  Google Scholar 

  53. Yan F, Bai Z, Liu F, Zu F, Zhang R, Xu J, Chen L (2018) Ratiometric fluorescence probes based on carbon dots. Curr Org Chem 22(1):57–66

    Article  CAS  Google Scholar 

  54. Spangler C, Schaeferling M, Wolfbeis OS (2008) Fluorescent probes for microdetermination of inorganic phosphates and biophosphates. Microchim Acta 161(1):1–39

    Article  CAS  Google Scholar 

  55. Zhang L, Chen L (2018) Visual detection of melamine by using a ratiometric fluorescent probe consisting of a red emitting CdTe core and a green emitting CdTe shell coated with a molecularly imprinted polymer. Microchim Acta 185(2):135

    Article  CAS  Google Scholar 

  56. Deng M, Wang S, Liang C, Shang H, Jiang S (2016) A FRET fluorescent nanosensor based on carbon dots for ratiometric detection of Fe3+ in aqueous solution. RSC Adv 6(32):26936–26940

    Article  CAS  Google Scholar 

  57. Zhang L, Xu C, Li B (2009) Simple and sensitive detection method for chromium (VI) in water using glutathione—capped CdTe quantum dots as fluorescent probes. Microchim Acta 166(1):61–68

    Article  CAS  Google Scholar 

  58. Wu H, Liang J, Han H (2008) A novel method for the determination of Pb2+ based on the quenching of the fluorescence of CdTe quantum dots. Microchim Acta 161(1):81–86

    Article  CAS  Google Scholar 

  59. Kuang R, Kuang X, Pan S, Zheng X, Duan J, Duan Y (2010) Synthesis of cysteamine-coated CdTe quantum dots for the detection of bisphenol a. Microchim Acta 169(1–2):109–115

    Article  CAS  Google Scholar 

  60. Xu H, Zhang K, Liu Q, Liu Y, Xie M (2017) Visual and fluorescent detection of mercury ions by using a dually emissive ratiometric nanohybrid containing carbon dots and CdTe quantum dots. Microchim Acta 184(4):1199–1206

    Article  CAS  Google Scholar 

  61. Gui R, Jin H, Wang Y, Sun J (2017) Ions-induced two-photon fluorescence dual-switching for reversible and simultaneous sensing of Cu2+ and Hg2+ based on dual-emitting carbon dot/carbon dot conjugates. Sensors Actuators B Chem 245:386–394

    Article  CAS  Google Scholar 

  62. Yin J-Y, Liu H-J, Jiang S, Chen Y, Yao Y (2013) Hyperbranched polymer functionalized carbon dots with multistimuli-responsive property. ACS Macro Lett 2(11):1033–1037

    Article  CAS  Google Scholar 

  63. Shi W, Li X, Ma H (2012) A tunable ratiometric pH sensor based on carbon nanodots for the quantitative measurement of the intracellular pH of whole cells. Angew Chem Int Ed Eng 51(26):6432–6435

    Article  CAS  Google Scholar 

  64. Zhang Z, Shi Y, Pan Y, Cheng X, Zhang L, Chen J, Li M-J, Yi C (2014) Quinoline derivative-functionalized carbon dots as a fluorescent nanosensor for sensing and intracellular imaging of Zn2+. J Mater Chem B 2(31):5020–5027

    Article  CAS  Google Scholar 

  65. Ye Q, Yan F, Kong D, Zhang J, Zhou X, Xu J, Chen L (2017) Constructing a fluorescent probe for specific detection of catechol based on 4-carboxyphenylboronic acid-functionalized carbon dots. Sensors Actuators B Chem 250:712–720

    Article  CAS  Google Scholar 

  66. Yan F, Ye Q, Xu J, He J, Chen L, Zhou X (2017) Carbon dots-bromoacetyl bromide conjugates as fluorescence probe for the detection of glutathione over cysteine and homocysteine. Sensors Actuators B Chem 251:753–762

    Article  CAS  Google Scholar 

  67. Wang X, Wang D, Guo Y, Yang C, Iqbal A, Liu W, Qin W, Yan D, Guo H (2015) Imidazole derivative-functionalized carbon dots: using as a fluorescent probe for detecting water and imaging of live cells. Dalton Trans 44(12):5547–5554

    Article  CAS  PubMed  Google Scholar 

  68. Wu L, Li X, Ling Y, Huang C, Jia N (2017) Morpholine derivative-functionalized carbon dots-based fluorescent probe for highly selective lysosomal imaging in living cells. ACS Appl Mater Interfaces 9(34):28222–28232

    Article  CAS  PubMed  Google Scholar 

  69. Wang C, Jiang K, Xu Z, Lin H, Zhang C (2016) Glutathione modified carbon-dots: from aggregation-induced emission enhancement properties to a “turn-on” sensing of temperature/Fe3+ ions in cells. Inorg Chem Front 3(4):514–522

