Skip to main content
Log in

Direct electrocatalytic reduction of hydrogen peroxide at a glassy carbon electrode modified with polypyrrole nanowires and platinum hollow nanospheres

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A nonenzymatic sensor for hydrogen peroxide has been fabricated by dispersing platinum hollow nanospheres onto polypyrrole (PPy) nanowires to form a PPy-Pt hollow sphere nanocomposite on a glassy carbon electrode. The materials were characterized by transmission electron microscopy and scanning electron microscopy. The process and the sensor were characterized by electrochemical impedance spectroscopy, cyclic voltammetry, and chrono-amperometry and revealed that the electrode has a large electroactive surface area and small resistance to electron transfer. The linear range for the determination of hydrogen peroxide is from 3.5 µM to 9.9 mM, the detection limit is 1.2 µM (S/N = 3), and the response time is 3 s. The electrode exhibited good stability and excellent repeatability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang J, Lin YH, Chen L (1993) Organic-phase biosensor for monitoring phenol and hydrogen peroxide in pharmaceutical antibacterial products. Analyst 118:277

    Article  CAS  Google Scholar 

  2. Kulys J, Wang L, Maksimoviene A (1993) Lactate oxidase electrode based on methylene green and carbon paste. Anal Chim Acta 274:53

    Article  CAS  Google Scholar 

  3. Luo W, Abbas ME, Zhu L, Deng K, Tang H (2008) Rapid quantitative determination of hydrogen peroxide by oxidation decolorization of methyl orange using a Fenton reaction system. Anal Chim Acta 629:1

    Article  CAS  Google Scholar 

  4. Zhang L, Wong GTF (1999) Optimal conditions and sample storage for the determination of H2O2 in marine waters by the scopoletin-horseradish peroxidase fluorometric method. Talanta 48:1031

    Article  CAS  Google Scholar 

  5. Shi GY, Lu JX, Xu F, Zhou HG, Jin LT, Jin JY (2000) Liquid chromatography electrochemical detector for the determination of glucose in rat brain combined with in vivo microdialysis. Anal Chim Acta 413:131

    Article  CAS  Google Scholar 

  6. Pinkernell U, Effkemann S, Karst U (1997) Simultaneous HPLC determination of peroxyacetic acid and hydrogen peroxide. Anal Chem 69:3623

    Article  CAS  Google Scholar 

  7. Rocha FRP, Torralba ER, Reis BF, Rubio AM, de la Guardia M (2005) A portable low cost equipment for flow injection chemiluminescence measurements. Talanta 67:673

    Article  CAS  Google Scholar 

  8. Lan D, Li B, Zhang Z (2008) Chemiluminescence flow biosensor for glucose based on gold nanoparticle-enhanced activities of glucose oxidase and horseradish peroxidase. Biosens Bioelectron 24:940

    Article  Google Scholar 

  9. Tseng KS, Chen LC, Ho KC (2005) Amperometric detection of hydrogen peroxide at Prussian blue-modified FTO electrode. Sens Actuators B 108:738

    Article  Google Scholar 

  10. Lin YH, Cui XL, Li LY (2005) Low-potential amperometric determination of hydrogen peroxide with a carbon paste electrode modified with nanostructured cryptomelane-type manganese oxides. Electrochem Commun 7:166

    Article  CAS  Google Scholar 

  11. Xiao Y, Ju HX, Chen HY (2000) Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode. Anal Biochem 278:22

    Article  Google Scholar 

  12. Zhang JD, Oyama M (2004) A hydrogen peroxide sensor based on the peroxidase activity of hemoglobin immobilized on gold nanoparticles-modified ITO electrode. Electrochim Acta 50:85

    Article  CAS  Google Scholar 

  13. Feng JJ, Zhao G, Xu JJ, Chen HY (2005) Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan. Anal Biochem 34:2280

    Google Scholar 

  14. Yang Y, Mu S (1997) Bioelectrochemical responses of the polyaniline horseradish peroxidase electrodes. J Electroanal Chem 432:71

    Article  CAS  Google Scholar 

  15. Mattos IL, Gorton L, Ruzgas T (2003) Sensor and biosensor based on Prussian blue modified gold and platinum screen printed electrodes. Biosens Bioelectron 18:193

    Article  Google Scholar 

  16. O’Halloran MP, Pravda M, Guilbault GG (2001) Prussian blue bulk modified screenprinted electrodes for H2O2 detection and for biosensors. Talanta 55:605

    Article  Google Scholar 

  17. You TY, Niwa O, Tomita M, Hirono S (2003) Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide. Anal Chem 75:2080

    Article  CAS  Google Scholar 

  18. Chikae M, Idegami K, Kerman K, Nagatani N, Ishikawa M, Takamura Y, Tamiya E (2006) Direct fabrication of catalytic metal nanoparticles onto the surface of a screen-printed carbon electrode. Electrochem Commun 8:1375

