Skip to main content
Log in

Behavioral and neurochemical effects of proline

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Proline is an amino acid with an essential role for primary metabolism and physiologic functions. Hyperprolinemia results from the deficiency of specific enzymes for proline catabolism, leading to tissue accumulation of this amino acid. Hyperprolinemic patients can present neurological symptoms and brain abnormalities, whose aetiopathogenesis is poorly understood. This review addresses some of the findings obtained, mainly from animal studies, indicating that high proline levels may be associated to neuropathophysiology of some disorders. In this context, it has been suggested that energy metabolism deficit, Na+,K+-ATPase, kinase creatine, oxidative stress, excitotoxicity, lipid content, as well as purinergic and cholinergic systems are involved in the effect of proline on brain damage and spatial memory deficit. The discussion focuses on the relatively low antioxidant defenses of the brain and the vulnerability of neural tissue to reactive species. This offers new perspectives for potential therapeutic strategies for this condition, which may include the early use of appropriate antioxidants as a novel adjuvant therapy, besides the usual treatment based on special diets poor in proline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29

    Article  PubMed  CAS  Google Scholar 

  • Abidin I, Yargicoglu P, Agar A, Gumuslu S, Aydin S, Ozturk O, Sahin E (2004) The effect of chronic restraint stress on spatial learning and memory: relation to oxidant stress. Int J Neurosci 114:683–699

    Article  PubMed  CAS  Google Scholar 

  • Adams E (1970) Metabolism of proline and of hydroxyproline. Int Rev Connect Tissue Res 5:1–91

    PubMed  CAS  Google Scholar 

  • Adams E, Frank L (1980) Metabolism of proline and the hydroxyprolines. Annu Rev Biochem 49:1005–1061

    Article  PubMed  CAS  Google Scholar 

  • Agteresch HJ, Dagnelie PC, van den Berg JW, Wilson JL (1999) Adenosine triphosphate: established and potential clinical applications. Drugs 58:211–232

    Article  PubMed  CAS  Google Scholar 

  • Aksenov M, Aksenova M, Butterfield DA, Markesbery WR (2000) Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. J Neurochem 74:2520–2527

    Article  PubMed  CAS  Google Scholar 

  • Allen CL, Bayraktutan U (2009) Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke 4:461–470

    Article  PubMed  CAS  Google Scholar 

  • Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14

    Article  PubMed  CAS  Google Scholar 

  • Anderson AA, Ushakov DS, Ferenczi MA, Mori R, Martin P, Saffell JL (2008) Morphoregulation by acetylcholinesterase in fibroblasts and astrocytes. J Cell Physiol 215:82–100

    Article  PubMed  CAS  Google Scholar 

  • Aperia A (2007) New roles for an old enzyme: Na+, K+-ATPase emerges as an interesting drug target. J Intern Med 261:44–52

    Article  PubMed  CAS  Google Scholar 

  • Arendt T, Bruckner MK, Lange M, Bigl V (1992) Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease resemble embryonic development—a study of molecular forms. Neurochem Int 21:381–396

    Article  PubMed  CAS  Google Scholar 

  • Attwell D (2000) Brain uptake of glutamate: food for thought. J Nutr 130:1023–1025

    Google Scholar 

  • Azzi A, Stocker A (2000) Vitamin E: non-antioxidant roles. Prog Lipid Res 39:231–255

    Article  PubMed  CAS  Google Scholar 

  • Baker KD, Skuse DH (2005) Adolescents and young adults with 22q11 deletion syndrome: psychopathology in an at-risk group. Br J Psychiatry 186:115–120

    Article  PubMed  Google Scholar 

  • Battastini A, Oliveira E, Moreira C, Bonan C, Sarkis J, Dias R (1995) Solubilization and characterization of an ATP diphosphohydrolase (EC 3.6.1.5.) from rat brain plasma membranes. Biochem Mol Biol Int 37:209–219

    PubMed  CAS  Google Scholar 

  • Bavaresco CS, Calcagnotto T, Tagliari B, Delwing D, Lamers ML, Wannmacher CM, Wajner M, Wyse AT (2003) Brain Na+, K+-ATPase inhibition induced by arginine administration is prevented by vitamins E and C. Neurochem Res 28:825–829

    Article  PubMed  CAS  Google Scholar 

  • Bavaresco CS, Streck EL, Netto CA, Wyse AT (2005) Chronic hyperprolinemia provokes a memory deficit in the Morris water maze task. Metab Brain Dis 20:73–80

    Article  PubMed  CAS  Google Scholar 

  • Beal MF (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38:357–366

    Article  PubMed  CAS  Google Scholar 

  • Beal MF (2000) Oxidative metabolism. Ann NY Acad Sci 924:164–169

    Article  PubMed  CAS  Google Scholar 

  • Beal MF (2007) Mitochondria and neurodegeneration. Novartis Found Symp. 287, 183–92; discussion 192–6.

  • Behl C (2005) Oxidative stress in Alzheimer’s disease: implications for prevention and therapy. Subcell Biochem 38:65–78

    Article  PubMed  CAS  Google Scholar 

  • Bickford PC, Gould T, Briederick L, Chadman K, Pollock A, Young D, Shukitt-Hale B, Joseph J (2000) Antioxidant-rich diets improve cerebellar physiology and motor learning in aged rats. Brain Res 866:211–217

    Article  PubMed  CAS  Google Scholar 

  • Bohmer AE, Streck EL, Stefanello F, Wyse AT, Sarkis JJ (2004) NTPDase and 5′-nucleotidase activities in synaptosomes of hippocampus and serum of rats subjected to homocysteine administration. Neurochem Res 29:1381–1386

    Article  PubMed  Google Scholar 

  • Bonan CD, Amaral OB, Rockenbach IC, Walz R, Battastini AM, Izquierdo I, Sarkis JJ (2000) Altered ATP hydrolysis induced by pentylenetetrazol kindling in rat brain synaptosomes. Neurochem Res 25:775–779

    Article  PubMed  CAS  Google Scholar 

  • Bours MJ, Swennen EL, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358–404

