Skip to main content
Log in

Amperometric hydrogen peroxide sensor based on the use of CoFe2O4 hollow nanostructures

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors report on the preparation of a hollow-structured cobalt ferrite (CoFe2O4) nanocomposite for use in a non-enzymatic sensor for hydrogen peroxide (H2O2). Silica (SiO2) nanoparticles were exploited as template for the deposition of Fe3O4/CoFe2O4 nanosheets, which was followed by the removal of SiO2 template under mild conditions. This leads to the formation of hollow-structured Fe3O4/CoFe2O4 interconnected nanosheets with cubic spinel structure of high crystallinity. The material was placed on a glassy carbon electrode where it acts as a viable sensor for non-enzymatic determination of H2O2. Operated at a potential of −0.45 V vs. Ag/AgCl in 0.1 M NaOH solution, the modified GCE has a sensitivity of 17 nA μM−1 cm−2, a linear response in the range of 10 to 1200 μM H2O2 concentration range, and a 2.5 μM detection limit. The sensor is reproducible and stable and was applied to the analysis of spiked urine samples, where it provided excellent recoveries.

Schematic of a cobalt ferrite (CoFe2O4) hollow structure for use in electrochemical determination of H2O2. The sensor shows a low detection limit, a wide linear range, and excellent selectivity for H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lu CP, Lin CT, Chang CM, Wu SH, Lo LC (2011) Nitrophenylboronic acids as highly chemoselective probes to detect hydrogen peroxide in foods and agricultural products. J Agric Food Chem 59:11403–11406. doi:10.1021/jf202874r

    Article  CAS  Google Scholar 

  2. Reth M (2002) Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol 3:1129–1134. doi:10.1038/ni1202-1129

    Article  CAS  Google Scholar 

  3. Chen W, Cai S, Ren QQ, Wen W, Zhao YD (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137:49–58. doi:10.1039/C1AN15738H

    Article  CAS  Google Scholar 

  4. Mao Z, Wang M, Liu J, Liu LJ, Lee SMY, Leung CH, Ma DL (2016) A long lifetime switch-on iridium(III) chemosensor for the visualization of cysteine in live zebrafish. Chem Commun 52:4450–4453. doi:10.1039/C6CC01008C

    Article  CAS  Google Scholar 

  5. Ma DL, He HZ, Ma VPY, Chan DSH, Leung KH, Zhong HJ, Lu L, Mergny JL, Leung CH (2012) Label-free sensing of pH and silver nanoparticles using an “OR” logic gate. Anal Chim Acta 733:78–83. doi:10.1016/j.aca.2012.04.041

    Article  CAS  Google Scholar 

  6. Dong ZZ, Lu L, Ko CN, Yang C, Li S, Lee MY, Leung CH, Ma DL (2017) A MnO2 nanosheet-assisted GSH detection platform using an iridium(III) complex as a switch-on luminescent probe. Nano. doi:10.1039/C6NR08357A

    Google Scholar 

  7. Miao X, Yang C, Leung CH, Ma DL (2016) Application of iridium(III) complex in label-free and non-enzymatic electrochemical detection of hydrogen peroxide based on a novel “on-off-on” switch platform. Sci Rep 6(25774):1–8. doi:10.1038/srep25774

    CAS  Google Scholar 

  8. Marcantonio MD, Gellner S, Namanga JE, Frohleiks J, Gerlitzki N, Vollkommer F, Bacher G, Nannen E (2017) Performance enhancement by ZnO nanoparticle layer in hybrid ionic transition metal complex-light-emitting electrochemical cells (iTMC-LECs). Adv Mater Technol 2(1600215):1–9. doi:10.1002/admt.201600215

    Google Scholar 

  9. Chen X, Wu G, Cai Z, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181:689–705. doi:10.1007/s00604-013-1098-0

    Article  CAS  Google Scholar 

  10. Meng W, Xu S, Dai L, Li Y, Zhu J, Wang L (2017) An enhanced sensitivity towards H2O2 reduction based on a novel cu metal–organic framework and acetylene black modified electrode. Electrochim Acta 230:324–332. doi:10.1016/j.electacta.2017.02.017

    Article  CAS  Google Scholar 

  11. Kumar GG, Babu KJ, Kee SN, Yun JH (2014) A facile one-pot green synthesis of reduced graphene oxide and its composites for non-enzymatic hydrogen peroxide sensor applications. RSC Adv 4:7944–7951. doi:10.1039/C3RA45596C

    Article  Google Scholar 

  12. Zhang R, Chen W (2017) Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Biosens Bioelectron 89:249–268. doi:10.1016/j.bios.2016.01.080

    Article  CAS  Google Scholar 

  13. Wortmann L, Ilyas S, Niznansky D, Valldor M, Arroub K, Berger N, Rahme K, Holmes J, Mathur S (2014) Bioconjugated iron oxide nanocubes: synthesis, functionalization, and vectorization. ACS Appl Mater Interfaces 6:16631–16642. doi:10.1021/am503068r

    Article  CAS  Google Scholar 

  14. Jun YW, Seo JW, Cheon J (2008) Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res 41:179–189. doi:10.1021/ar700121f

    Article  CAS  Google Scholar 

  15. Zhang Z, Zhu H, Wang X, Yang X (2011) Sensitive electrochemical sensor for hydrogen peroxide using Fe3O4 magnetic nanoparticles as a mimic for peroxidase. Microchim Acta 174:183–189. doi:10.1007/s00604-011-0600-9

    Article  CAS  Google Scholar 

  16. Zhang L, Zhai Y, Gao N, Wen D, Dong S (2008) Sensing H2O2 with layer-by-layer assembled Fe3O4–PDDA nanocomposite film. Electrochem Commun 10:1524–1526. doi:10.1016/j.elecom.2008.05.022