    Article  CAS  Google Scholar 

  70. Zhu J, Sun S, Jiang K, Wang Y, Liu W, Lin H (2017) A highly sensitive and selective fluorimetric probe for intracellular peroxynitrite based on photoinduced electron transfer from ferrocene to carbon dots. Biosens Bioelectron 97:150–156

    Article  CAS  PubMed  Google Scholar 

  71. Krishna AS, Radhakumary C, Antony M, Sreenivasan K (2014) Functionalized carbon dots enable simultaneous bone crack detection and drug deposition. J Mater Chem B 2(48):8626–8632

    Article  CAS  Google Scholar 

  72. Jijie R, Barras A, Bouckaert J, Dumitrascu N, Szunerits S, Boukherroub R (2018) Enhanced antibacterial activity of carbon dots functionalized with ampicillin combined with visible light triggered photodynamic effects. Colloids Surf B: Biointerfaces 170:347–354

    Article  CAS  PubMed  Google Scholar 

  73. Yang L, Jiang W, Qiu L, Jiang X, Zuo D, Wang D, Yang L (2015) One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging. Nanoscale 7(14):6104–6113

    Article  CAS  PubMed  Google Scholar 

  74. Yang L, Wang Z, Wang J, Jiang W, Jiang X, Bai Z, He Y, Jiang J, Wang D, Yang L (2016) Doxorubicin conjugated functionalize carbon dots for nucleus targeted delivery and enhanced therapeutic efficacy. Nanoscale 8(12):6801–6809

    Article  CAS  PubMed  Google Scholar 

  75. Zhang J, Zhao X, Xian M, Dong C, Shuang S (2018) Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells. Talanta 183:39–47

    Article  CAS  PubMed  Google Scholar 

  76. Li J, Yang S, Deng Y, Chai P, Yang Y, He X, Xie X, Kang Z, Ding G, Zhou H, Fan X (2018) Emancipating target-functionalized carbon dots from autophagy vesicles for a novel visualized tumor therapy. Adv Funct Mater 28(30):1800881

    Article  CAS  Google Scholar 

  77. Du F, Ming Y, Zeng F, Yu C, Wu S (2013) A low cytotoxic and ratiometric fluorescent nanosensor based on carbon-dots for intracellular pH sensing and mapping. Nanotechnology 24(36):365101

    Article  CAS  PubMed  Google Scholar 

  78. Shao J, Zhu S, Liu H, Song Y, Tao S, Yang B (2017) Full-color emission polymer carbon dots with quench-resistant solid-state fluorescence. Adv Sci 4(12):1700395

    Article  CAS  Google Scholar 

  79. Wang Y, Zhang C, Chen X, Yang B, Yang L, Jiang C, Zhang Z (2016) Ratiometric fluorescent paper sensor utilizing hybrid carbon dots-quantum dots for the visual determination of copper ions. Nanoscale 8(11):5977–5984

    Article  CAS  PubMed  Google Scholar 

  80. Yan Y, Sun J, Zhang K, Zhu H, Yu H, Sun M, Huang D, Wang S (2015) Visualizing gaseous nitrogen dioxide by ratiometric fluorescence of carbon nanodots-quantum dots hybrid. Anal Chem 87(4):2087–2093

    Article  CAS  PubMed  Google Scholar 

  81. Yu C, Li X, Zeng F, Zheng F, Wu S (2013) Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem Commun (Camb) 49(4):403–405

    Article  CAS  Google Scholar 

  82. Kim Y, Jang G, Lee TS (2015) New fluorescent metal-ion detection using a paper-based sensor strip containing tethered rhodamine carbon nanodots. ACS Appl Mater Interfaces 7(28):15649–15657

    Article  CAS  PubMed  Google Scholar 

  83. Kim Y, Jang G, Lee TS (2017) Carbon nanodots functionalized with rhodamine and poly (ethylene glycol) for ratiometric sensing of Al ions in aqueous solution. Sensors Actuators B Chem 249:59–65

    Article  CAS  Google Scholar 

  84. Jin M, et al. (2018). "Thiazole Orange-modified carbon dots for Ratiometric fluorescence detection of G-Quadruplex and double-stranded DNA." ACS Appl Mater Interfaces

  85. Lee J-S, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric ion Hg2+ in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem 119(22):4171–4174

    Article  Google Scholar 

  86. Salimi F, Kiani M, Karami C, Taher MA (2018) Colorimetric sensor of detection of Cr (III) and Fe (II) ions in aqueous solutions using gold nanoparticles modified with methylene blue. Optik 158:813–825