    Article  PubMed  CAS  Google Scholar 

  • Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543

    Article  PubMed  CAS  Google Scholar 

  • Burton GW, Wronska U, Stone L, Foster DO, Ingold KU (1990) Biokinetics of dietary RRR-alpha-tocopherol in the male guinea pig at three dietary levels of vitamin C and two levels of vitamin E. Evidence that vitamin C does not “spare” vitamin E in vivo. Lipids 25:199–210

    Article  PubMed  CAS  Google Scholar 

  • Cantuti-Castelvetri I, Shukitt-Hale B, Joseph JA (2000) Neurobehavioral aspects of antioxidants in aging. Int J Dev Neurosci 18:367–381

    Article  PubMed  CAS  Google Scholar 

  • Carr A, Frei B (1999) Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J 13:1007–1024

    PubMed  CAS  Google Scholar 

  • Chan AS, Cheung MC, Law SC, Chan JH (2004) Phase II study of alpha-tocopherol in improving the cognitive function of patients with temporal lobe radionecrosis. Cancer 100:398–404

    Article  PubMed  CAS  Google Scholar 

  • Chatton JY, Marquet P, Magistretti PJ (2000) A quantitative analysis of L-glutamate-regulated Na+ dynamics in mouse cortical astrocytes: implications for cellular bioenergetics. Eur J Neurosci 12:3843–3853

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23:137–149

    Article  PubMed  Google Scholar 

  • Chen X, Wang X, O’Neill AF, Walsh D, Kendler KS (2004) Variants in the catechol-o-methyltransferase (COMT) gene are associated with schizophrenia in Irish high-density families. Mol Psychiatry 9:962–967

    Article  PubMed  CAS  Google Scholar 

  • Cherkin A, Eckardt MJ, Gerbrandt LK (1976) Memory: proline induces retrograde amnesia in chicks. Science 193:242–244

    Article  PubMed  CAS  Google Scholar 

  • Cherkin A, Bennett EL, Davis JL (1981) Amnestic effect of L-proline does not depend upon inhibition of brain protein synthesis. Brain Res 223:455–458

    Article  PubMed  CAS  Google Scholar 

  • Cohen SM, Nadler JV (1997a) Sodium-dependent proline and glutamate uptake by hippocampal synaptosomes during postnatal development. Brain Res Dev Brain Res 100:230–233

    Article  PubMed  CAS  Google Scholar 

  • Cohen SM, Nadler JV (1997b) Proline-induced potentiation of glutamate transmission. Brain Res 761:271–282

    Article  PubMed  CAS  Google Scholar 

  • Cristalli G, Camaioni E, Vittori S, Volpini R, Borea PA, Conti A, Dionisotti S, Ongini E, Monopoli A (1995) 2-Aralkynyl and 2-heteroalkynyl derivatives of adenosine-5′-N-ethyluronamide as selective A2a adenosine receptor agonists. J Med Chem 38:1462–1472

    Article  PubMed  CAS  Google Scholar 

  • Cummings JL (2000) The role of cholinergic agents in the management of behavioral disturbances in Alzheimer’s disease. Int J Neuropsychopharmacol 3:21–29

    Article  PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  • David S, Shoemaker M, Haley BE (1998) Abnormal properties of creatine kinase in Alzheimer’s disease brain: correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioning. Brain Res Mol Brain Res 54:276–287

    Article  PubMed  CAS  Google Scholar 

  • Delwing D, Bavaresco CS, Wannmacher CM, Wajner M, Dutra-Filho CS, Wyse AT (2003) Proline induces oxidative stress in cerebral cortex of rats. Int J Dev Neurosci 21:105–110

    Article  PubMed  CAS  Google Scholar 

  • Delwing D, Chiarani F, Bavaresco CS, Wannmacher CM, Wajner M, Dutra-Filho CS, Wyse AT (2005a) Protective effect of antioxidants on brain oxidative damage caused by proline administration. Neurosci Res 52:69–74

    Article  PubMed  CAS  Google Scholar 

  • Delwing D, Chiarani F, Wannmacher CM, Wajner M, Wyse AT (2005b) Effect of hyperprolinemia on acetylcholinesterase and butyrylcholinesterase activities in rat. Amino Acids 28:305–308

    Article  PubMed  CAS  Google Scholar 

  • Delwing D, Bavaresco CS, Monteiro SC, Matte C, Netto CA, Wyse AT (2006a) Alpha-tocopherol and ascorbic acid prevent memory deficits provoked by chronic hyperprolinemia in rats. Behav Brain Res 168:185–189

    Article  PubMed  CAS  Google Scholar 

  • Delwing D, Sarkis JJ, Wyse AT (2006b) Proline induces alterations in nucleotide hydrolysis in rat blood serum. Mol Cell Biochem 292:139–144

    Article  PubMed  CAS  Google Scholar 

  • Delwing D, Chiarani F, Kurek AG, Wyse AT (2007a) Proline reduces brain cytochrome c oxidase: prevention by antioxidants. Int J Dev Neurosci 25:17–22

    Article  PubMed  CAS  Google Scholar 

  • Delwing D, Cornelio AR, Wajner M, Wannmacher CM, Wyse AT (2007b) Arginine administration reduces creatine kinase activity in rat cerebellum. Metab Brain Dis 22:13–23

    Article  PubMed  CAS  Google Scholar 

  • Delwing D, Goncalves MC, Sarkis JJ, Wyse AT (2007c) NTPDase and 5′-nucleotidase activities of synaptosomes from hippocampus of rats subjected to hyperargininemia. Neurochem Res 32:1209–1216

    Article  PubMed  CAS  Google Scholar 

  • Delwing D, Sanna RJ, Wofchuk S, Wyse AT (2007d) Proline promotes decrease in glutamate uptake in slices of cerebral cortex and hippocampus of rats. Life Sci 81:1645–1650

    Article  PubMed  CAS  Google Scholar 

  • Delwing D, Sarkis JJ, Wyse AT (2007e) Proline induces alterations on nucleotide hydrolysis in synaptosomes from cerebral cortex of rats. Brain Res 1149:210–215

    Article  PubMed  CAS  Google Scholar 

  • Di Rosa G, Pustorino G, Spano M, Campion D, Calabro M, Aguennouz M, Caccamo D, Legallic S, Sgro DL, Bonsignore M, Tortorella G (2008) Type I hyperprolinemia and proline dehydrogenase (PRODH) mutations in four Italian children with epilepsy and mental retardation. Psychiatr Genet 18:40–42

