Skip to main content
Log in

Visual and fluorescent detection of mercury ions by using a dually emissive ratiometric nanohybrid containing carbon dots and CdTe quantum dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a carbon dot (CD) based dual-emission ratiometric optical probe for the on-site visual and fluorometric determination of mercury(II) ions. The nanoparticle (NP) probe was obtained by covalently linking the blue emissive carbon dots to the surface of silica nanoparticles containing red-emissive quantum dots (QDs). The red emitting QDs in the silica matrix are inert to Hg(II) and provide a reliable and constant reference signal. They also reduce their toxicity and improve the optical and chemical stabilities, while the blue emission CDs are very sensitive to Hg(II). With increasing concentration of Hg(II), a solution containing the NP probe undergoes a continuous color change from light purple to red. This can be seen with bare eyes or detected instrumentally by measurement of fluorescence intensity under excitation/emission wavelengths of 350/453 and 658 nm. The probe exhibits high sensitivity to Hg(II), with a detection limit of 0.47 nM (at an S/N ratio of 3). This is much lower than the allowable level of mercury (10 nM, ~10 ppb) in drinking water set by the U.S. Environmental Protection Agency. For practical use, the probe was used to quantify Hg(II) in (spiked) tap water where it gave recoveries between 95 and 106% and relative standard deviations between 1.9 and 3.2%. The probe can also be applied in filter paper-based assays, and this paves the way to point-of-care pollution control. This ratiometric probe is nontoxic and easily operated, and therefore shows potential applications for rapid and low-cost visual identification of Hg(II).

Schematic of a carbon dot and quantum dot based dual-emission ratiometric optical and fluorescent probe for the on-site visual and fluorometric determination of mercury(II) ions. The probe is efficient, simple, and can be applied in filter paper-based assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dong Y, Cai J, You X, Chi Y (2015) Sensing applications of luminescent carbon based dots. Analyst 140(22):7468–7486. doi:10.1039/c5an01487e

    Article  CAS  Google Scholar 

  2. Liu X, Zhang N, Bing T, Shangguan D (2014) Carbon dots based dual-emission silica nanoparticles as a ratiometric nanosensor for Cu(2+). Anal Chem 86(5):2289–2296. doi:10.1021/ac404236y

    Article  CAS  Google Scholar 

  3. Jie Sha YS, Liu B, Lü C (2015) Host–guest-recognition-based polymer brush-functionalized mesoporous silica nanoparticles loaded with conjugated polymers: a facile FRET-based ratiometric probe for Hg2+. Microporous Mesoporous Mater 218:137–143. doi:10.1016/j.micromeso.2015.07.014

    Article  Google Scholar 

  4. Gong YJ, Zhang XB, Zhang CC, Luo AL, Fu T, Tan W, Shen GL, Yu RQ (2012) Through bond energy transfer: a convenient and universal strategy toward efficient ratiometric fluorescent probe for bioimaging applications. Anal Chem 84(24):10777–10784. doi:10.1021/ac302762d

    Article  CAS  Google Scholar 

  5. Liu ZC, Qi JW, Hu C, Zhang L, Song W, Liang RP, Qiu JD (2015) Cu nanoclusters-based ratiometric fluorescence probe for ratiometric and visualization detection of copper ions. Anal Chim Acta 895:95–103. doi:10.1016/j.aca.2015.09.002

    Article  CAS  Google Scholar 

  6. Yan Y, Yu H, Zhang K, Sun M, Zhang Y, Wang X, Wang S (2016) Dual-emissive nanohybrid of carbon dots and gold nanoclusters for sensitive determination of mercuric ions. Nano Res 9(7):2088–2096. doi:10.1007/s12274-016-1099-5

    Article  CAS  Google Scholar 

  7. Kalita H, Mohapatra J, Pradhan L, Mitra A, Bahadur D, Aslam M (2016) Efficient synthesis of rice based graphene quantum dots and their fluorescent properties. RSC Adv 6:23518–235274. doi:10.1039/c5ra25706a

