Skip to main content
Log in

Proteomic characterization of spontaneously regrowing spinal cord following injury in the teleost fish Apteronotus leptorhynchus, a regeneration-competent vertebrate

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

In adult mammals, spontaneous repair after spinal cord injury (SCI) is severely limited. By contrast, teleost fish successfully regenerate injured axons and produce new neurons from adult neural stem cells after SCI. The molecular mechanisms underlying this high regenerative capacity are largely unknown. The present study addresses this gap by examining the temporal dynamics of proteome changes in response to SCI in the brown ghost knifefish (Apteronotus leptorhynchus). Two-dimensional difference gel electrophoresis (2D DIGE) was combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and tandem mass spectrometry (MS/MS) to collect data during early (1 day), mid (10 days), and late (30 days) phases of regeneration following caudal amputation SCI. Forty-two unique proteins with significant differences in abundance between injured and intact control samples were identified. Correlation analysis uncovered six clusters of spots with similar expression patterns over time and strong conditional dependences, typically within functional families or between isoforms. Significantly regulated proteins were associated with axon development and regeneration; proliferation and morphogenesis; neuronal differentiation and re-establishment of neural connections; promotion of neuroprotection, redox homeostasis, and membrane repair; and metabolism or energy supply. Notably, at all three time points examined, significant regulation of proteins involved in inflammatory responses was absent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Raw outputs from the Mascot search conducted as part of the protein identification analysis, including predicted masses, predicted sequences, and post-translational modifications for all matched peptides for the top ten databases matches for each protein spot selected for identification, are provided as Supplementary Information. Other data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Afjehi-Sadat L, Brejnikow M, Kang SU, Vishwanath V, Walder N, Herkner K, Redl H, Lubec G (2010) Differential protein levels and post-translational modifications in spinal cord injury of the rat. J Proteome Res 9:1591–1597

    Article  CAS  Google Scholar 

  • Aksenova M, Butterfield DA, Zhang S-X, Underwood M, Geddes JW (2002) Increased protein oxidation and decreased creatine kinase BB expression and activity after spinal cord contusion injury. J Neurotrauma 19:491–502

    Article  Google Scholar 

  • Arganda-Carreras I, Sorzano COS, Marabini R, Carazo JM, Ortiz-de-Solorzano C, Kybic J (2006) Consistent and elastic registration of histological sections using vector-spline regularization. In: Reichel RR, Sonka M (eds) CVAMIA 2006, LNCS 4241. Springer-Verlag, Berlin, pp 85–95

    Google Scholar 

  • Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ (1996) SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86:263–274

    Article  CAS  Google Scholar 

  • Bassell GJ, Zhang H, Byrd AL, Femino AM, Singer RH, Taneja KL, Lifshitz LM, Herman IM, Kosik KS (1998) Sorting of b-actin mRNA and protein to neurites and growth cones in culture. J Neurosci 18:251–265

    Article  CAS  Google Scholar 

  • Beinert H, Kennedy MC (1993) Aconitase, a two-faced protein: enzyme and iron regulatory factor. FASEB J 7:1442–1449

    Article  CAS  Google Scholar 

  • Bennett MVL (1971) Electric organs. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 5. Sensory Systems and Electric Organs. Academic Press, New York, pp 347–491

    Google Scholar 

  • Benton RL, Ross CD, Miller KE (2000) Glutamine synthetase activities in spinal white and gray matter 7 days following spinal cord injury in rats. Neurosci Lett 291:1–4

    Article  CAS  Google Scholar 

  • Bermejo-Nogales A, Nederlof M, Benedito-Palos L, Ballester-Lozano GF, Folkedal O, Olsen RE, Sitjà-Bobadilla A, Pérez-Sánchez J (2014) Metabolic and transcriptional responses of gilthead sea bream (Sparus aurata L.) to environmental stress: new insights in fish mitochondrial phenotyping. Gen Comp Endocrinol 205:305–315

    Article  CAS  Google Scholar 

  • Bott CJ, Winckler B (2020) Intermediate filaments in developing neurons: beyond structure. Cytoskeleton 77:110–128

    Article  Google Scholar 

  • Bouter A, Gounou C, Bérat R, Tan S, Gallois B, Granier T, d’Estaintot BL, Pöschl E, Brachvogel B, Brisson AR (2011) Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair. Nat Commun 2:270

    Article  Google Scholar 

  • Brace EJ, Wu C, Valakh V, DiAntonio A (2014) SkpA restrains synaptic terminal growth during development and promotes axonal degeneration following injury. J Neurosci 34:8398–8410

    Article  CAS  Google Scholar 

  • Brackley KI, Grantham J (2009) Activities of the chaperonin containing TCP-1 (CCT): implications for cell cycle progression and cytoskeletal organisation. Cell Stress Chaperones 14:23–31

    Article  CAS  Google Scholar 

  • Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678–689

    Article  CAS  Google Scholar 

  • Brown IR (2007) Heat shock proteins and protection of the nervous system. Ann N Y Acad Sci 1113:147–158

    Article  CAS  Google Scholar 

  • Brown WJ, Yoshida N, Canty T, Verity MA (1972) Experimental concussion: ultrastructural and biochemical correlates. Am J Pathol 67:41–68

    CAS  Google Scholar 

  • Buensuceso CS, Woodside D, Huff JL, Plopper GE, O’Toole TE (2001) The WD protein Rack1 mediates protein kinase C and integrin-dependent cell migration. J Cell Sci 114:1691–1698

    Article  CAS  Google Scholar 

  • Bulters D, Gaastra B, Zolnourian A, Alexander S, Ren D, Blackburn SL, Borsody M, Doré S, Galea J, Iihara K, Nyquist P, Galea I (2018) Haemoglobin scavenging in intracranial bleeding: biology and clinical implications. Nat Rev Neurol 14:416–432

    Article  CAS  Google Scholar 

  • Cescon M, Gattazzo F, Chen P, Bonaldo P (2015) Collagen VI at a glance. J Cell Sci 128:3525–3531

    CAS  Google Scholar 

  • Charrier E, Reibel S, Rogemond V, Aguera M, Thomasset N, Honnorat J (2003) Collapsin response mediator proteins (CRMPs): involvement in nervous system development and adult neurodegenerative disorders. Mol Neurobiol 28:51–64

    Article  CAS  Google Scholar 

  • Cheever TR, Ervasti JM (2013) Actin isoforms in neuronal development and function. Int Rev Cell Mol Biol 301:157–213

    Article  CAS  Google Scholar 

  • Chen A, McEwen ML, Sun S, Ravikumar R, Springer JE (2010) Proteomic and phosphoproteomic analyses of the soluble fraction following acute spinal cord contusion in rats. J Neurotrauma 27:263–274

    Article  CAS  Google Scholar 

  • Chen A, Sun S, Ravikumar R, Visavadiya NP, Springer JE (2013) Differential proteomic analysis of acute contusive spinal cord injury in rats using iTRAQ reagent labeling and LC-MS/MS. Neurochem Res 38:2247–2255

    Article  CAS  Google Scholar 

  • Cheng C-H, Huang S-C, Chiang T-Y, Wong Y, Huang Y-C (2013) Higher plasma pyridoxal phosphate is associated with increased antioxidant enzyme activities in critically ill surgical patients. BioMed Res Int 2013:572081

    Article  Google Scholar 

  • Cheng JS, Dubal DB, Kim DH, Legleiter J, Cheng IH, Yu G-Q, Tesseur I, Wyss-Coray T, Bonaldo P, Mucke L (2009) Collagen VI protects neurons against Aβ toxicity. Nat Neurosci 12:119–121

    Article  CAS  Google Scholar 

  • Chumbalkar VC, Subhashini C, Dhople VM, Sundaram CS, Jagannadham MV, Kumar KN, Srinivas PNBS, Mythili R, Rao MK, Kulkarni MJ, Hegde S, Hegde AS, Samual C, Santosh V, Singh L, Sirdeshmukh R (2005) Differential protein expression in human gliomas and molecular insights. Proteomics 5:1167–1177

    Article  CAS  Google Scholar 

  • Cizkova D, Le Marrec-Croq F, Franck J, Slovinska L, Grulova I, Devaux S, Lefebvre C, Fournier I, Salzet M (2014) Alterations of protein composition along the rostro-caudal axis after spinal cord injury: proteomic, in vitro and in vivo analyses. Front Cell Neurosci 8:105

    Article  Google Scholar 

  • Conrad M, Lemb K, Schubert T, Markl J (1998) Biochemical identification and tissue-specific expression patterns of keratins in the zebrafish Danio rerio. Cell Tissue Res 293:195–205