    Article  PubMed  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  CAS  Google Scholar 

  • Dumont M, Lin MT, Beal MF (2010) Mitochondria and antioxidant targeted therapeutic strategies for Alzheimer’s disease. J Alzheimers Dis 20(Suppl 2):S633–S643

    PubMed  Google Scholar 

  • Engelhart MJ, Geerlings MI, Ruitenberg A, van Swieten JC, Hofman A, Witteman JC, Breteler MM (2002) Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 287:3223–3229

    Article  PubMed  CAS  Google Scholar 

  • Eppenberger ME, Eppenberger HM, Kaplan NO (1967) Evolution of creatine kinase. Nature 214:239–241

    Article  PubMed  CAS  Google Scholar 

  • Erecinska M, Silver IA (1994) Ions and energy in mammalian brain. Prog Neurobiol 43:37–71

    Article  PubMed  CAS  Google Scholar 

  • Ferreira GC, Tonin A, Schuck PF, Viegas CM, Ceolato PC, Latini A, Perry ML, Wyse AT, Dutra-Filho CS, Wannmacher CM, Vargas CR, Wajner M (2007) Evidence for a synergistic action of glutaric and 3-hydroxyglutaric acids disturbing rat brain energy metabolism. Int J Dev Neurosci 25:391–398

    Article  PubMed  CAS  Google Scholar 

  • Ferreira AG, Lima DD, Delwing D, Mackedanz V, Tagliari B, Kolling J, Schuck PF, Wajner M, Wyse AT (2010) Proline impairs energy metabolism in cerebral cortex of young rats. Metab Brain Dis 25:161–168

    Article  PubMed  CAS  Google Scholar 

  • Fine SE, Weissman A, Gerdes M, Pinto-Martin J, Zackai EH, McDonald-McGinn DM, Emanuel BS (2005) Autism spectrum disorders and symptoms in children with molecularly confirmed 22q11.2 deletion syndrome. J Autism Dev Disord 35:461–470

    Article  PubMed  Google Scholar 

  • Fleming GA, Hagedorn CH, Granger AS, Phang JM (1984) Pyrroline-5-carboxylate in human plasma. Metabolism 33:739–742

    Article  PubMed  CAS  Google Scholar 

  • Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222:236–245

    Article  PubMed  CAS  Google Scholar 

  • Flynn MP, Martin MC, Moore PT, Stafford JA, Fleming GA, Phang JM (1989) Type II hyperprolinaemia in a pedigree of Irish travellers (nomads). Arch Dis Child 64:1699–1707

    Article  PubMed  CAS  Google Scholar 

  • Franzon R, Lamers ML, Stefanello FM, Wannmacher CM, Wajner M, Wyse AT (2003) Evidence that oxidative stress is involved in the inhibitory effect of proline on Na+, K+-ATPase activity in synaptic plasma membrane of rat hippocampus. Int J Dev Neurosci 21:303–307

    Article  PubMed  CAS  Google Scholar 

  • Frei B, Stocker R, England L, Ames BN (1990) Ascorbate: the most effective antioxidant in human blood plasma. Adv Exp Med Biol 264:155–163

    PubMed  CAS  Google Scholar 

  • Fremeau RT Jr, Caron MG, Blakely RD (1992) Molecular cloning and expression of a high affinity L-proline transporter expressed in putative glutamatergic pathways of rat brain. Neuron 8:915–926

    Article  PubMed  CAS  Google Scholar 

  • Gade G, Auerswald L (2002) Beetles’ choice–proline for energy output: control by AKHs. Comp Biochem Physiol B Biochem Mol Biol 132:117–129

    Article  PubMed  Google Scholar 

  • Gogos JA, Santha M, Takacs Z, Beck KD, Luine V, Lucas LR, Nadler JV, Karayiorgou M (1999) The gene encoding proline dehydrogenase modulates sensorimotor gating in mice. Nat Genet 21:434–439

    Article  PubMed  CAS  Google Scholar 

  • Goldstein I, Levy T, Galili D, Ovadia H, Yirmiya R, Rosen H, Lichtstein D (2006) Involvement of Na+, K+-ATPase and endogenous digitalis-like compounds in depressive disorders. Biol Psychiatry 60:491–499

    Article  PubMed  CAS  Google Scholar 

  • Grafius MA, Bond HE, Millar DB (1971) Acetylcholinesterase interaction with a lipoprotein matrix. Eur J Biochem 22:382–390

    Article  PubMed  CAS  Google Scholar 

  • Grisar T (1984) Glial and neuronal Na+-K+ pump in epilepsy. Ann Neurol 16(Suppl):S128–S134

    Article  PubMed  CAS  Google Scholar 

  • Hagedorn CH, Phang JM (1983) Transfer of reducing equivalents into mitochondria by the interconversions of proline and delta 1-pyrroline-5-carboxylate. Arch Biochem Biophys 225:95–101

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1996) Free radicals, proteins and DNA: oxidative damage versus redox regulation. Biochem Soc Trans 24:1023–1027

    PubMed  CAS  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (1985) The importance of free radicals and catalytic metal ions in human diseases. Mol Aspects Med 8:89–193

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Cellular responses to oxidative stress: adaptation, damage, repair, senescence and death, Vol. Oxford University Press, New York

    Google Scholar 

  • Hattori N, Kitagawa K, Higashida T, Yagyu K, Shimohama S, Wataya T, Perry G, Smith MA, Inagaki C (1998) CI-ATPase and Na+, K+-ATPase activities in Alzheimer’s disease brains. Neurosci Lett 254:141–144

    Article  PubMed  CAS  Google Scholar 

  • Hayward DC, Delaney SJ, Campbell HD, Ghysen A, Benzer S, Kasprzak AB, Cotsell JN, Young IG, Miklos GL (1993) The sluggish-A gene of Drosophila melanogaster is expressed in the nervous system and encodes proline oxidase, a mitochondrial enzyme involved in glutamate biosynthesis. Proc Natl Acad Sci USA 90:2979–2983