    Article  CAS  Google Scholar 

  8. Yong KT, Law WC, Hu R, Ye L, Liu L, Swihart MT, Prasad PN (2013) Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem Soc Rev 42(3):1236–1250. doi:10.1039/c2cs35392j

    Article  CAS  Google Scholar 

  9. Youxing Fang SG, Li D, Zhu C, Ren W, Dong S, Wang E (2011) Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. ACS Nano 6(1):400–409. doi:10.1021/nn2046373

    Article  Google Scholar 

  10. Yang S-T, Cao L, Luo PG, Lu F, Wang X, Wang H, Meziani MJ, Liu Y, Qi G, Sun Y-P (2009) Carbon Dots for Optical Imaging in Vivo. J Am Chem Soc 131:11308–11309. doi:10.1021/ja904843x

    Article  CAS  Google Scholar 

  11. Zhiqiang Ye RT, Hao Wu, Beibei Wang, Mingqian Tan* and Jingli Yuana (2014) Preparation of europium complex-conjugated carbon dots for ratiometric fluorescence detection of copper(II) ions. NJC 38:5721–5726. doi:10.1039/C4NJ00966E

    Article  Google Scholar 

  12. Zuo P, Lu X, Sun Z, Guo Y, He H (2015) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183(2):519–542. doi:10.1007/s00604-015-1705-3

    Article  Google Scholar 

  13. Lan M, Zhang J, Chui YS, Wang P, Chen X, Lee CS, Kwong HL, Zhang W (2014) Carbon nanoparticle-based ratiometric fluorescent sensor for detecting mercury ions in aqueous media and living cells. ACS Appl Mater Interfaces 6(23):21270–21278. doi:10.1021/am5062568

    Article  CAS  Google Scholar 

  14. Yan Y, Sun J, Zhang K, Zhu H, Yu H, Sun M, Huang D, Wang S (2015) Visualizing gaseous nitrogen dioxide by ratiometric fluorescence of carbon nanodots-quantum dots hybrid. Anal Chem 87(4):2087–2093. doi:10.1021/ac503474x

    Article  CAS  Google Scholar 

  15. Zhuo L, Yong W, Yongnian N, Serge K (2015) A rapid and label-free dual detection of Hg (II) and cysteine with the use of fluorescence switching of graphene quantum dots. Sensors and Actuators B: Chem 207:490–497. doi:10.1016/j.snb.2014.10.071

    Article  Google Scholar 

  16. Li J, Lu L, Kang T, Cheng S (2016) Intense charge transfer surface based on graphene and thymine-Hg(II)-thymine base pairs for detection of Hg(2.). Biosens Bioelectron 77:740–745. doi:10.1016/j.bios.2015.10.047

    Article  CAS  Google Scholar 

  17. Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18(3):149–175. doi:10.1002/tox.10116

    Article  CAS  Google Scholar 

  18. Yunfei Long DJ, Xu Z, Wang J, Zhou F (2009) Trace Hg2 analysis via quenching of the fluorescence of a CdS-encapsulated DNA nanocomposite. Anal Chem 81:2652–2657. doi:10.1021/ac802592r

    Article  Google Scholar 

  19. Huang D, Niu C, Wang X, Lv X, Zeng G (2013) "turn-on" fluorescent sensor for Hg2+ based on single-stranded DNA functionalized Mn:CdS/ZnS quantum dots and gold nanoparticles by time-gated mode. Anal Chem 85(2):1164–1170. doi:10.1021/ac303084d

    Article  CAS  Google Scholar 

  20. Koteeswari RA, Malar P, Ramakrishnan EJ, Ramamurthy VTP (2011) Highly selective, sensitive and quantitative detection of Hg2+ in aqueous medium under broad pH range. Chem Comm 47(27):7695–7697. doi:10.1039/c1cc12018b