    Article  CAS  Google Scholar 

  • Curcio M, Bradke F (2018) Axon regeneration in the central nervous system: facing the challenges from the inside. Annu Rev Cell Dev Biol 34:495–521

    Article  CAS  Google Scholar 

  • Czogalla A, Sikorski AF (2005) Spectrin and calpain: a ‘target’ and a ‘sniper’ in the pathology of neuronal cells. Cell Mol Life Sci 62:1913–1924

    Article  CAS  Google Scholar 

  • de Oliveira-Castro G (1955) Differentiated nervous fibers that constitute the electric organ of Sternarchus albifrons. Linn an Acad Bras Cienc 27:557–564

    Google Scholar 

  • de Santana CD, Vari RP (2010) Electric fishes of the genus Sternarchorhynchus (Teleostei, Ostariophysi, Gymnotiformes); phylogenetic and revisionary studies. Zool J Linn Soc-Lond 159:223–371

    Article  Google Scholar 

  • de Souza PC, Bonilla-Rodriguez GO (2007) Fish hemoglobins. Braz J Med Biol Res 40:769–778

    Article  Google Scholar 

  • DeLucia TA, Alexander TD, Fargo KN, Jones KJ (2007) Effects of single versus combinatorial treatment strategies on beta II-tubulin gene expression in axotomized hamster rubrospinal motoneurons. Restor Neurol Neurosci 25:573–584

    CAS  Google Scholar 

  • Dervan AG, Roberts BL (2003) Reaction of spinal cord central canal cells to cord transection and their contribution to cord regeneration. J Comp Neurol 458:293–306

    Article  Google Scholar 

  • Deuschle K, Funck D, Hellmann H, Däschner K, Binder S, Frommer WB (2001) A nuclear gene encoding mitochondrial Δ1-pyrroline-5-carboxylate dehydrogenase and its potential role in protection from proline toxicity. Plant J 27:345–356

    Article  CAS  Google Scholar 

  • Devaux S, Cizkova D, Quanico J, Franck J, Nataf S, Pays L, Hauberg-Lotte L, Maass P, Kobarg JH, Kobeissy F, Mériaux C, Wisztorski M, Slovinska L, Blasko J, Cigankova V, Fournier I, Salzet M (2016) Proteomic analysis of the spatio-temporal based molecular kinetics of acute spinal cord injury identifies a time- and segment-specific window for effective tissue repair. Mol Cell Proteomics 15:2641–2670

    Article  CAS  Google Scholar 

  • di Salvo ML, Contestabile R, Safo MK (2011) Vitamin B6 salvage enzymes: mechanism, structure and regulation. Biochim Biophys Acta, Proteins Proteomics 1814:1597–1608

    Article  Google Scholar 

  • di Salvo ML, Safo MK, Contestabile R (2012) Biomedical aspects of pyridoxal 5’-phosphate availability. Front Biosci (elite Ed) 4:897–913

    Google Scholar 

  • Dias TB, Yang Y-J, Ogai K, Becker T, Becker CG (2012) Notch signaling controls generation of motor neurons in the lesioned spinal cord of adult zebrafish. J Neurosci 32:3245–3252

    Article  CAS  Google Scholar 

  • Diaz Quiroz JF, Echeverri K (2013) Spinal cord regeneration: where fish, frogs and salamanders lead the way, can we follow? Biochem J 451:353–364

    Article  CAS  Google Scholar 

  • Didangelos A, Puglia M, Iberl M, Sanchez-Bellot C, Roschitzki B, Bradbury EJ (2016) High-throughput proteomics reveal alarmins as amplifiers of tissue pathology and inflammation after spinal cord injury. Sci Rep 6:21607

    Article  CAS  Google Scholar 

  • Ding H, Yu J, Chang W, Liu F, He Z (2020) Searching for differentially expressed proteins in spinal cord injury based on the proteomics analysis. Life Sci 242:117235

    Article  CAS  Google Scholar 

  • Druger RK, Glasgow E, Fuchs C, Levine EM, Matthews JP, Park CY, Schechter N (1994) Complex expression of keratins in goldfish optic nerve. J Comp Neurol 340:269–280

    Article  CAS  Google Scholar 

  • Dubey S, Bhembre N, Bodas S, Veer S, Ghose A, Callan-Jones A, Pullarkat P (2020) The axonal actin-spectrin lattice acts as a tension buffering shock absorber. Elife 9:e51772

    Article  CAS  Google Scholar 

  • Endo T, Yamamoto H, Esaki M (2003) Functional cooperation and separation of translocators in protein import into mitochondria, the double-membrane bounded organelles. J Cell Sci 116:3259–3267

    Article  CAS  Google Scholar 

  • Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25:1439–1451

    Article  CAS  Google Scholar 

  • Fernandes KJL, Fan D-P, Tsui BJ, Cassar SL, Tetzlaff W (1999) Influence of the axotomy to cell body distance in rat rubrospinal and spinal motoneurons: differential regulation of GAP-43, tubulins, and neurofilament-M. J Comp Neurol 414:495–510

    Article  CAS  Google Scholar 

  • Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD, Pasquale-Styles M, Dietrich WD, Weaver LC (2006) The cellular inflammatory response in human spinal cords after injury. Brain 129:3249–3269

    Article  Google Scholar 

  • Fliegner KH, Kaplan MP, Wood TL, Pintar JE, Liem RK (1994) Expression of the gene for the neuronal intermediate filament protein alpha-internexin coincides with the onset of neuronal differentiation in the developing rat nervous system. J Comp Neurol 342:161–173

    Article  CAS  Google Scholar 

  • Fornaro M, Lee JM, Raimondo S, Nicolino S, Geuna S, Giacobini-Robecchi M (2008) Neuronal intermediate filament expression in rat dorsal root ganglia sensory neurons: an in vivo and in vitro study. Neuroscience 153:1153–1163

    Article  CAS  Google Scholar 

  • Fournier AE, McKerracher L (1997) Expression of specific tubulin isotypes increases during regeneration of injured CNS neurons, but not after the application of brain-derived neurotrophic factor (BDNF). J Neurosci 17:4623–4632

    Article  CAS  Google Scholar 

  • Gama Salgado JA, Zupanc GKH (2011) Echo response to chirping in the weakly electric brown ghost knifefish (Apteronotus leptorhynchus): role of frequency and amplitude modulations. Can J Zool 89:498–508

    Article  Google Scholar 

  • Gan S, Qiu S, Feng Y, Zhang Y, Qian Q, Wan Z, Tang J (2017) Identification of genes associated with the effect of inflammation on the neurotransmission of vascular smooth muscle cell. Exp Ther Med 13:1303–1312

    Article  CAS  Google Scholar 

  • Gerke V, Creutz CE, Moss SE (2005) Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 6:449–461

    Article  CAS  Google Scholar 

  • Giordano S, Hall C, Quitschke W, Glasgow E, Schechter N (1990) Keratin 8 of simple epithelia is expressed in glia of the goldfish nervous system. Differentiation 44:163–172

    Article  CAS  Google Scholar 

  • Goldstein ME, Weiss SR, Lazzarini RA, Shneidman PS, Lees JF, Schlaepfer WW (1988) mRNA levels of all three neurofilament proteins decline following nerve transection. Mol Brain Res 427:287–291

    Article  CAS  Google Scholar 

  • Gollihue JL, Patel SP, Eldahan KC, Cox DH, Donahue RR, Taylor BK, Sullivan PG, Rabchevsky AG (2018) Effects of mitochondrial transplantation on bioenergetics, cellular incorporation, and functional recovery after spinal cord injury. J Neurotrauma 35:1800–1818

    Article  Google Scholar 

  • Gong S, Cao G, Li F, Chen Z, Pan X, Ma H, Zhang Y, Yu B, Kou J (2021) Endothelial conditional knockdown of NMMHC IIA (non-muscle myosin heavy chain IIA) attenuates blood-brain barrier damage during ischemia-reperfusion injury. Stroke 52:1053–1064

    Article  CAS  Google Scholar 

  • Gorovits R, Avidan N, Avisar N, Shaked I, Vardimon L (1997) Glutamine synthetase protects against neuronal degeneration in injured retinal tissue. Proc Natl Acad Sci U S A 94:7024–7029

    Article  CAS  Google Scholar 

  • Greenberg SG, Lasek RJ (1988) Neurofilament protein synthesis in DRG neurons decreases more after peripheral axotomy than after central axotomy. J Neurosci 8:1739–1746

    Article  CAS  Google Scholar 

  • Gregorio I, Braghetta P, Bonaldo P, Cescon M (2018) Collagen VI in healthy and diseased nervous system. Dis Model Mech 11:dmm032946

    Article  Google Scholar 

  • Griffin JW, Pan B, Polley MA, Hoffman PN, Farah MH (2010) Measuring nerve regeneration in the mouse. Exp Neurol 223:60–71