    Article  PubMed  CAS  Google Scholar 

  • Henderson VW, Watt L, Buckwalter JG (1996) Cognitive skills associated with estrogen replacement in women with Alzeimer’s disease. Psychoneuroendocrinology 21:421–430

    Article  PubMed  CAS  Google Scholar 

  • Hiramatsu T, Cortiella J, Marchini JS, Chapman TE, Young VR (1994) Plasma proline and leucine kinetics: response to 4 wk with proline-free diets in young adults. Am J Clin Nutr 60:207–215

    PubMed  CAS  Google Scholar 

  • Hu CA, Bart Williams D, Zhaorigetu S, Khalil S, Wan G, Valle D (2008) Functional genomics and SNP analysis of human genes encoding proline metabolic enzymes. Amino Acids 35:655–664

    Article  PubMed  CAS  Google Scholar 

  • Humbertclaude V, Rivier F, Roubertie A, Echenne B, Bellet H, Vallat C, Morin D (2001) Is hyperprolinemia type I actually a benign trait? Report of a case with severe neurologic involvement and vigabatrin intolerance. J Child Neurol 16:622–623

    Article  PubMed  CAS  Google Scholar 

  • Jacquet H, Demily C, Houy E, Hecketsweiler B, Bou J, Raux G, Lerond J, Allio G, Haouzir S, Tillaux A, Bellegou C, Fouldrin G, Delamillieure P, Menard JF, Dollfus S, D’Amato T, Petit M, Thibaut F, Frebourg T, Campion D (2005) Hyperprolinemia is a risk factor for schizoaffective disorder. Mol Psychiatry 10:479–485

    Article  PubMed  CAS  Google Scholar 

  • Jamme I, Petit E, Divoux D, Gerbi A, Maixent JM, Nouvelot A (1995) Modulation of mouse cerebral Na+, K+-ATPase activity by oxygen free radicals. Neuroreport 7:333–337

    PubMed  CAS  Google Scholar 

  • Johnson G, Moore SW (2000) Cholinesterases modulate cell adhesion in human neuroblastoma cells in vitro. Int J Dev Neurosci 18:781–790

    Article  PubMed  CAS  Google Scholar 

  • Kanwar YS, Manaligod JR (1975) Leukemic urate nephropathy. Arch Pathol 99:467–472

    PubMed  CAS  Google Scholar 

  • Kapogiannis D, Mattson MP (2010) Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol 10:187–198

    Google Scholar 

  • Karayiorgou M, Gogos JA (2004) The molecular genetics of the 22q11-associated schizophrenia. Brain Res Mol Brain Res 132:95–104

    Article  PubMed  CAS  Google Scholar 

  • Kelly FJ (1998) Use of antioxidants in the prevention and treatment of disease. J Int Fed Clin Chem 10:21–23

    PubMed  CAS  Google Scholar 

  • Kessler A, Costabeber E, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM (2003) Proline reduces creatine kinase activity in the brain cortex of rats. Neurochem Res 28:1175–1180

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Amante DJ, Moody JP, Edgerly CK, Bordiuk OL, Smith K, Matson SA, Matson WR, Scherzer CR, Rosas HD, Hersch SM, Ferrante RJ (2010) Reduced creatine kinase as a central and peripheral biomarker in Huntington’s disease. Biochim Biophys Acta 1802:673–681

    PubMed  CAS  Google Scholar 

  • Layer PG, Willbold E (1995) Novel functions of cholinesterases in development, physiology and disease. Prog Histochem Cytochem 29:1–94

    PubMed  CAS  Google Scholar 

  • Lee KW, Kim SJ, Park JB, Lee KJ (2011) Relationship between Depression Anxiety Stress Scale (DASS) and urinary hydroxyproline and proline concentrations in hospital workers. J Prev Med Public Health 44:9–13

    Article  PubMed  Google Scholar 

  • Lees GJ (1993) Contributory mechanisms in the causation of neurodegenerative disorders. Neuroscience 54:287–322

    Article  PubMed  CAS  Google Scholar 

  • Levy F (2009) Dopamine vs noradrenaline: inverted-U effects and ADHD theories. Aust N Z J Psychiatry 43:101–108

    Article  PubMed  Google Scholar 

  • Li MY, Lee TW, Yim AP, Chen GG (2006) Function of PPARgamma and its ligands in lung cancer. Crit Rev Clin Lab Sci 43:183–202

    Article  PubMed  CAS  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Borchert GL, Donald SP, Surazynski A, Hu CA, Weydert CJ, Oberley LW, Phang JM (2005) MnSOD inhibits proline oxidase-induced apoptosis in colorectal cancer cells. Carcinogenesis 26:1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Loaiza A, Porras OH, Barros LF (2003) Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy. J Neurosci 23:7337–7342

    PubMed  CAS  Google Scholar 

  • Lucas DR, Newhouse JP (1957) The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol 58:193–201

    PubMed  CAS  Google Scholar 

  • Mancuso M, Orsucci D, LoGerfo A, Calsolaro V, Siciliano G (2010) Clinical features and pathogenesis of Alzheimer’s disease: involvement of mitochondria and mitochondrial DNA. Adv Exp Med Biol 685:34–44

    Article  PubMed  CAS  Google Scholar 

  • Maragakis NJ, Rothstein JD (2001) Glutamate transporters in neurologic disease. Arch Neurol 58:365–370

    Article  PubMed  CAS  Google Scholar 

  • Matte C, Durigon E, Stefanello FM, Cipriani F, Wajner M, Wyse AT (2006) Folic acid pretreatment prevents the reduction of Na+, K+-ATPase and butyrylcholinesterase activities in rats subjected to acute hyperhomocysteinemia. Int J Dev Neurosci 24:3–8

    Article  PubMed  CAS  Google Scholar 

  • Matte C, Mackedanz V, Stefanello FM, Scherer EB, Andreazza AC, Zanotto C, Moro AM, Garcia SC, Goncalves CA, Erdtmann B, Salvador M, Wyse AT (2009) Chronic hyperhomocysteinemia alters antioxidant defenses and increases DNA damage in brain and blood of rats: protective effect of folic acid. Neurochem Int 54:7–13

    Article  PubMed  CAS  Google Scholar 

  • McCay PB (1985) Vitamin E: interactions with free radicals and ascorbate. Annu Rev Nutr 5:323–340