    Article  CAS  Google Scholar 

  21. Zhai Y, Zhu Z, Zhu C, Ren J, Wang E, Dong S (2014) Multifunctional water-soluble luminescent carbon. J Mater Chem 2:6995–6999. doi:10.1039/c4tb01035c

    Article  CAS  Google Scholar 

  22. Yan X, Li H, Zheng W, Su X (2015) Visual and fluorescent detection of tyrosinase activity by using a dual-emission ratiometric fluorescence probe. Anal Chem 87(17):8904–8909. doi:10.1021/acs.analchem.5b02037

    Article  CAS  Google Scholar 

  23. Wu L, Guo QS, Liu YQ, Sun QJ (2015) Fluorescence resonance energy transfer-based ratiometric fluorescent probe for detection of Zn(2+) using a dual-emission silica-coated quantum dots mixture. Anal Chem 87(10):5318–5323. doi:10.1021/acs.analchem.5b00514

    Article  CAS  Google Scholar 

  24. Wolcott ADG, Visconte M, Sun J, Schwartzberg A, Chen H, Zhang JZ (2006) Silica-coated CdTe quantum dots functionalized with thiols for Bioconjugation to IgG proteins. J Phys Chem B 110:5779. doi:10.1021/jp057435z

    Article  CAS  Google Scholar 

  25. Lu W, Qin X, Liu S, Chang G, Zhang Y, Luo Y, Asiri AM, Al-Youbi AO, Sun X (2012) Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem 84(12):5351–5357. doi:10.1021/ac3007939

    Article  CAS  Google Scholar 

  26. Yan F, Zou Y, Wang M, Mu X, Yang N, Chen L (2014) Highly photoluminescent carbon dots-based fluorescent chemosensors for sensitive and selective detection of mercury ions and application of imaging in living cells. Sensors Actuators B Chem 192:488–495. doi:10.1016/j.snb.2013.11.041

    Article  CAS  Google Scholar 

  27. Tang W, Wang Y, Wang P, Di J, Yang J, Wu Y (2016) Synthesis of strongly fluorescent carbon quantum dots modified with polyamidoamine and a triethoxysilane as quenchable fluorescent probes for mercury(II). Microchim Acta 183(9):2571–2578. doi:10.1007/s00604-016-1898-0

    Article  CAS  Google Scholar 

  28. Guo Y, Zhang L, Cao F, Leng Y (2016) Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg2+. Scientific Reports 6:35795. doi:10.1038/srep35795

    Article  CAS  Google Scholar 

  29. Zhao Y, Qiang H, Chen Z (2016) Colorimetric determination of Hg(II) based on a visually detectable signal amplification induced by a Cu@Au-Hg trimetallic amalgam with peroxidase-like activity. Microchim Acta 184(1):107–115. doi:10.1007/s00604-016-2002-5

    Article  Google Scholar 

  30. Chen Y, Wu L, Chen Y, Bi N, Zheng X, Qi H, Qin M, Liao X, Zhang H, Tian Y (2012) Determination of mercury(II) by surface-enhanced Raman scattering spectroscopy based on thiol-functionalized silver nanoparticles. Microchim Acta 177(3–4):341–348. doi:10.1007/s00604-012-0777-6

    Article  CAS  Google Scholar 

  31. Goh EJ, Kim KS, Kim YR, Jung HS, Beack S, Kong WH, Scarcelli G, Yun SH, Hahn SK (2012) Bioimaging of hyaluronic acid derivatives using Nanosized carbon dots. Biomacromolecules 13(8):2554–2561. doi:10.1021/bm300796q

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Liu or Mengxia Xie.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 698 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Zhang, K., Liu, Q. et al. Visual and fluorescent detection of mercury ions by using a dually emissive ratiometric nanohybrid containing carbon dots and CdTe quantum dots. Microchim Acta 184, 1199–1206 (2017). https://doi.org/10.1007/s00604-017-2099-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2099-1

Keywords

Navigation