    Article  CAS  Google Scholar 

  • Gruer MJ, Artymiuk PJ, Guest JR (1997) The aconitase family: three structural variations on a common theme. Trends Biochem Sci 22:3–6

    Article  CAS  Google Scholar 

  • Henriques BJ, Jentoft Olsen RK, Gomes CM, Bross P (2021) Electron transfer flavoprotein and its role in mitochondrial energy metabolism in health and disease. Gene 776:145407

    Article  CAS  Google Scholar 

  • Herman PE, Papatheodorou A, Bryant SA, Waterbury CKM, Herdy JR, Arcese AA, Buxbaum JD, Smith JJ, Morgan JR, Bloom O (2018) Highly conserved molecular pathways, including Wnt signaling, promote functional recovery from spinal cord injury in lampreys. Sci Rep 8:742

    Article  Google Scholar 

  • Hieber V, Dai X, Foreman M, Goldman D (1998) Induction of alpha1-tubulin gene expression during development and regeneration of the fish central nervous system. J Neurobiol 37:429–440

    Article  CAS  Google Scholar 

  • Hirsch GH, Menard MR, Anton HA (1991) Anemia after traumatic spinal cord injury. Arch Phys Med Rehabil 72:195–201

    CAS  Google Scholar 

  • Hoffman PN, Griffin JW, Price DL (1984) Control of axonal caliber by neurofilament transport. J Cell Biol 99:705–714

    Article  CAS  Google Scholar 

  • Holmin S, Söderlund J, Biberfeld P, Mathiesen T (1998) Intracerebral inflammation after human brain contusion. Neurosurgery 42:291–298 (discussion 298-299)

    Article  CAS  Google Scholar 

  • Hori K, Sen A, Artavanis-Tsakonas S (2013) Notch signaling at a glance. J Cell Sci 126:2135–2140

    CAS  Google Scholar 

  • Huang C-T, DeVivo MJ, Stover SL (1990) Anemia in acute phase of spinal cord injury. Arch Phys Med Rehabil 71:3–7

    CAS  Google Scholar 

  • Huang S, Liu X, Zhang J, Bao G, Xu G, Sun Y, Shen Q, Lian M, Huang Y, Cui Z (2015) Expression of peroxiredoxin 1 after traumatic spinal cord injury in rats. Cell Mol Neurobiol 35:1217–1226

    Article  CAS  Google Scholar 

  • Huang Y, Wang X, Wang X, Xu M, Liu M, Liu D (2013) Nonmuscle myosin II-B (myh10) expression analysis during zebrafish embryonic development. Gene Expr Patterns 13:265–270

    Article  CAS  Google Scholar 

  • Hui SP, Dutta A, Ghosh S (2010) Cellular response after crush injury in adult zebrafish spinal cord. Dev Dyn 239:2962–2979

    Article  Google Scholar 

  • Hui SP, Sengupta D, Lee SGP, Sen T, Kundu S, Mathavan S, Ghosh S (2014) Genome wide expression profiling during spinal cord regeneration identifies comprehensive cellular responses in zebrafish. PLoS ONE 9:e84212

    Article  Google Scholar 

  • Ibarra A, Ríos-Hoyo A, Suarez-Meade P, Malagon E, Colin-Rodríguez A (2014) Influence of the level, severity and phase of spinal cord injury on hematological and biochemical parameters. J Trauma Treat 3:1000211

    Article  Google Scholar 

  • Ilieş I, Zupanc MM, Zupanc GKH (2012) Proteome analysis reveals protein candidates involved in early stages of brain regeneration of teleost fish. Neuroscience 219:302–313

    Article  Google Scholar 

  • Ilieş I, Sîrbulescu RF, Zupanc GKH (2014) Indeterminate body growth and lack of gonadal decline in the brown ghost knifefish (Apteronotus leptorhynchus), an organism exhibiting negligible brain senescence. Can J Zool 92:947–953

    Article  Google Scholar 

  • Jacobs AJ, Swain GP, Snedeker JA, Pijak DS, Gladstone LJ, Selzer ME (1997) Recovery of neurofilament expression selectively in regenerating reticulospinal neurons. J Neurosci 17:5206–5220

    Article  CAS  Google Scholar 

  • Kaech S, Fischer M, Doll T, Matus A (1997) Isoform specificity in the relationship of actin to dendritic spines. J Neurosci 17:9565–9572

    Article  CAS  Google Scholar 

  • Kang SK, So HH, Moon YS, Kim CH (2006) Proteomic analysis of injured spinal cord tissue proteins using 2-DE and MALDI-TOF MS. Proteomics 6:2797–2812

    Article  CAS  Google Scholar 

  • Kaplan MP, Chin SS, Fliegner KH, Liem RKH (1990) α-internexin, a novel neuronal intermediate filament protein, precedes the low molecular weight neurofilament protein (NF-L) in the developing rat brain. J Neurosci 10:2735–2748

    Article  CAS  Google Scholar 

  • Karakozova M, Kozak M, Wong CCL, Bailey AO, Yates JR 3rd, Mogilner A, Zebroski H, Kashina A (2006) Arginylation of β-actin regulates actin cytoskeleton and cell motility. Science 313:192–196

    Article  CAS  Google Scholar 

  • Keene DR, Engvall E, Glanville RW (1988) Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network. J Cell Biol 107:1995–2006

    Article  CAS  Google Scholar 

  • Khan R, Zahid S, Wan Y-JY, Forster J, Karim A-BA, Nawabi AM, Azhar A, Rahman MA, Ahmed N (2013) Protein expression profiling of nuclear membrane protein reveals potential biomarker of human hepatocellular carcinoma. Clin Proteomics 10:6

    Article  Google Scholar 

  • Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444

    Article  CAS  Google Scholar 

  • Kim JY, Barua S, Huang MY, Park J, Yenari MA, Lee JE (2020) Heat Shock Protein 70 (HSP70) induction: chaperonotherapy for neuroprotection after brain injury. Cells 9:2020

    Article  CAS  Google Scholar 

  • Kim N, Kim JY, Yenari MA (2012) Anti-inflammatory properties and pharmacological induction of Hsp70 after brain injury. Inflammopharmacology 20:177–185

    Article  CAS  Google Scholar 

  • Koh TJ, DiPietro LA (2011) Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med 13:e23

    Article  Google Scholar 

  • Kronenberg G, Gertz K, Baldinger T, Kirste I, Eckart S, Yildirim F, Ji S, Heuser I, Schröck H, Hörtnagl H, Sohr R, Djoufack PC, Jüttner R, Glass R, Przesdzing I, Kumar J, Freyer D, Hellweg R, Kettenmann H, Fink KB, Endres M (2010) Impact of actin filament stabilization on adult hippocampal and olfactory bulb neurogenesis. J Neurosci 30:3419–3431

    Article  CAS  Google Scholar 

  • Kyritsis N, Kizil C, Zocher S, Kroehne V, Kaslin J, Freudenreich D, Iltzsche A, Brand M (2012) Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science 338:1353–1356

    Article  CAS  Google Scholar 

  • Lange S, Gögel S, Leung K-Y, Vernay B, Nicholas AP, Causey CP, Thompson PR, Greene NDE, Ferretti P (2011) Protein deiminases: new players in the developmentally regulated loss of neural regenerative ability. Dev Biol 355:205–214

    Article  CAS  Google Scholar 

  • Lange S, Rocha-Ferreira E, Thei L, Mawjee P, Bennett K, Thompson PR, Subramanian V, Nicholas AP, Peebles D, Hristova M, Raivich G (2014) Peptidylarginine deiminases: novel drug targets for prevention of neuronal damage following hypoxic ischemic insult (HI) in neonates. J Neurochem 130:555–562

    Article  CAS  Google Scholar 

  • Laud PR, Campbell JW (1994) Genetic basis for tissue isozymes of glutamine synthetase in elasmobranchs. J Mol Evol 39:93–100

    Article  Google Scholar 

  • Lee NP, Chen L, Lin MC, Tsang FH, Yeung C, Poon RT, Peng J, Leng X, Beretta L, Sun S, Day PJ, Luk JM (2009) Proteomic expression signature distinguishes cancerous and nonmalignant tissues in hepatocellular carcinoma. J Proteome Res 8:1293–1303

    Article  CAS  Google Scholar 

  • Lee YB, Du S, Rhim H, Lee EB, Markelonis GJ, Oh TH (2000) Rapid increase in immunoreactivity to GFAP in astrocytes in vitro induced by acidic pH is mediated by calcium influx and calpain I. Brain Res 864:220–229