    Article  PubMed  CAS  Google Scholar 

  • Mecocci P (2004) Oxidative stress in mild cognitive impairment and Alzheimer disease: a continuum. J Alzheimers Dis 6:159–163

    PubMed  CAS  Google Scholar 

  • Meldrum BS (1994) The role of glutamate in epilepsy and other CNS disorders. Neurology 44:14–23

    Google Scholar 

  • Micheu S, Crailsheim K, Leonhard B (2000) Importance of proline and other amino acids during honeybee flight–Apis mellifera carnica POLLMANN. Amino Acids 18:157–175

    Article  PubMed  CAS  Google Scholar 

  • Mitsubuchi H, Nakamura K, Matsumoto S, Endo F (2008) Inborn errors of proline metabolism. J Nutr 138:2016–2020

    Google Scholar 

  • Monteiro SC, Matte C, Bavaresco CS, Netto CA, Wyse AT (2005) Vitamins E and C pretreatment prevents ovariectomy-induced memory deficits in water maze. Neurobiol Learn Mem 84:192–199

    Article  PubMed  CAS  Google Scholar 

  • Moreira JC, Wannmacher CM, Costa SM, Wajner M (1989) Effect of proline administration on rat behavior in aversive and nonaversive tasks. Pharmacol Biochem Behav 32:885–890

    Article  PubMed  CAS  Google Scholar 

  • Muller DP, Goss-Sampson MA (1989) Role of vitamin E in neural tissue. Ann NY Acad Sci 570:146–155

    Article  PubMed  CAS  Google Scholar 

  • Murali G, Panneerselvam KS, Panneerselvam C (2008) Age-associated alterations of lipofuscin, membrane-bound ATPases and intracellular calcium in cortex, striatum and hippocampus of rat brain: protective role of glutathione monoester. Int J Dev Neurosci 26:211–215

    Article  PubMed  CAS  Google Scholar 

  • Nadler JV (1987) Sodium-dependent proline uptake in the rat hippocampal formation: association with ipsilateral-commissural projections of CA3 pyramidal cells. J Neurochem 49:1155–1160

    Article  PubMed  CAS  Google Scholar 

  • Nadler JV, Bray SD, Evenson DA (1992) Autoradiographic localization of proline uptake in excitatory hippocampal pathways. Hippocampus 2:269–278

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Lipton SA (2010) Preventing Ca2+-mediated nitrosative stress in neurodegenerative diseases: possible pharmacological strategies. Cell Calcium 47:190–197

    Article  PubMed  CAS  Google Scholar 

  • Olney JW (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164:719–721

    Article  PubMed  CAS  Google Scholar 

  • Oresic M, Tang J, Seppanen-Laakso T, Mattila I, Saarni SE, Saarni SI, Lonnqvist J, Sysi-Aho M, Hyotylainen T, Perala J, Suvisaari J (2011) Metabolome in schizophrenia and other psychotic disorders: a general population-based study. Genome Med 3:19

    Article  PubMed  CAS  Google Scholar 

  • Ozawa S, Kamiya H, Tsuzuki K (1998) Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 54:581–618

    Article  PubMed  CAS  Google Scholar 

  • Pandhare J, Donald SP, Cooper SK, Phang JM (2009) Regulation and function of proline oxidase under nutrient stress. J Cell Biochem 107:759–768

    Article  PubMed  CAS  Google Scholar 

  • Paterlini M, Zakharenko SS, Lai WS, Qin J, Zhang H, Mukai J, Westphal KG, Olivier B, Sulzer D, Pavlidis P, Siegelbaum SA, Karayiorgou M, Gogos JA (2005) Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nat Neurosci 8:1586–1594

    Article  PubMed  CAS  Google Scholar 

  • Pavone L, Mollica F, Levy HL (1975) Asymptomatic type II hyperprolinaemia associated with hyperglycinaemia in three sibs. Arch Dis Child 50:637–641

    Article  PubMed  CAS  Google Scholar 

  • Peker E, Oktar S, Ari M, Kozan R, Dogan M, Cagan E, Sogut S (2009) Nitric oxide, lipid peroxidation, and antioxidant enzyme levels in epileptic children using valproic acid. Brain Res 1297:194–197

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629

    Article  PubMed  CAS  Google Scholar 

  • Phang JM (1985) The regulatory functions of proline and pyrroline-5-carboxylic acid. Curr Top Cell Regul 25:91–132

    PubMed  CAS  Google Scholar 

  • Phang JM, Downing SJ, Yeh GC (1980) Linkage of the HMP pathway to ATP generation by the proline cycle. Biochem Biophys Res Commun 93:462–470

    Article  PubMed  CAS  Google Scholar 

  • Phang JM, Hu CA, Valle D (2001) Disorders of proline and hydroxyproline metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. Vol. 3. McGraw-Hill, New York, pp 1821–1838

    Google Scholar 

  • Phang JM, Donald SP, Pandhare J, Liu Y (2008a) The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids 35:681–690

    Article  PubMed  CAS  Google Scholar 

  • Phang JM, Pandhare J, Zabirnyk O, Liu Y (2008b) PPARgamma and Proline Oxidase in Cancer. PPAR Res.

  • Piani D, Frei K, Pfister HW, Fontana A (1993) Glutamate uptake by astrocytes is inhibited by reactive oxygen intermediates but not by other macrophage-derived molecules including cytokines, leukotrienes or platelet-activating factor. J Neuroimmunol 48:99–104

    Article  PubMed  CAS  Google Scholar 

  • Pisani A, Martella G, Tscherter A, Costa C, Mercuri NB, Bernardi G, Shen J, Calabresi P (2006) Enhanced sensitivity of DJ-1-deficient dopaminergic neurons to energy metabolism impairment: role of Na+, K+ATPase. Neurobiol Dis 23:54–60

    Article  PubMed  CAS  Google Scholar 

  • Plesner L (1995) Ecto-ATPases: identities and functions. Int Rev Cytol 158:141–214

    Article  PubMed  CAS  Google Scholar 

  • Pontes ZL, Oliveira LS, Franzon R, Wajner M, Wannmacher CM, Wyse AT (2001) Inhibition of Na+, K+-ATPase activity from rat hippocampus by proline. Neurochem Res 26:1321–1326