    Article  CAS  Google Scholar 

  19. Wang F, Hu SS (2009) Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta 165:1

    Article  CAS  Google Scholar 

  20. Zhang J, Gao L (2007) Dispersion of multiwall carbon nanotubes by sodium dodecyl sulfate for preparation of modified electrodes toward detecting hydrogen peroxide. Mater Lett 61:3571

    Article  CAS  Google Scholar 

  21. Qiu JD, Peng HZ, Liang RP, Li J, Xia XH (2007) Synthesis, characterization, and immobilization of Prussian blue-modified Au nanoparticles: Application to electrocatalytic reduction of H2O2. Langmuir 23:2133

    Article  CAS  Google Scholar 

  22. Hrapovic S, Liu Y, Male KB, Luong JHT (2004) Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem 76:1083

    Article  CAS  Google Scholar 

  23. Zou YJ, Sun LX, Xu F (2007) Prussian blue electrodeposited on MWNTs–PANI hybrid composites for H2O2 detection. Talanta 72:437

    Article  CAS  Google Scholar 

  24. Ramanathan K, Bangar MA, Yun M, Chen W, Mulchandani A, Myung NV (2004) Individually addressable conducting polymer nanowires array. Nano Lett 4:1237

    Article  CAS  Google Scholar 

  25. Li J, Lin XQ (2007) Electrocatalytic reduction of nitrite at polypyrrole nanowire platinum nanocluster modified glassy carbon electrode. Microchem J 87:41

    Article  CAS  Google Scholar 

  26. Tian Y, Wang JX, Wang Z, Wang SC (2005) Solid-phase extraction and amperometric determination of nitrite with polypyrrole nanowire modified electrodes. Sens Actuators B 104:23

    Article  Google Scholar 

  27. Li J, Lin XQ (2007) Glocose biosensor based on immobilization of glucose oxidase in poly (oaminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode. Biosens Bioelectron 22:2898

    Article  CAS  Google Scholar 

  28. Zhang TT, Ruan R, Chai YQ, Li WJ, Ling SJ (2008) A novel nonenzymatic hydrogen peroxide sensor based on a polypyrrole nanowire-copper nanocomposite modified gold electrode. Sensor 8:5141

    Article  CAS  Google Scholar 

  29. Oldenburg SJ, Hale GD, Jackson JB, Halas NJ (1999) Light scattering from dipole and quadrupole nanoshell antennas. Appl Phys Lett 75:1063

    Article  CAS  Google Scholar 

  30. Kim SW, Kim M, Lee WY, Hyeon T (2002) Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions. J Am Chem Soc 124:7642

    Article  CAS  Google Scholar 

  31. Liang P, Zhang HM, Hu JS, Guo YG, Wan LJ, Bai CL (2004) Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts. Angew Chem 116:1566

    Article  Google Scholar 

  32. Kim SW, Kim M, Lee WY, Hyeon T (2002) Fabricationof hollow palladium spheres and their successful application as therecyclable heterogeneous catalyst for suzuki coupling reactions. J Am Chem Soc 124:7642

    Article  CAS  Google Scholar 

  33. Zhao J, Chen WX, Zheng YF, Li XJ (2006) Novel carbon supported hollow Pt nanospheres for methanol electrooxidation. Power Sources 162:168

    Article  CAS  Google Scholar 

  34. Shen QM, Jiang LP, Zhang H, Min QH, Hou WH, Zhu JJ (2008) Three-dimensional dendritic Pt nanostructures: sonoelectrochemical synthesis and electrochemical applications. J Phys Chem C 112:16385

    Article  CAS  Google Scholar 

  35. Bahshi L, Frasconi M, Tel-Vered R, Yehezkeli O, Willner I (2008) Following the biocatalytic activities of glucose oxidase by electrochemically cross-Linked enzyme-Pt nanoparticles composite electrodes. Anal Chem 80:8253

    Article  CAS  Google Scholar 

  36. Miao XM, Yuan R, Chai YQ, Shi YT, Yuan YY (2008) Drect electrocatalytic reduction of hydrogen peroxide based on Nafion and copper oxide nanoparticles modified Pt electrode. J Electroanal Chem 612:57

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NNSF of China (20675064), the Ministry of Education of China (Project 708073), the Natural Science Foundation of Chongqing City (CSTC-2009BA1003) and High Technology Project Foundation of Southwest University (XSGX02), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruo Yuan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 396 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Yuan, R., Chai, Y. et al. Direct electrocatalytic reduction of hydrogen peroxide at a glassy carbon electrode modified with polypyrrole nanowires and platinum hollow nanospheres. Microchim Acta 171, 125–131 (2010). https://doi.org/10.1007/s00604-010-0383-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0383-4

Keywords

Navigation