    Article  CAS  Google Scholar 

  • Lee-Liu D, Sun L, Dovichi NJ, Larraín J (2018) Quantitative proteomics after spinal cord injury (SCI) in a regenerative and a nonregenerative stage in the frog Xenopus laevis. Mol Cell Proteomics 17:592–606

    Article  CAS  Google Scholar 

  • Lewis JE, Gilmour KM, Moorhead MJ, Perry SF, Markham MR (2014) Action potential energetics at the organismal level reveal a trade-off in efficiency at high firing rates. J Neurosci 34:197–201

    Article  CAS  Google Scholar 

  • Li J, Wang Q, Cai H, He Z, Wang H, Chen J, Zheng Z, Yin J, Liao Z, Xu H, Xiao J, Gong F (2018) FGF1 improves functional recovery through inducing PRDX1 to regulate autophagy and anti-ROS after spinal cord injury. J Cell Mol Med 22:2727–2738

    Article  CAS  Google Scholar 

  • Li M-H, Kwok F, Chang W-R, Lau C-K, Zhang J-P, Lo SCL, Jiang T, Liang D-C (2002) Crystal structure of brain pyridoxal kinase, a novel member of the ribokinase superfamily. J Biol Chem 277:46385–46390

    Article  CAS  Google Scholar 

  • Li S, Esterberg R, Lachance V, Ren D, Radde-Gallwitz K, Chi F, Parent J-L, Fritz A, Chen P (2011) Rack1 is required for Vangl2 membrane localization and planar cell polarity signaling while attenuating canonical Wnt activity. Proc Natl Acad Sci USA 108:2264–2269

    Article  CAS  Google Scholar 

  • Li X, Li J, Qian J, Zhang D, Shen H, Li X, Li H, Chen G (2019) Loss of ribosomal RACK1 (receptor for activated protein kinase C 1) induced by phosphorylation at T50 alleviates cerebral ischemia-reperfusion injury in rats. Stroke 50:162–171

    Article  Google Scholar 

  • Liang LP, Ho YS, Patel M (2000) Mitochondrial superoxide production in kainate-induced hippocampal damage. Neuroscience 101:563–570

    Article  CAS  Google Scholar 

  • Lippoldt A, Padilla CA, Gerst H, Andbjer B, Richter E, Holmgren A, Fuxe K (1995) Localization of thioredoxin in the rat brain and functional implications. J Neurosci 15:6747–6756

    Article  CAS  Google Scholar 

  • Liu C, Wu W, Zhang B, Xiang J, Zou J (2013) Temporospatial expression and cellular localization of glutamine synthetase following traumatic spinal cord injury in adult rats. Mol Med Rep 7:1431–1436

    Article  CAS  Google Scholar 

  • Liu S, Kang Y, Zhang C, Lou Y, Li X, Lu L, Qi Z, Jian H, Zhou H (2020) Isobaric tagging for relative and absolute protein quantification (iTRAQ)-based quantitative proteomics analysis of differentially expressed proteins 1 week after spinal cord injury in a rat model. Med Sci Monit 26:e924266

    Article  CAS  Google Scholar 

  • Liu T, Daniels CK, Cao S (2012) Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacol Ther 136:354–374

    Article  CAS  Google Scholar 

  • Liu Z, Zhang L, Ren C, Xu M, Li S, Ban R, Wu Y, Chen L, Sun S, Elstner M, Shimura M, Ogawa-Tominaga M, Murayama K, Shi T, Prokisch H, Fang F (2021) Whole genome and exome sequencing identify NDUFV2 mutations as a new cause of progressive cavitating leukoencephalopathy. J Med Genet 59:351–357

    Article  Google Scholar 

  • Loones M-T, Chang Y, Morange M (2000) The distribution of heat shock proteins in the nervous system of the unstressed mouse embryo suggests a role in neuronal and non-neuronal differentiation. Cell Stress Chaperones 5:291–305

    Article  CAS  Google Scholar 

  • Loschke F, Seltmann K, Bouameur J-E, Magin TM (2015) Regulation of keratin network organization. Curr Opin Cell Biol 32:56–64

    Article  CAS  Google Scholar 

  • Lu Z, Wang S, Ji C, Li F, Cong M, Shan X, Wu H (2020) iTRAQ-based proteomic analysis on the mitochondrial responses in gill tissues of juvenile olive flounder Paralichthys olivaceus exposed to cadmium. Environ Pollut 257:113591

    Article  CAS  Google Scholar 

  • Luider TM, Kros JM, Sillevis Smitt PAE, van den Bent MJ, Vecht CJ (1999) Glial fibrillary acidic protein and its fragments discriminate astrocytoma from oligodendroglioma. Electrophoresis 20:1087–1091

    Article  CAS  Google Scholar 

  • Lund LM, McQuarrie IG (1996) Axonal regrowth upregulates β-actin and Jun D mRNA expression. J Neurobiol 31:476–486

    Article  CAS  Google Scholar 

  • Lund LM, Machado VM, McQuarrie IG (2002) Increased β-actin and tubulin polymerization in regrowing axons: relationship to the conditioning lesion effect. Exp Neurol 178:306–312

    Article  CAS  Google Scholar 

  • Lundberg JG, Cox-Fernandes C, Albert JS, Garcia M (1996) Magosternarchus, a new genus with two new species of electric fishes (Gymnotiformes: Apteronotidae) from the Amazon River Basin, South America. Copeia 1996:657–670

    Article  Google Scholar 

  • Magnusson JP, Göritz C, Tatarishvili J, Dias DO, Smith EMK, Lindvall O, Kokaia Z, Frisén J (2014) A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. Science 346:237–241

    Article  CAS  Google Scholar 

  • Mago-Leccia F, Lundberg JG, Baskin JN (1985) Systematics of the South American freshwater fish genus Adontosternarchus (Gymnotiformes, Apteronotidae). Contrib Sci (los Angel, Calif) 358:1–19

    Google Scholar 

  • Magwene PM, Kim J (2004) Estimating genomic coexpression networks using first-order conditional independence. Genome Biol 5:R100

    Article  Google Scholar 

  • Mathew TC, Miller FD (1990) Increased expression of T alpha 1 alpha-tubulin mRNA during collateral and NGF-induced sprouting of sympathetic neurons. Dev Biol 141:84–92

    Article  CAS  Google Scholar 

  • Mathieu C, Dupret J-M, Rodrigues-Lima F (2019) The structure and the regulation of glycogen phosphorylases in brain. Adv Neurobiol 23:125–145

    Article  Google Scholar 

  • Matthews GD, Gould RM, Vardimon L (2005) A single glutamine synthetase gene produces tissue-specific subcellular localization by alternative splicing. FEBS Lett 579:5527–5534

    Article  CAS  Google Scholar 

  • McClellan AD (1994) Functional regeneration and restoration of locomotor activity following spinal cord transection in the lamprey. Prog Brain Res 103:203–217

    Article  CAS  Google Scholar 

  • McNeil AK, Rescher U, Gerke V, McNeil PL (2006) Requirement for annexin A1 in plasma membrane repair. J Biol Chem 281:35202–35207

    Article  CAS  Google Scholar 

  • Ménoret A, Kumar S, Vella AT (2012) Cytochrome b5 and cytokeratin 17 are biomarkers in bronchoalveolar fluid signifying onset of acute lung injury. PLoS ONE 7:e40184

    Article  Google Scholar 

  • Merrick SE, Pleasure SJ, Lurie DI, Pijak DS, Selzer ME, Lee VM (1995) Glial cells of the lamprey nervous system contain keratin-like proteins. J Comp Neurol 355:199–210

    Article  CAS  Google Scholar 

  • Mi H, Ebert D, Muruganujan A, Mills C, Albou L-P, Mushayamaha T, Thomas PD (2021) PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res 49:D394–D403

    Article  CAS  Google Scholar 

  • Micheva KD, Vallée A, Beaulieu C, Herman IM, Leclerc N (1998) b-Actin is confined to structures having high capacity of remodelling in developing and adult rat cerebellum. Eur J Neurosci 10:3785–3798

    Article  CAS  Google Scholar 

  • Middeldorp J, Hol EM (2011) GFAP in health and disease. Prog Neurobiol 93:421–443

    Article  CAS  Google Scholar 

  • Miller FD, Tetzlaff W, Bisby MA, Fawcett JW, Milner RJ (1989) Rapid induction of the major embryonic a-tubulin mRNA, Ta1, during nerve regeneration in adult rats. J Neurosci 9:1452–1463

    Article  CAS  Google Scholar 

  • Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonn-hammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A (2021) Pfam: the protein families database in 2021. Nucleic Acids Res 49:D412–D419