    Article  PubMed  CAS  Google Scholar 

  • Porras OH, Ruminot I, Loaiza A, Barros LF (2008) Na+ - Ca2+ cosignaling in the stimulation of the glucose transporter GLUT1 in cultured astrocytes. Glia 56:59–68

    Article  PubMed  Google Scholar 

  • Ralevic V, Burnstock G (2003) Involvement of purinergic signaling in cardiovascular diseases. Drug News Perspect 16:133–140

    Article  PubMed  CAS  Google Scholar 

  • Rauchova H, Drahota Z, Koudelova J (1999) The role of membrane fluidity changes and thiobarbituric acid-reactive substances production in the inhibition of cerebral cortex Na+, K+-ATPase activity. Physiol Res 48:73–78

    PubMed  CAS  Google Scholar 

  • Reddy PH, Reddy TP (2011) Mitochondria as a therapeutic target for aging and neurodegenerative diseases. Curr Alzheimer Res.

  • Reddy PV, Rao KV, Norenberg MD (2008) The mitochondrial permeability transition, and oxidative and nitrosative stress in the mechanism of copper toxicity in cultured neurons and astrocytes. Lab Invest 88:816–830

    Article  PubMed  CAS  Google Scholar 

  • Reis EA, Zugno AI, Franzon R, Tagliari B, Matte C, Lammers ML, Netto CA, Wyse AT (2002) Pretreatment with vitamins E and C prevent the impairment of memory caused by homocysteine administration in rats. Metab Brain Dis 17:211–217

    Article  PubMed  CAS  Google Scholar 

  • Reis HJ, Guatimosim C, Paquet M, Santos M, Ribeiro FM, Kummer A, Schenatto G, Salgado JV, Vieira LB, Teixeira AL, Palotas A (2009) Neuro-transmitters in the central nervous system & their implication in learning and memory processes. Curr Med Chem 16:796–840

    Article  PubMed  CAS  Google Scholar 

  • Renick SE, Kleven DT, Chan J, Stenius K, Milner TA, Pickel VM, Fremeau RT Jr (1999) The mammalian brain high-affinity L-proline transporter is enriched preferentially in synaptic vesicles in a subpopulation of excitatory nerve terminals in rat forebrain. J Neurosci 19:21–33

    PubMed  CAS  Google Scholar 

  • Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL (2009) Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 34:1021–1029

    Article  PubMed  CAS  Google Scholar 

  • Rose CR, Ransom BR (1996) Intracellular sodium homeostasis in rat hippocampal astrocytes. J Physiol 491:291–305

    PubMed  CAS  Google Scholar 

  • Ross G, Dunn D, Jones ME (1978) Ornithine synthesis from glutamate in rat intestinal mucosa homogenates: evidence for the reduction of glutamate to gamma-glutamyl semialdehyde. Biochem Biophys Res Commun 85:140–147

    Article  PubMed  CAS  Google Scholar 

  • Roussos P, Giakoumaki SG, Bitsios P (2009) A risk PRODH haplotype affects sensorimotor gating, memory, schizotypy, and anxiety in healthy male subjects. Biol Psychiatry 65:1063–1070

    Article  PubMed  CAS  Google Scholar 

  • Sandy MS, Di Monte D, Smith MT (1988) Relationships between intracellular vitamin E, lipid peroxidation, and chemical toxicity in hepatocytes. Toxicol Appl Pharmacol 93:288–297

    Article  PubMed  CAS  Google Scholar 

  • Sarkis JJF, Battastini AMO, Oliveira EM, Frasseto SS, Dias RD (1995) ATP diphosphohydrolases: an overview. J Braz Assoc Adv Sci 47:131–136

    CAS  Google Scholar 

  • Schafer IA, Scriver CR, Efron ML (1962) Familial hyperprolinemia, cerebral dysfunction and renal anomalies occuring in a family with hereditary nephropathy and deafness. N Engl J Med 267:51–60

    Article  PubMed  CAS  Google Scholar 

  • Segovia G, Porras A, Del Arco A, Mora F (2001) Glutamatergic neurotransmission in aging: a critical perspective. Mech Ageing Dev 122:1–29

    Article  PubMed  CAS  Google Scholar 

  • Sen CK, Khanna S, Roy S (2004) Tocotrienol: the natural vitamin E to defend the nervous system? Ann NY Acad Sci 1031:127–142

    Article  PubMed  CAS  Google Scholar 

  • Seye CI, Yu N, Jain R, Kong Q, Minor T, Newton J, Erb L, Gonzalez FA, Weisman GA (2003) The P2Y2 nucleotide receptor mediates UTP-induced vascular cell adhesion molecule-1 expression in coronary artery endothelial cells. J Biol Chem 278:24960–24965

    Article  PubMed  CAS  Google Scholar 

  • Shanti ND, Shashikumar KC, Desai PV (2004) Influence of proline on rat brain activities of alanine aminotransferase, aspartate aminotransferase and acid phosphatase. Neurochem Res 29:2197–2206

    Article  PubMed  Google Scholar 

  • Sharma KV, Bigbee JW (1998) Acetylcholinesterase antibody treatment results in neurite detachment and reduced outgrowth from cultured neurons: further evidence for a cell adhesive role for neuronal acetylcholinesterase. J Neurosci Res 53:454–464

    Article  PubMed  CAS  Google Scholar 

  • Shprintzen RJ, Goldberg RB, Young D, Wolford L (1981) The velo-cardio-facial syndrome: a clinical and genetic analysis. Pediatrics 67:167–172

    PubMed  CAS  Google Scholar 

  • Silman I, Sussman JL (2005) Acetylcholinesterase: ‘classical’ and ‘non-classical’ functions and pharmacology. Curr Opin Pharmacol 5:293–302

    Article  PubMed  CAS  Google Scholar 

  • Silva RH, Abilio VC, Takatsu AL, Kameda SR, Grassl C, Chehin AB, Medrano WA, Calzavara MB, Registro S, Andersen ML, Machado RB, Carvalho RC, Ribeiro Rde A, Tufik S, Frussa-Filho R (2004) Role of hippocampal oxidative stress in memory deficits induced by sleep deprivation in mice. Neuropharmacology 46:895–903

    Article  PubMed  CAS  Google Scholar 

  • Simila S, Visakorpi JK (1967) Hyperprolinemia without renal disease. Acta Paediatr Scand (Suppl 177-122).