    Article  CAS  Google Scholar 

  17. Ding R, Lv L, Qi L, Jia M, Wang H (2013) A facile hard-templating synthesis of mesoporous spinel CoFe2O4 nanostructures as promising electrocatalysts for the H2O2 reduction reaction. RSC Adv 4:1754–1760. doi:10.1039/C3RA45560B

    Article  Google Scholar 

  18. Qi J, Lai X, Wang J, Tang H, Ren H, Yang Y, Jin Q, Zhang L, Yu R, Ma G, Su Z, Zhao H (2015) Multi-shelled hollow micro−/nanostructures. Chem Soc Rev 44:6749–6773. doi:10.1039/C5CS00344J

    Article  CAS  Google Scholar 

  19. Wu LN, Tan YL, Wang L, Sun SN, Qu ZY, Zhang JM, Fan YJ (2015) Dopamine sensor based on a hybrid material composed of cuprous oxide hollow microspheres and carbon black. Microchim Acta 182:1361–1369. doi:10.1007/s00604-015-1455-2

    Article  CAS  Google Scholar 

  20. Li J, Yuan R, Chai Y, Zhang T, Che X (2010) Direct electrocatalytic reduction of hydrogen peroxide at a glassy carbon electrode modified with polypyrrole nanowires and platinum hollow nanospheres. Microchim Acta 171:125–131. doi:10.1007/s00604-010-0383-4

    Article  CAS  Google Scholar 

  21. Kumar GG, Senthilarasu S, Lee DN, Kim AR, Kim P, Nahm KS, Lee SH, Elizabeth RN (2008) Synthesis and characterization of aligned SiO2 nanosphere arrays: spray method. Synth Met 158:684–687. doi:10.1016/j.synthmet.2008.04.031

    Article  CAS  Google Scholar 

  22. Salamon J, Sathishkumar Y, Ramachandran K, Lee YS, Yoo DJ, Kim AR, Kumar GG (2015) One-pot synthesis of magnetite nanorods/graphene composites and its catalytic activity toward electrochemical detection of dopamine. Biosens Bioelectron 64:269–276. doi:10.1016/j.bios.2014.08.085

    Article  CAS  Google Scholar 

  23. Deng H, Li X, Peng Q, Wang X, Chen J, Li Y (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem 117:2842–2845. doi:10.1002/ange.200462551

    Article  Google Scholar 

  24. Xu Y, Sun D, Hao H, Gao D, Sun Y (2016) Non-stoichiometric co (II), Ni (II), Zn (II)-ferrite nanospheres: size controllable synthesis, excellent gas-sensing and magnetic properties. RSC Adv 6:98994–99002. doi:10.1039/C6RA21990J

    Article  CAS  Google Scholar 

  25. Behbahani M, Bide Y, Bagheri S, Salarian M, Omidi F, Nabid MR (2016) A pH responsive nanogel composed of magnetite, silica and poly(4-vinylpyridine) for extraction of Cd(II), Cu(II), Ni(II) and Pb(II). Microchim Acta 183:111–121. doi:10.1007/s00604-015-1603-8

    Article  CAS  Google Scholar 

  26. Guan N, Sun D, Xu J (2009) Self-assembly of iron oxide nanoparticles into oriented nanosheets by one-pot template-free synthesis at low pH. Mater Lett 63:1272–1274. doi:10.1016/j.matlet.2009.02.046

    Article  CAS  Google Scholar 

  27. Yu BY, Kwak SY (2011) Self-assembled mesoporous co and Ni-ferrite spherical clusters consisting of spinel nanocrystals prepared using a template-free approach. Dalton Trans 40:9989–9998. doi:10.1039/C1DT10650C

    Article  CAS  Google Scholar 

  28. Shegefti S, Mehdinia A, Shemirani F (2016) Preconcentration of cobalt(II) using polythionine-coated Fe3O4 nanocomposite prior its determination by AAS. Microchim Acta 183:1963–1970. doi:10.1007/s00604-016-1837-0

    Article  CAS  Google Scholar 

  29. Gao Z, Liu J, Chang J, Wu D, He J, Wang K, Xu F, Jian K (2012) Mesocrystalline Cu2O hollow nanocubes: synthesis and application in non-enzymatic amperometric detection of hydrogen peroxide and glucose. Cryst Eng Comm 14:6639–6646. doi:10.1039/C2CE25498K

    Article  CAS  Google Scholar 

  30. Yang Z, Zheng X, Zheng J (2016) Facile synthesis of prussian blue/hollow polypyrrole nanocomposites for enhanced hydrogen peroxide sensing. Ind Eng Chem Res 55(46):12161–12166. doi:10.1021/acs.iecr.6b02953

    Article  CAS  Google Scholar 

  31. Matsuda S, Nakanishi T, Kaneko K, Osaka T (2016) Synthesis of cobalt ferrite nanoparticles using spermine and their effect on death in human breast cancer cells under an alternating magnetic field. Electrochim Acta 183:153–159. doi:10.1016/j.electacta.2015.06.108

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Science and Engineering Research Board, New Delhi, India, Major Project Grant No:EMR/2015/000912. This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20164030201070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Jin Yoo or Georgepeter Gnana kumar.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 497 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasuki, K., Babu, K.J., Sheet, S. et al. Amperometric hydrogen peroxide sensor based on the use of CoFe2O4 hollow nanostructures. Microchim Acta 184, 2579–2586 (2017). https://doi.org/10.1007/s00604-017-2227-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2227-y

Keywords

Navigation