    Article  CAS  Google Scholar 

  • Mizokami A, Kanematsu T, Ishibashi H, Yamaguchi T, Tanida I, Takenaka K, Nakayama KI, Fukami K, Takenawa T, Kominami E, Moss SJ, Yamamoto T, Nabekura J, Hirata M (2007) Phospholipase C-related inactive protein is involved in trafficking of γ2 subunit-containing GABAA receptors to the cell surface. J Neurosci 27:1692–1701

    Article  CAS  Google Scholar 

  • Moghieb A, Bramlett HM, Das JH, Yang Z, Selig T, Yost RA, Wang MS, Dietrich WD, Wang KKW (2016) Differential neuroproteomic and systems biology analysis of spinal cord injury. Mol Cell Proteomics 15:2379–2395

    Article  CAS  Google Scholar 

  • Mokalled MH, Patra C, Dickson AL, Endo T, Stainier DYR, Poss KD (2016) Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish. Science 354:630–634

    Article  CAS  Google Scholar 

  • Mondal S, Thompson PR (2021) Chemical biology of protein citrullination by the protein A arginine deiminases. Curr Opin Chem Biol 63:19–27

    Article  CAS  Google Scholar 

  • Mortazavi MM, Verma K, Harmon OA, Griessenauer CJ, Adeeb N, Theodore N, Tubbs RS (2015) The microanatomy of spinal cord injury: a review. Clin Anat 28:27–36

    Article  Google Scholar 

  • Mühlenbein N, Hofmann S, Rothbauer U, Bauer MF (2004) Organization and function of the small Tim complexes acting along the import pathway of metabolite carriers into mammalian mitochondria. J Biol Chem 279:13540–13546

    Article  Google Scholar 

  • Müller MS, Pedersen SE, Walls AB, Waagepetersen HS, Bak LK (2015) Isoform-selective regulation of glycogen phosphorylase by energy deprivation and phosphorylation in astrocytes. Glia 63:154–162

    Article  Google Scholar 

  • Murakami N, Matsamura S, Kumon A (1984) Purification and identification of myosin heavy chain kinase from bovine brain. J Biochem 95:651–660

    Article  CAS  Google Scholar 

  • Musayev FN, di Salvo ML, Ko T-P, Gandhi AK, Goswami A, Schirch V, Safo MK (2007) Crystal structure of human pyridoxal kinase: structural basis of M+ and M2+ activation. Protein Sci 16:2184–2194

    Article  CAS  Google Scholar 

  • Narayan RK, Heydorn WE, Creed GJ, Jacobowitz DM (1986) Protein patterns in various malignant human brain tumors by two-dimensional gel electrophoresis. Cancer Res 46:4685–4694

    CAS  Google Scholar 

  • National Spinal Cord Injury Statistical Center (2021) Spinal cord injury: facts and figures at a glance. University of Alabama at Birmingham, Birmingham, AL

    Google Scholar 

  • Nguyen KM, Busino L (2020) The biology of F-box proteins: the SCF family of E3 ubiquitin ligases. Adv Exp Med Biol 1217:111–122

    Article  CAS  Google Scholar 

  • Ni H, Rui Q, Xu Y, Zhu J, Gao F, Dang B, Li D, Gao R, Chen G (2018) RACK1 upregulation induces neuroprotection by activating the IRE1-XBP1 signaling pathway following traumatic brain injury in rats. Exp Neurol 304:102–113

    Article  CAS  Google Scholar 

  • Nilsson GE (1996) Brain and body oxygen requirements of Gnathonemus petersii, a fish with an exceptionally large brain. J Exp Biol 199:603–607

    Article  CAS  Google Scholar 

  • Nishimura A, Nasuno R, Takagi H (2012) The proline metabolism intermediate Δ1-pyrroline-5-carboxylate directly inhibits the mitochondrial respiration in budding yeast. FEBS Lett 586:2411–2416

    Article  CAS  Google Scholar 

  • Niu F, Zhang B, Feng J, Mao X, Xu X-J, Dong J-Q, Liu B-Y (2021) Protein profiling identified mitochondrial dysfunction and synaptic abnormalities after dexamethasone intervention in rats with traumatic brain injury. Neural Regen Res 16:2438–2445

    Article  CAS  Google Scholar 

  • Olguín-Albuerne M, Morán J (2018) Redox signaling mechanisms in nervous system development. Antioxid Redox Signal 28:1603–1625

    Article  Google Scholar 

  • Ono S (2007) Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. Int Rev Cytol 258:1–82

    Article  CAS  Google Scholar 

  • Paden CM, Zhou X, Watt JA, Burton R, Pickett J, Oblinger MM (1995) Coordinated upregulation of a1- and bII-tubulin mRNAs during collateral axonal sprouting of central peptidergic neurons. J Neurosci Res 42:402–412

    Article  CAS  Google Scholar 

  • Pan X, Hobbs RP, Coulombe PA (2013) The expanding significance of keratin intermediate filaments in normal and diseased epithelia. Curr Opin Cell Biol 25:47–56

    Article  CAS  Google Scholar 

  • Park E, Liu E, Shek M, Park A, Baker AJ (2007) Heavy neurofilament accumulation and α-spectrin degradation accompany cerebellar white matter functional deficits following forebrain fluid percussion injury. Exp Neurol 204:49–57

    Article  CAS  Google Scholar 

  • Park HR, Yang EJ (2021) Oxidative stress as a therapeutic target in amyotrophic lateral sclerosis: opportunities and limitations. Diagnostics 11:1546

    Article  CAS  Google Scholar 

  • Patel SP, Sullivan PG, Pandya JD, Rabchevsky AG (2009) Differential effects of the mitochondrial uncoupling agent, 2,4-dinitrophenol, or the nitroxide antioxidant, Tempol, on synaptic or nonsynaptic mitochondria after spinal cord injury. J Neurosci Res 87:130–140

    Article  CAS  Google Scholar 

  • Pemberton TA, Srivastava D, Sanyal N, Henzl MT, Becker DF, Tanner JJ (2014) Structural studies of yeast Δ1-pyrroline-5-carboxylate dehydrogenase (ALDH4A1): active site flexibility and oligomeric state. Biochemistry 53:1350–1359

    Article  CAS  Google Scholar 

  • Perkins DN, Pappin DJC, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  CAS  Google Scholar 

  • Perri ER, Thomas CJ, Parakh S, Spencer DM, Atkin JD (2015) The unfolded protein response and the role of protein disulfide isomerase in neurodegeneration. Front Cell Dev Biol 3:80

    Google Scholar 

  • Perrot R, Berges R, Bocquet A, Eyer J (2008) Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol 38:27–65

    Article  CAS  Google Scholar 

  • Pirson M, Knoops B (2015) Expression of peroxiredoxins and thioredoxins in the mouse spinal cord during embryonic development. J Comp Neurol 523:2599–2617

    Article  CAS  Google Scholar 

  • Potez S, Luginbühl M, Monastyrskaya K, Hostettler A, Draeger A, Babiychuk EB (2011) Tailored protection against plasmalemmal injury by annexins with different Ca2+ sensitivities. J Biol Chem 286:17982–17991

    Article  CAS  Google Scholar 

  • Ramírez-Jarquín UN, Lazo-Gómez R, Tovar-y-Romo LB, Tapia R (2014) Spinal inhibitory circuits and their role in motor neuron degeneration. Neuropharmacology 82:101–107

    Article  Google Scholar 

  • Ren X, Zou L, Zhang X, Branco V, Wang J, Carvalho C, Holmgren A, Lu J (2017) Redox signaling mediated by thioredoxin and glutathione systems in the central nervous system. Antioxid Redox Signal 27:989–1010

    Article  CAS  Google Scholar 

  • Riley LA, Bernstein JJ (1996) Changes in dynamin and actin mRNA expression in the dorsal column-medial lemniscal system following dorsal column lesion. J Neurosci Res 44:47–51

    Article  CAS  Google Scholar 

  • Robicsek SA, Bhattacharya A, Rabai F, Shukla K, Doré S (2020) Blood-related toxicity after traumatic brain injury: potential targets for neuroprotection. Mol Neurobiol 57:159–178

    Article  CAS  Google Scholar 

  • Rodemer W, Hu J, Selzer ME, Shifman MI (2020) Heterogeneity in the regenerative abilities of central nervous system axons within species: why do some neurons regenerate better than others? Neural Regen Res 15:996

    Article  Google Scholar 

  • Roelofs RF, Fischer DF, Houtman SH, Sluijs JA, van Haren W, van Leeuwen FW, Hol EM (2005) Adult human subventricular, subgranular, and subpial zones contain astrocytes with a specialized intermediate filament cytoskeleton. Glia 52:289–300