  • Smith RJ, Phang JM (1979) The importance of ornithine as a precursor for proline in mammalian cells. J Cell Physiol 98:475–481

    Article  PubMed  CAS  Google Scholar 

  • Solaini G, Baracca A, Lenaz G, Sgarbi G (2010) Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta 1797:1171–1177

    Article  PubMed  CAS  Google Scholar 

  • Soreq H, Seidman S (2001) Acetylcholinesterase–new roles for an old actor. Nat Rev Neurosci 2:294–302

    Article  PubMed  CAS  Google Scholar 

  • Sorg O, Horn TF, Yu N, Gruol DL, Bloom FE (1997) Inhibition of astrocyte glutamate uptake by reactive oxygen species: role of antioxidant enzymes. Mol Med 3:431–440

    PubMed  CAS  Google Scholar 

  • Steinlin M, Boltshauser E, Steinmann B, Wichmann W, Niemeyer G (1989) Hyperprolinaemia type I and white matter disease: coincidence or causal relationship? Eur J Pediatr 149:40–42

    Article  PubMed  CAS  Google Scholar 

  • Stocker R (1999) The ambivalence of vitamin E in atherogenesis. Trends Biochem Sci 24:219–223

    Article  PubMed  CAS  Google Scholar 

  • Strecker HJ (1957) The interconversion of glutamic acid and proline. I. The formation of delta1-pyrroline-5-carboxylic acid from glutamic acid in Escherichia coli. J Biol Chem 225:825–834

    PubMed  CAS  Google Scholar 

  • Sullivan PG, Brown MR (2005) Mitochondrial aging and dysfunction in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 29:407–410

    Article  PubMed  CAS  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  CAS  Google Scholar 

  • Takada T, Suzuki H (2010) Molecular mechanisms of membrane transport of vitamin E. Mol Nutr Food Res 54:616–622

    Article  PubMed  CAS  Google Scholar 

  • Tan HY, Callicott JH, Weinberger DR (2009) Prefrontal cognitive systems in schizophrenia: towards human genetic brain mechanisms. Cogn Neuropsychiatry 14:277–298

    Article  PubMed  Google Scholar 

  • Tomimoto H, Yamamoto K, Homburger HA, Yanagihara T (1993) Immunoelectron microscopic investigation of creatine kinase BB-isoenzyme after cerebral ischemia in gerbils. Acta Neuropathol 86:447–455

    PubMed  CAS  Google Scholar 

  • Traber MG, Packer L (1995) Vitamin E: beyond antioxidant function. Am J Clin Nutr 62:1501S–1509S

    PubMed  CAS  Google Scholar 

  • Traber MG, Sies H (1996) Vitamin E in humans: demand and delivery. Annu Rev Nutr 16:321–347

    Article  PubMed  CAS  Google Scholar 

  • Valle D, Goodman SI, Applegarth DA, Shih VE, Phang JM (1976) Type II hyperprolinemia. Delta1-pyrroline-5-carboxylic acid dehydrogenase deficiency in cultured skin fibroblasts and circulating lymphocytes. J Clin Invest 58:598–603

    Article  PubMed  CAS  Google Scholar 

  • Van Harreveld A, Fifkova E (1974) Involvement of glutamate in memory formation. Brain Res 81:455–467

    Article  PubMed  Google Scholar 

  • Van Spronsen M, Hoogenraad CC (2010) Synapse pathology in psychiatric and neurologic disease. Curr Neurol Neurosci Rep 10:207–214

    Article  PubMed  CAS  Google Scholar 

  • Vatassery GT (1998) Vitamin E and other endogenous antioxidants in the central nervous system. Geriatrics 53(Suppl 1):S25–S27

    PubMed  Google Scholar 

  • Vianna LP, Delwing D, Kurek AG, Breier AC, Kreutz F, Chiarani F, Stefanello FM, Wyse AT, Trindade VM (2008) Effects of chronic proline administration on lipid contents of rat brain. Int J Dev Neurosci 26:567–573

    Article  PubMed  CAS  Google Scholar 

  • Vignini A, Nanetti L, Moroni C, Tanase L, Bartolini M, Luzzi S, Provinciali L, Mazzanti L (2007) Modifications of platelet from Alzheimer disease patients: a possible relation between membrane properties and NO metabolites. Neurobiol Aging 28:987–994

    Article  PubMed  CAS  Google Scholar 

  • Volterra A, Trotti D, Tromba C, Floridi S, Racagni G (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J Neurosci 14:2924–2932

    PubMed  CAS  Google Scholar 

  • Vorstman JA, Morcus ME, Duijff SN, Klaassen PW, Heineman-de Boer JA, Beemer FA, Swaab H, Kahn RS, van Engeland H (2006) The 22q11.2 deletion in children: high rate of autistic disorders and early onset of psychotic symptoms. J Am Acad Child Adolesc Psychiatry 45:1104–1113

    Article  PubMed  Google Scholar 

  • Vorstman JA, Turetsky BI, Sijmens-Morcus ME, de Sain MG, Dorland B, Sprong M, Rappaport EF, Beemer FA, Emanuel BS, Kahn RS, van Engeland H, Kemner C (2009) Proline affects brain function in 22q11DS children with the low activity COMT 158 allele. Neuropsychopharmacology 34:739–746

    Article  PubMed  CAS  Google Scholar 

  • Voutsinos-Porche B, Bonvento G, Tanaka K, Steiner P, Welker E, Chatton JY, Magistretti PJ, Pellerin L (2003) Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex. Neuron 37:275–286

    Article  PubMed  CAS  Google Scholar 

  • Wajner A, Burger C, Dutra-Filho CS, Wajner M, de Souza Wyse AT, Wannmacher CM (2007) Synaptic plasma membrane Na+, K+ -ATPase activity is significantly reduced by the alpha-keto acids accumulating in maple syrup urine disease in rat cerebral cortex. Metab Brain Dis 22:77–88