    Article  CAS  Google Scholar 

  87. Ju E, Liu Z, Du Y, Tao Y, Ren J, Qu X (2014) Heterogeneous assembled nanocomplexes for ratiometric detection of highly reactive oxygen species in vitro and in vivo. ACS Nano 8(6):6014–6023

    Article  CAS  PubMed  Google Scholar 

  88. Li Z, Guo S, Yuan Z, Lu C (2017) Carbon quantum dot-gold nanocluster nanosatellite for ratiometric fluorescence probe and imaging for hydrogen peroxide in living cells. Sensors Actuators B Chem 241:821–827

    Article  CAS  Google Scholar 

  89. Wang C, Lin H, Xu Z, Huang Y, Humphrey MG, Zhang C (2016) Tunable carbon-dot-based dual-emission fluorescent Nanohybrids for Ratiometric optical thermometry in living cells. ACS Appl Mater Interfaces 8(10):6621–6628

    Article  CAS  PubMed  Google Scholar 

  90. Li W, Zhang H, Chen S, Liu Y, Zhuang J, Lei B (2016) Synthesis of molecularly imprinted carbon dot grafted YVO4: Eu3+ for the ratiometric fluorescent determination of paranitrophenol. Biosens Bioelectron 86:706–713

    Article  CAS  PubMed  Google Scholar 

  91. Lei J, Yang L, Lu D, Yan X, Cheng C, Liu Y, Wang L, Zhang J (2015) Carbon dot-incorporated PMO nanoparticles as versatile platforms for the Design of Ratiometric Sensors, multichannel traceable drug delivery vehicles, and efficient Photocatalysts. Adv Opt Mater 3(1):57–59

    Article  CAS  Google Scholar 

  92. Rao H, Liu W, Lu Z, Wang Y, Ge H, Zou P, Wang X, He H, Zeng X, Wang Y (2016) Silica-coated carbon dots conjugated to CdTe quantum dots: a ratiometric fluorescent probe for copper(II). Microchim Acta 183(2):581–588

    Article  CAS  Google Scholar 

  93. Liu X, Zhang N, Bing T, Shangguan D (2014) Carbon dots based dual-emission silica nanoparticles as a ratiometric nanosensor for Cu2+. Anal Chem 86(5):2289–2296

    Article  CAS  PubMed  Google Scholar 

  94. Niu W-J, Shan D, Zhu R-H, Deng S-Y, Cosnier S, Zhang X-J (2016) Dumbbell-shaped carbon quantum dots/AuNCs nanohybrid as an efficient ratiometric fluorescent probe for sensing cadmium (II) ions and l -ascorbic acid. Carbon 96:1034–1042

    Article  CAS  Google Scholar 

  95. Lei B, Li W, Zhang H, Wang J, Liu Y, Zhuang J, Chen S (2015) Carbon dot grafted SrAl2O4: Eu, Dy dual-emitting phosphor for ratiometric temperature sensing. RSC Adv 5(108):89238–89243

    Article  CAS  Google Scholar 

  96. Algarra M, Campos BB, Radotić K, Mutavdžić D, Bandosz T, Jiménez-Jiménez J, Rodriguez-Castellón E, Esteves da Silva JCG (2014) Luminescent carbon nanoparticles: effects of chemical functionalization, and evaluation of ag+ sensing properties. J Mater Chem A 2(22):8342

    Article  CAS  Google Scholar 

  97. Gao K, Guo Y, Niu Q, Han L, Zhou L, Wang L (2018) Quaternary ammonium-functionalized carbon dots for sensitive and selective detection of 2,4,6-trinitrophenol in aqueous medium. Sensors Actuators B Chem 262:298–305

    Article  CAS  Google Scholar 

  98. Lai IP-J, Harroun SG, Chen S-Y, Unnikrishnan B, Li Y-J, Huang C-C (2016) Solid-state synthesis of self-functional carbon quantum dots for detection of bacteria and tumor cells. Sensors Actuators B Chem 228:465–470

    Article  CAS  Google Scholar 

  99. Lin Z-Y, Kuo YC, Chang CJ, Lin YS, Chiu TC, Hu CC (2018) Highly sensitive sensing of hydroquinone and catechol based on β-cyclodextrin-modified carbon dots. RSC Adv 8(35):19381–19388

    Article  CAS  Google Scholar 

  100. Ye Z, Tang R, Wu H, Wang B, Tan M, Yuan J (2014) Preparation of europium complex-conjugated carbon dots for ratiometric fluorescence detection of copper (II) ions. New J Chem 38(12):5721–5726

    Article  CAS  Google Scholar 

  101. Li S, Guo Z, Feng R, Zhang Y, Xue W, Liu Z (2017) Hyperbranched polyglycerol conjugated fluorescent carbon dots with improved in vitro toxicity and red blood cell compatibility for bioimaging. RSC Adv 7(9):4975–4982