    Article  Google Scholar 

  • Ron D, Chen C-H, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D (1994) Cloning of an intracellular receptor for protein kinase C: a homolog of the β subunit of G proteins. Proc Natl Acad Sci USA 91:839–843

    Article  CAS  Google Scholar 

  • Roostalu U, Strähle U (2012) In vivo imaging of molecular interactions at damaged sarcolemma. Dev Cell 22:515–529

    Article  CAS  Google Scholar 

  • Rungger-Brändle E, Achtstätter T, Franke WW (1989) An epithelium-type cytoskeleton in a glial cell: astrocytes of amphibian optic nerves contain cytokeratin filaments and are connected by desmosomes. J Cell Biol 109:705–716

    Article  Google Scholar 

  • Salazar VL, Stoddard PK (2008) Sex differences in energetic costs explain sexual dimorphism in the circadian rhythm modulation of the electrocommunication signal of the gymnotiform fish Brachyhypopomus pinnicaudatus. J Exp Biol 211:1012–1020

    Article  Google Scholar 

  • Salazar VL, Krahe R, Lewis JE (2013) The energetics of electric organ discharge generation in gymnotiform weakly electric fish. J Exp Biol 216:2459–2468

    Article  CAS  Google Scholar 

  • Sarkis GA, Mangaonkar MD, Moghieb A, Lelling B, Guertin M, Yadikar H, Yang Z, Kobeissy F, Wang KK (2017) The application of proteomics to traumatic brain and spinal cord injuries. Curr Neurol Neurosci Rep 17:23

    Article  Google Scholar 

  • Sayers EW, Beck J, Bolton EE, Bourexis D, Brister JR, Canese K, Comeau DC, Funk K, Kim S, Klimke W, Marchler-Bauer A, Landrum M, Lathrop S, Lu Z, Madden TL, O’Leary N, Phan L, Rangwala SH, Schneider VA, Skripchenko Y, Wang J, Ye J, Trawick BW, Pruitt KD, Sherry ST (2021) Database resources of the national center for biotechnology information. Nucleic Acids Res 49:D10–D17

    Article  CAS  Google Scholar 

  • Sayre NL, Sifuentes M, Holstein D, Cheng S-y, Zhu X, Lechleiter JD (2017) Stimulation of astrocyte fatty acid oxidation by thyroid hormone is protective against ischemic stroke-induced damage. J Cereb Blood Flow Metab 37:514–527

    Article  Google Scholar 

  • Schaffeld M, Knappe M, Hunzinger C, Markl J (2003) cDNA sequences of the authentic keratins 8 and 18 in zebrafish. Differentiation 71:73–82

    Article  CAS  Google Scholar 

  • Schenkman JB, Jansson I (2003) The many roles of cytochrome b5. Pharmacol Ther 97:139–152

    Article  CAS  Google Scholar 

  • Schoenenberger C-A, Steinmetz MO, Stoffler D, Mandinova A, Aebi U (1999) Structure, assembly, and dynamics of actin filaments in situ and in vitro. Microsc Res Tech 47:38–50

    Article  CAS  Google Scholar 

  • Sharma P, Saraswathy VM, Xiang L, Fürthauer M (2019) Notch-mediated inhibition of neurogenesis is required for zebrafish spinal cord morphogenesis. Sci Rep 9:9958

    Article  Google Scholar 

  • Shea TB, Beermann ML (1999) Neuronal intermediate filament protein α-internexin facilitates axonal neurite elongation in neuroblastoma cells. Cell Motil Cytoskeleton 43:322–333

    Article  CAS  Google Scholar 

  • Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, Rolls A, Mack M, Pluchino S, Martino G, Jung S, Schwartz M (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6:e1000113

    Article  Google Scholar 

  • Shimizu T, Imai H, Seki K, Tomizawa S, Nakamura M, Honda F, Kawahara N, Saito N (2005) Cyclophilin C-associated protein and cyclophilin C mRNA are upregulated in penumbral neurons and microglia after focal cerebral ischemia. J Cereb Blood Flow Metab 25:325–337

    Article  CAS  Google Scholar 

  • Shutova MS, Svitkina TM (2018) Mammalian nonmuscle myosin II comes in three flavors. Biochem Biophys Res Commun 506:394–402

    Article  CAS  Google Scholar 

  • Silver J, Schwab ME, Popovich PG (2015) Central nervous system regenerative failure: role of oligodendrocytes, astrocytes, and microglia. Cold Spring Harb Perspect Biol 7:a020602

    Article  Google Scholar 

  • Sîrbulescu RF, Zupanc GKH (2009) Dynamics of caspase-3-mediated apoptosis during spinal cord regeneration in the teleost fish, Apteronotus leptorhynchus. Brain Res 1304:14–25

    Article  Google Scholar 

  • Sîrbulescu RF, Zupanc GKH (2010a) Effect of temperature on spinal cord regeneration in the weakly electric fish, Apteronotus leptorhynchus. J Comp Physiol A 196:359–368

    Article  Google Scholar 

  • Sîrbulescu RF, Zupanc GKH (2010b) Inhibition of caspase-3-mediated apoptosis improves spinal cord repair in a regeneration-competent vertebrate system. Neuroscience 171:599–612

    Article  Google Scholar 

  • Sîrbulescu RF, Zupanc GKH (2011) Spinal cord repair in regeneration-competent vertebrates: adult teleost fish as a model system. Brain Res Rev 67:73–93

    Article  Google Scholar 

  • Sîrbulescu RF, Zupanc GKH (2013) Neuronal regeneration. In: Evans DH, Claiborne JB, Currie S (eds) The physiology of fishes. CRC Press, Boca Raton, pp 405–441

    Google Scholar 

  • Sîrbulescu RF, Ilieş I, Zupanc GKH (2009) Structural and functional regeneration after spinal cord injury in the weakly electric teleost fish, Apteronotus leptorhynchus. J Comp Physiol A 195:699–714

    Article  Google Scholar 

  • Sîrbulescu RF, Ilieş I, Meyer A, Zupanc GKH (2017) Additive neurogenesis supported by multiple stem cell populations mediates adult spinal cord development: a spatiotemporal statistical mapping analysis in a teleost model of indeterminate growth. Dev Neurobiol 77:1269–1307

    Article  Google Scholar 

  • Skinnider MA, Rogalski J, Tigchelaar S, Manouchehri N, Prudova A, Jackson AM, Nielsen K, Jeong J, Chaudhary S, Shortt K, Gallagher-Kurtzke Y, So K, Fong A, Gupta R, Okon EB, Rizzuto MA, Dong K, Streijger F, Belanger L, Ritchie L, Tsang A, Christie S, Mac-Thiong JM, Bailey C, Ailon T, Charest-Morin R, Dea N, Wilson JR, Dhall S, Paquette S, Street J, Fisher CG, Dvorak MF, Shannon C, Borchers C, Balshaw R, Foster LJ, Kwon BK (2021) Proteomic portraits reveal evolutionarily conserved and divergent responses to spinal cord injury. Mol Cell Proteomics 20:100096

    Article  CAS  Google Scholar 

  • Smith DD Jr, Ritter NM, Campbell JW (1987) Glutamine synthetase isozymes in elasmobranch brain and liver tissues. J Biol Chem 262:198–202

    Article  CAS  Google Scholar 

  • Soares HD, Hicks RR, Smith D, McIntosh TK (1995) Inflammatory leukocytic recruitment and diffuse neuronal degeneration are separate pathological processes resulting from traumatic brain injury. J Neurosci 15:8223–8233

    Article  CAS  Google Scholar 

  • Sorzano COS, Arganda-Carreras I, Thévenaz P, Beloso A, Morales G, Valdés I, Pérez-García C, Castillo C, Garrido E, Unser M (2008) Elastic image registration of 2-D gels for differential and repeatability studies. Proteomics 8:62–65

    Article  CAS  Google Scholar 

  • Srivastava D, Singh RK, Moxley MA, Henzl MT, Becker DF, Tanner JJ (2012) The three-dimensional structural basis of type II hyperprolinemia. J Mol Biol 420:176–189

    Article  CAS  Google Scholar 

  • Sroga JM, Jones TB, Kigerl KA, McGaughy VM, Popovich PG (2003) Rats and mice exhibit distinct inflammatory reactions after spinal cord injury. J Comp Neurol 462:223–240

    Article  Google Scholar 

  • Stelmashook EV, Isaev NK, Lozier ER, Goryacheva ES, Khaspekov LG (2011) Role of glutamine in neuronal survival and death during brain ischemia and hypoglycemia. Int J Neurosci 121:415–422

    Article  CAS  Google Scholar 

  • Stocum DL (2012) Regenerative biology and medicine. Academic Press, London

    Google Scholar 

  • Storer PD, Dolbeare D, Houle JD (2003) Treatment of chronically injured spinal cord with neurotrophic factors stimulates βII-tubulin and GAP-43 expression in rubrospinal tract neurons. J Neurosci Res 74:502–511