    Article  PubMed  CAS  Google Scholar 

  • Waldbaum S, Patel M (2010) Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res 88:23–45

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  PubMed  CAS  Google Scholar 

  • Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281:21–40

    PubMed  CAS  Google Scholar 

  • Wallimann T, Dolder M, Schlattner U, Eder M, Hornemann T, O’Gorman E, Ruck A, Brdiczka D (1998) Some new aspects of creatine kinase (CK): compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology. Biofactors 8:229–234

    Article  PubMed  CAS  Google Scholar 

  • Wengreen HJ, Munger RG, Corcoran CD, Zandi P, Hayden KM, Fotuhi M, Skoog I, Norton MC, Tschanz J, Breitner JC, Welsh-Bohmer KA (2007) Antioxidant intake and cognitive function of elderly men and women: the Cache County Study. J Nutr Health Aging 11:230–237

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC, Johnson GA, Kim SW, Knabe DA, Li P, Li X, McKnight JR, Satterfield MC, Spencer TE (2010) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids.

  • Wyse AT, Sarkis JJ, Cunha-Filho JS, Teixeira MV, Schetinger MR, Wajner M, Milton C, Wannmacher D (1994) Effect of phenylalanine and its metabolites on ATP diphosphohydrolase activity in synaptosomes from rat cerebral cortex. Neurochem Res 19:1175–1180

    Article  PubMed  CAS  Google Scholar 

  • Wyse AT, Sarkis JJ, Cunha-Filho JS, Teixeira MV, Schetinger MR, Wajner M, Wannmacher CM (1995) ATP diphosphohydrolase activity in synaptosomes from cerebral cortex of rats subjected to chemically induced phenylketonuria. Braz J Med Biol Res 28:643–649

    PubMed  CAS  Google Scholar 

  • Wyse ATS, Streck EL, Worm P, Wajner A, Ritter F, Netto CA (2000) Preconditioning prevents the inhibition of Na+, K+-ATPase activity after brain ischemia. Neurochem Res 25:971–975

    Article  CAS  Google Scholar 

  • Wyse AT, Zugno AI, Streck EL, Matte C, Calcagnotto T, Wannmacher CM, Wajner M (2002) Inhibition of Na+, K+-ATPase activity in hippocampus of rats subjected to acute administration of homocysteine is prevented by vitamins E and C treatment. Neurochem Res 27:1685–1689

    Article  PubMed  CAS  Google Scholar 

  • Yeh GC, Phang JM (1988) Stimulation of phosphoribosyl pyrophosphate and purine nucleotide production by pyrroline 5-carboxylate in human erythrocytes. J Biol Chem 263:13083–13089

    PubMed  CAS  Google Scholar 

  • Young VR, El-Khoury A (1995) The notion of the nutritional essentiality of amino acids, revisited, with a note on the indispensable amino acid requirements in adults. In: Cynober L (ed) Amino acid metabolism and therapy in health and nutritional disease. Vol. CRC Press, New York, p 191

    Google Scholar 

  • Zaidi SM, Banu N (2004) Antioxidant potential of vitamins A. E and C in modulating oxidative stress in rat brain. Clin Chim Acta 340:229–233

    Article  PubMed  CAS  Google Scholar 

  • Zarkovic K (2003) 4-hydroxynonenal and neurodegenerative diseases. Mol Aspects Med 24:293–303

    Article  PubMed  CAS  Google Scholar 

  • Zeviani M, Carelli V (2007) Mitochondrial disorders. Curr Opin Neurol 20:564–571

    Article  PubMed  CAS  Google Scholar 

  • Zhang XJ, Yang L, Zhao Q, Caen JP, He HY, Jin QH, Guo LH, Alemany M, Zhang LY, Shi YF (2002) Induction of acetylcholinesterase expression during apoptosis in various cell types. Cell Death Differ 9:790–800

    Article  PubMed  CAS  Google Scholar 

  • Zhang XL, Jiang B, Li ZB, Hao S, An LJ (2007) Catalpol ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose. Pharmacol Biochem Behav 88:64–72

    Article  PubMed  CAS  Google Scholar 

  • Zhang SF, Hennessey T, Yang L, Starkova NN, Beal MF, Starkov AA (2010) Impaired brain creatine kinase activity in Huntington’s Disease. Neurodegener Dis.

  • Zimmermann H (1992) 5′ nucleotidase: molecular structure and functional aspects. Biochem J 285:345–365

    PubMed  CAS  Google Scholar 

  • Zugno AI, Scherer EB, Mattos C, Ribeiro CA, Wannmacher CM, Wajner M, Wyse AT (2007) Evidence that the inhibitory effects of guanidinoacetate on the activities of the respiratory chain, Na+, K+-ATPase and creatine kinase can be differentially prevented by taurine and vitamins E and C administration in rat striatum in vivo. Biochim Biophys Acta 1772:563–569

    PubMed  CAS  Google Scholar 

  • Zugno AI, Valvassori SS, Scherer EB, Mattos C, Matte C, Ferreira CL, Rezin GT, Wyse AT, Quevedo J, Streck EL (2009) Na+, K+-ATPase activity in an animal model of mania. J Neural Transm 116:431–436

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We dedicate this review to Dr. Clovis M.D. Wannmacher and Dr. Moacir Wajner, who were supervisors of the Master degree and of the PhD degree of Dr. Angela T.S. Wyse. Professor Wannmacher initiated work with Inborn Errors of Metabolism (IEM) in Brazil in 1970, after which Dr. Moacir Wajner and Dr. Roberto Giugliani were incorporated and an IEM group was created in 1998, the group of IEM of the Metabolism of Department of Biochemistry, ICBS, Federal University Federal of Rio Grande do Sul is formed by Professors Clovis Wannmacher, Moacir Wajner, Carlos S. Dutra-Filho and Angela T.S. Wyse.

We thank Luiz Eduardo Baggio Savio and Andréa Kurek Ferreira for figure designs.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela T. S. Wyse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyse, A.T.S., Netto, C.A. Behavioral and neurochemical effects of proline. Metab Brain Dis 26, 159–172 (2011). https://doi.org/10.1007/s11011-011-9246-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-011-9246-x

Keywords

Navigation