    Article  CAS  Google Scholar 

  102. Yuan C, Liu B, Liu F, Han MY, Zhang Z (2014) Fluorescence "turn on" detection of mercuric ion based on bis(dithiocarbamato)copper (II) complex functionalized carbon nanodots. Anal Chem 86(2):1123–1130

    Article  CAS  PubMed  Google Scholar 

  103. Li J, Liu J, Xu L, Chen J (2017) Preparation of thermoresponsive fluorescent carbon dots for cellular imaging. Polym Int 66(1):92–97

    Article  CAS  Google Scholar 

  104. Luo P, Ji Z, Li C, Shi G (2013) Aryl-modified graphene quantum dots with enhanced photoluminescence and improved pH tolerance. Nanoscale 5(16):7361–7367

    Article  CAS  PubMed  Google Scholar 

  105. Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116(9):5464–5519

    Article  CAS  PubMed  Google Scholar 

  106. Jiang Y, Wang Z, Dai Z (2015) Preparation of silicon–carbon-based dots@dopamine and its application in intracellular ag+ detection and cell imaging. ACS Appl Mater Interfaces 8(6):3644–3650

    Article  CAS  PubMed  Google Scholar 

  107. Li H, Zhang Y, Wang L, Tian J, Sun X (2011) Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform. Chem Commun (Camb) 47(3):961–963

    Article  CAS  Google Scholar 

  108. Li H, Zhai J, Tian J, Luo Y, Sun X (2011) Carbon nanoparticle for highly sensitive and selective fluorescent detection of mercury (II) ion in aqueous solution. Biosens Bioelectron 26(12):4656–4660

    Article  CAS  PubMed  Google Scholar 

  109. Li H, Zhai J, Sun X (2011) Sensitive and selective detection of silver(I) ion in aqueous solution using carbon nanoparticles as a cheap, effective fluorescent sensing platform. Langmuir 27:4305–4308

    Article  CAS  PubMed  Google Scholar 

  110. Guo CX, Zhao D, Zhao Q, Wang P, Lu X (2014) Na (+)-functionalized carbon quantum dots: a new draw solute in forward osmosis for seawater desalination. Chem Commun (Camb) 50(55):7318–7321

    Article  CAS  Google Scholar 

  111. Shi Y, Pan Y, Zhong J, Yang J, Zheng J, Cheng J, Song R, Yi C (2015) Facile synthesis of gadolinium (III) chelates functionalized carbon quantum dots for fluorescence and magnetic resonance dual-modal bioimaging. Carbon 93:742–750

    Article  CAS  Google Scholar 

  112. Chen H, Xie Y, Kirillov AM, Liu L, Yu M, Liu W, Tang Y (2015) A ratiometric fluorescent nanoprobe based on terbium functionalized carbon dots for highly sensitive detection of an anthrax biomarker. Chem Commun (Camb) 51(24):5036–5039

    Article  CAS  Google Scholar 

  113. Jin H, Gui R, Wang Y, Sun J (2017) Carrot-derived carbon dots modified with polyethyleneimine and nile blue for ratiometric two-photon fluorescence turn-on sensing of sulfide anion in biological fluids. Talanta 169:141–148

    Article  CAS  PubMed  Google Scholar 

  114. Lan M, Zhang J, Chui YS, Wang P, Chen X, Lee CS, Kwong HL, Zhang W (2014) Carbon nanoparticle-based ratiometric fluorescent sensor for detecting mercury ions in aqueous media and living cells. ACS Appl Mater Interfaces 6(23):21270–21278

    Article  CAS  PubMed  Google Scholar 

  115. Zhu X, Jin H, Gao C, Gui R, Wang Z (2017) Ratiometric, visual, dual-signal fluorescent sensing and imaging of pH/copper ions in real samples based on carbon dots-fluorescein isothiocyanate composites. Talanta 162:65–71

    Article  CAS  PubMed  Google Scholar 

  116. Sarkar S, Das K, Das PK (2017) Estradiol Hemisuccinate-modified surface-engineered carbon dots: target-specific Theranostic agent. ACS Sustain Chem Eng 5(9):8356–8369

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work described in this manuscript was supported by the National Natural Science Foundation of China (51678409, 51638011 and 51578375), Tianjin Research Program of Application Foundation and Advanced Technology (15ZCZDSF00880), State Key Laboratory of Separation Membranes and Membrane Processes (Z1-201507), and the Program for Innovative Research Team in University of Tianjin (TD13-5042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanyong Yan.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, F., Jiang, Y., Sun, X. et al. Surface modification and chemical functionalization of carbon dots: a review. Microchim Acta 185, 424 (2018). https://doi.org/10.1007/s00604-018-2953-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2953-9

Keywords

Navigation