    Article  CAS  Google Scholar 

  • Streijger F, Skinnider MA, Rogalski JC, Balshaw R, Shannon CP, Prudova A, Belanger L, Ritchie L, Tsang A, Christie S, Parent S, Mac-Thiong J-M, Bailey C, Urquhart J, Ailon T, Paquette S, Boyd M, Street J, Fisher CG, Dvorak MF, Borchers CH, Foster LJ, Kwon BK (2017) A targeted proteomics analysis of cerebrospinal fluid after acute human spinal cord injury. J Neurotrauma 34:2054–2068

    Article  Google Scholar 

  • Sullivan PG, Krishnamurthy S, Patel SP, Pandya JD, Rabchevsky AG (2007) Temporal characterization of mitochondrial bioenergetics after spinal cord injury. J Neurotrauma 24:991–999

    Article  Google Scholar 

  • Takahashi M, Kawamoto S, Adelstein RS (1992) Evidence for inserted sequences in the head region of nonmuscle myosin specific to the nervous system: cloning of the cDNA encoding the myosin heavy chain-B isoform of vertebrate nonmuscle myosin. J Biol Chem 267:17864–17871

    Article  CAS  Google Scholar 

  • Takahashi M, Hirano T, Uchida K, Yamagishi A (1999) Developmentally regulated expression of a nonmuscle myosin heavy chain IIB inserted isoform in rat brain. Biochem Biophys Res Commun 259:29–33

    Article  CAS  Google Scholar 

  • Takeda A, Nakano M, Goris RC, Funakoshi K (2008) Adult neurogenesis with 5-HT expression in lesioned goldfish spinal cord. Neuroscience 151:1132–1141

    Article  CAS  Google Scholar 

  • Takezawa Y, Kohsaka S, Nakajima K (2014) Transient down-regulation and restoration of glycogen synthase levels in axotomized rat facial motoneurons. Brain Res 1586:34–45

    Article  CAS  Google Scholar 

  • Tanaka S, Uehara T, Nomura Y (2000) Up-regulation of protein-disulfide isomerase in response to hypoxia/brain ischemia and its protective effect against apoptotic cell death. J Biol Chem 275:10388–10393

    Article  CAS  Google Scholar 

  • Tedeschi A, Popovich PG (2019) The application of omics technologies to study axon regeneration and CNS repair. F1000Res 8(F1000 Faculty Rev):311

  • Tetzlaff W, Alexander SW, Miller FD, Bisby MA (1991) Response of facial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43. J Neurosci 11:2528–2544

    Article  CAS  Google Scholar 

  • The Gene Ontology Consortium (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  Google Scholar 

  • The Gene Ontology Consortium (2021) The gene ontology resource: enriching a gold mine. Nucleic Acids Res 49:D325–D334

    Article  Google Scholar 

  • The UniProt Consortium (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49:D480–D489

    Article  Google Scholar 

  • Theriault E, Tetzlaff W, Tator CH (1992) Elevated gene expression in the red nucleus after spinal cord compression injury. NeuroReport 3:559–562

    Article  CAS  Google Scholar 

  • Toogood HS, Leys D, Scrutton NS (2007) Dynamics driving function−new insights from electron transferring flavoproteins and partner complexes. FEBS J 274:5481–5504

    Article  CAS  Google Scholar 

  • Toyoda H, Saito M, Sato H, Tanaka T, Ogawa T, Yatani H, Kawano T, Kanematsu T, Hirata M, Kang Y (2015) Enhanced desensitization followed by unusual resensitization in GABAA receptors in phospholipase C-related catalytically inactive protein-1/2 double-knockout mice. Pflügers Arch - Eur J Physiol 467:267–284

    Article  CAS  Google Scholar 

  • Traniello IM, Sîrbulescu RF, Ilieş I, Zupanc GKH (2014) Age-related changes in stem cell dynamics, neurogenesis, apoptosis, and gliosis in the adult brain: a novel teleost fish model of negligible senescence. Dev Neurobiol 74:514–530

    Article  Google Scholar 

  • Uematsu K, Shirasaki M, Storm-Mathisen J (1993) GABA- and glycine-immunoreactive neurons in the spinal cord of the carp, Cyprinus carpio. J Comp Neurol 332:59–68

    Article  CAS  Google Scholar 

  • Valek L, Kanngiesser M, Häussler A, Agarwal N, Lillig CH, Tegeder I (2015) Redoxins in peripheral neurons after sciatic nerve injury. Free Radic Biol Med 89:581–592

    Article  CAS  Google Scholar 

  • Valle D, Goodman SI, Harris SC, Phang JM (1979) Genetic evidence for a common enzyme catalyzing the second step in the degradation of proline and hydroxyproline. J Clin Invest 64:1365–1370

    Article  CAS  Google Scholar 

  • van Bodegraven EJ, van Asperen JV, Robe PAJ, Hol EM (2019) Importance of GFAP isoform-specific analyses in astrocytoma. Glia 67:1417–1433

    Article  Google Scholar 

  • van Strien ME, Sluijs JA, Reynolds BA, Steindler DA, Aronica E, Hol EM (2014) Isolation of neural progenitor cells from the human adult subventricular zone based on expression of the cell surface marker CD271. Stem Cells Transl Med 3:470–480

    Article  Google Scholar 

  • van den Berge SA, Middeldorp J, Zhang CE, Curtis MA, Leonard BW, Mastroeni D, Voorn P, van de Berg WDJ, Huitinga I, Hol EM (2010) Longterm quiescent cells in the aged human subventricular neurogenic system specifically express GFAP-δ. Aging Cell 9:313–326

    Article  Google Scholar 

  • Vergères G, Waskell L (1995) Cytochrome b5, its functions, structure and membrane topology. Biochimie 77:604–620

    Article  Google Scholar 

  • Victor P, Sarada D, Ramkumar KM (2021) Crosstalk between endoplasmic reticulum stress and oxidative stress: focus on protein disulfide isomerase and endoplasmic reticulum oxidase 1. Eur J Pharmacol 892:173749

    Article  CAS  Google Scholar 

  • Vitalo AG, Sîrbulescu RF, Ilieş I, Zupanc GKH (2016) Absence of gliosis in a teleost model of spinal cord regeneration. J Comp Physiol A 202:445–456

    Article  CAS  Google Scholar 

  • Vitalo AG, Ilieş I, Zupanc GKH (2019) Calbindin-D28k expression in spinal electromotoneurons of the weakly electric fish Apteronotus leptorhynchus during adult development and regeneration. J Comp Physiol A 205:595–608

    Article  Google Scholar 

  • Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40:1271–1296

    Article  CAS  Google Scholar 

  • Wanet A, Arnould T, Najimi M, Renard P (2015) Connecting mitochondria, metabolism, and stem cell fate. Stem Cells Dev 24:1957–1971

    Article  CAS  Google Scholar 

  • Wang C-Y, Chen J-K, Wu Y-T, Tsai M-J, Shyue S-K, Yang C-S, Tzeng S-F (2011) Reduction in antioxidant enzyme expression and sustained inflammation enhance tissue damage in the sub-acute phase of spinal cord contusive injury. J Biomed Sci 18:13

    Article  Google Scholar 

  • Wang DY, Kamuda K, Montoya G, Mesa P (2020a) The TRiC/CCT chaperonin and its role in uncontrolled proliferation. Adv Exp Med Biol 1243:21–40

    Article  CAS  Google Scholar 

  • Wang G-Y, Wang T-Z, Zhang Y-Y, Li F, Yu B-Y, Kou J-P (2020b) NMMHC IIA inhibition ameliorates cerebral ischemic/reperfusion-induced neuronal apoptosis through caspase-3/ROCK1/MLC pathway. Drug Des Devel Ther 14:13–25

    Article  Google Scholar 

  • Wang H, Rusielewicz T, Tewari A, Leitman EM, Einheber S, Melendez-Vasquez CV (2012) Myosin II is a negative regulator of oligodendrocyte morphological differentiation. J Neurosci Res 90:1547–1556

    Article  CAS  Google Scholar 

  • Wang P, Heitman J (2005) The cyclophilins. Genome Biol 6:226

    Article  Google Scholar 

  • Wang S, Zheng Y, Yu Y, Xia L, Chen G-q, Yang Y-z, Wang L-s (2008) Phosphorylation of β-actin by protein kinase C-delta in camptothecin analog-induced leukemic cell apoptosis. Acta Pharmacol Sin 29:135–142

    Article  Google Scholar 

  • Wang W, Li Q, Huang G, Lin B-y, Lin D, Ma Y, Zhang Z, Chen T, Zhou J (2021) Tandem mass tag-based proteomic analysis of potential biomarkers for hepatocellular carcinoma differentiation. OncoTargets Ther 14:1007–1020

    Article  Google Scholar 

  • Waxman SG, Pappas GD, Bennett MVL (1972) Morphological correlates of functional differentiation of nodes of Ranvier along single fibers in the neurogenic electric organ of the knife fish Sternarchus. J Cell Biol 53:210–224

    Article  CAS  Google Scholar 

  • Wilkinson B, Gilbert HF (2004) Protein disulfide isomerase. Biochim Biophys Acta 1699:35–44

    Article  CAS  Google Scholar 

  • Wille A, Bühlmann P (2006) Low-order conditional independence graphs for inferring genetic networks. Stat Appl Genet Mol Biol 5(1):1

  • Wirth C, Brandt U, Hunte C, Zickermann V (2016) Structure and function of mitochondrial complex I. Biochim Biophys Acta 1857:902–914

    Article  CAS  Google Scholar 

  • Woolf CJ, Chong MS, Ainsworth A (1984) Axotomy increases glycogen phosphorylase activity in motoneurones. Neuroscience 12:1261–1269

    Article  CAS  Google Scholar 

  • Wu X, Zhang H, Chen D, Song Y, Qian R, Chen C, Mao X, Chen X, Zhang W, Shao B, Shen J, Yan Y, Wu X, Liu Y (2015) Up-regulation of CCT8 related to neuronal apoptosis after traumatic brain injury in adult rats. Neurochem Res 40:1882–1891

    Article  CAS  Google Scholar 

  • Wyse ATS, Netto CA (2011) Behavioral and neurochemical effects of proline. Metab Brain Dis 26:159–172

    Article  CAS  Google Scholar 

  • Xiong L-L, Qin Y-X, Xiao Q-X, Jin Y, Al-Hawwas M, Ma Z, Wang Y-C, Belegu V, Zhou X-F, Xue L-L, Du R-L, Liu J, Bai X, Wang T-H (2020) MicroRNA339 targeting PDXK improves motor dysfunction and promotes neurite growth in the remote cortex subjected to spinal cord transection. Front Cell Dev Biol 8:577

    Article  Google Scholar 

  • Yamagishi Y, Tessier-Lavigne M (2016) An atypical SCF-like ubiquitin ligase complex promotes Wallerian degeneration through regulation of axonal Nmnat2. Cell Rep 17:774–782

    Article  CAS  Google Scholar 

  • Yamaguchi R, Hosaka M, Torii S, Hou N, Saito N, Yoshimoto Y, Imai H, Takeuchi T (2011) Cyclophilin C-associated protein regulation of phagocytic functions via NFAT activation in macrophages. Brain Res 1397:55–65

    Article  CAS  Google Scholar 

  • Yamamoto S, Nagao M, Sugimori M, Kosako H, Nakatomi H, Yamamoto N, Takebayashi H, Nabeshima Y, Kitamura T, Weinmaster G, Nakamura K, Nakafuku M (2001) Transcription factor expression and Notch-dependent regulation of neural progenitors in the adult rat spinal cord. J Neurosci 21:9814–9823

    Article  CAS  Google Scholar 

  • Yamashita N, Goshima Y (2012) Collapsin response mediator proteins regulate neuronal development and plasticity by switching their phosphorylation status. Mol Neurobiol 45:234–246

    Article  CAS  Google Scholar 

  • Yan Y, Chang L, Tian H, Wang L, Zhang Y, Yang T, Li G, Hu W, Shah K, Chen G, Guo Y (2018) 1-Pyrroline-5-carboxylate released by prostate cancer cell [sic] inhibit [sic] T cell proliferation and function by targeting SHP1/cytochrome c oxidoreductase/ROS axis. J Immunother Cancer 6:148

    Article  Google Scholar 

  • Yang Z, Wang KK (2015) Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci 38:364–374

    Article  CAS  Google Scholar 

  • Yin HL, Stossel TP (1979) Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature 281:583–586

    Article  CAS  Google Scholar 

  • Yoo DY, Cho SB, Jung HY, Kim W, Choi G-M, Won M-H, Kim DW, Hwang IK, Choi SY, Moon SM (2017) Tat-protein disulfide-isomerase A3: a possible candidate for preventing ischemic damage in the spinal cord. Cell Death Dis 8:e3075

    Article  Google Scholar 

  • Yu P, Santiago LY, Katagiri Y, Geller HM (2012) Myosin II activity regulates neurite outgrowth and guidance in response to chondroitin sulfate proteoglycans. J Neurochem 120:1117–1128

    CAS  Google Scholar 

  • Zhang G, Jin L, Selzer ME (2011) Assembly properties of lamprey neurofilament subunits and their expression after spinal cord transection. J Comp Neurol 519:3657–3671

    Article  CAS  Google Scholar 

  • Zhang J-N, Koch JC (2017) Collapsin response mediator protein-2 plays a major protective role in acute axonal degeneration. Neural Regen Res 12:692–695

    Article  CAS  Google Scholar 

  • Zhang Z, Zoltewicz JS, Mondello S, Newsom KJ, Yang Z, Yang B, Kobeissy F, Guingab J, Glushakova O, Robicsek S, Heaton S, Buki A, Hannay J, Gold MS, Rubenstein R, Lu X-CM, Dave JR, Schmid K, Tortella F, Robertson CS, Wang KK (2014) Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products. PLoS ONE 9:e92698

    Article  Google Scholar 

  • Zhou H, Kang Y, Shi Z, Lu L, Li X, Chu T, Liu J, Liu L, Lou Y, Zhang C, Ning G, Feng S, Kong X (2018) Identification of differentially expressed proteins in rats with spinal cord injury during the transitional phase using an iTRAQ-based quantitative analysis. Gene 677:66–76

    Article  CAS  Google Scholar 

  • Zhou Y, Xu L, Song X, Ding L, Chen J, Wang C, Gan Y, Zhu X, Yu Y, Liang Q (2014) The potential role of heat shock proteins in acute spinal cord injury. Eur Spine J 23:1480–1490

    Article  Google Scholar 

  • Zhu K, Zhao J, Lubman DM, Miller FR, Barder TJ (2005) Protein pIshifts due to posttranslational modifications in the separation and characterization of proteins. Anal Chem 77:2745–2755

    Article  CAS  Google Scholar 

  • Zupanc GKH, Sîrbulescu RF (2013) Teleost fish as a model system to study successful regeneration of the central nervous system. Curr Top Microbiol Immunol 367:193–233

    CAS  Google Scholar 

  • Zupanc GKH, Kompass KS, Horschke I, Ott R, Schwarz H (1998) Apoptosis after injuries in the cerebellum of adult teleost fish. Exp Neurol 152:221–230

    Article  CAS  Google Scholar 

  • Zupanc GKH, Clint SC, Takimoto N, Hughes AT, Wellbrock UM, Meissner D (2003) Spatio-temporal distribution of microglia/macrophages during regeneration in the cerebellum of adult teleost fish, Apteronotus leptorhynchus: a quantitative analysis. Brain Behav Evol 62:31–42

    Article  Google Scholar 

  • Zupanc MM, Wellbrock UM, Zupanc GKH (2006) Proteome analysis identifies novel protein candidates involved in regeneration of the cerebellum of teleost fish. Proteomics 6:677–696

    Article  CAS  Google Scholar 

  • Zupanc MM, Zupanc GKH (2006) Upregulation of calbindin-D28k expression during regeneration in the adult fish cerebellum. Brain Res 1095:26–34

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Ernst A.-C. Lange Stiftung, the Tönjes-Vagt-Stiftung, the National Science Foundation (contract grant number 1538505), and the Internationale Studien- und Ausbildungspartnerschaften (ISAP) program of the German Academic Exchange Service (DAAD).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: GKHZ, RFS, II; conduction of experiments: RFS, LA; data analysis and interpretation: RFS, II, LA, GKHZ; writing of manuscript: GKHZ, RFS, II; preparation of figures: RFS, II; review and editing of manuscript: RFS, II, LA, GKHZ; coordination of study: GKHZ.

Corresponding author

Correspondence to Günther K. H. Zupanc.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling editor: Charlotte Helfrich-Förster

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 1877 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sîrbulescu, R.F., Ilieş, I., Amelung, L. et al. Proteomic characterization of spontaneously regrowing spinal cord following injury in the teleost fish Apteronotus leptorhynchus, a regeneration-competent vertebrate. J Comp Physiol A 208, 671–706 (2022). https://doi.org/10.1007/s00359-022-01591-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-022-01591-w

Keywords

Navigation