Skip to main content
Log in

Differential Proteomic Analysis of Acute Contusive Spinal Cord Injury in Rats Using iTRAQ Reagent Labeling and LC–MS/MS

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In this experimental study, differential labeling with isobaric tags for relative and absolute quantitation (iTRAQ) reagents followed by liquid chromatography (LC) and tandem mass spectrometry (MS/MS) proteomic approach was used to investigate differences in the proteome of rat spinal cord at 24 h following a moderate contusion injury. Spinal cord protein samples from the injury epicenter (or from sham controls) were trypsinized and differentially labeled with iTRAQ isotopic reagents. The differentially labeled samples were then combined into one sample mixture, separated by LC, and analyzed using MS/MS. Proteins were quantified by comparing the peak areas of iTRAQ reporter fragment ions in MS/MS spectra. The outcome of this analysis revealed that proteins involved in ubiquitination, endocytosis and exocytosis, energy metabolism, inflammatory response, oxidative stress, cytoskeletal disruption, and vascular damage were significantly altered at 24 h following spinal cord injury (SCI). This study demonstrates the utility of the iTRAQ method in proteomic studies and provides further insights into secondary events that occur during acute times following SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

LC:

Liquid chromatography

MS:

Mass spectrometry

iTRAQ:

Isobaric tag for relative and absolute quantitation

CI %:

Confidence interval %

MW:

Molecular weight

SCI:

Spinal cord injury

References

  1. Tator C, Fehlings M (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75(1):15–26

    Article  PubMed  CAS  Google Scholar 

  2. Young W (1993) Secondary injury mechanisms in acute spinal cord injury. J Emerg Med 11(Suppl 1):13–22

    PubMed  Google Scholar 

  3. Hall ED, Springer JE (2004) Neuroprotection and acute spinal cord injury: a reappraisal. NeuroRx 1(1):80–100

    Article  PubMed  Google Scholar 

  4. Chen A, McEwen ML, Sun S, Ravikumar R, Springer JE (2010) Proteomic and phosphoproteomic analyses of the soluble fraction following acute spinal cord contusion in rats. J Neurotrauma 27(1):263–274

    Article  PubMed  CAS  Google Scholar 

  5. Wolff S, Otto A, Albrecht D, Zeng JS, Buttner K, Gluckmann M, Hecker M, Becher D (2006) Gel-free and gel-based proteomics in Bacillus subtilis: a comparative study. Mol Cell Proteomics 5(7):1183–1192

    Article  PubMed  CAS  Google Scholar 

  6. McEwen ML, Sullivan PG, Springer JE (2007) Pretreatment with the cyclopsorin derivative, NIM811, improves the function of synaptic mitochondria following spinal cord contusion in rats. J Neurotrauma 24(4):613–624

    Article  PubMed  Google Scholar 

  7. Shilov IV, Seymour SL, Patel AA, Loboda A, Tang WH, Keating SP, Hunter CL, Nuwaysir LM, Schaeffer DA (2007) The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics 6(9):1638–1655

    Article  PubMed  CAS  Google Scholar 

  8. McEwen ML, Sullivan PG, Rabchevsky AG, Springer JE (2011) Targeting mitochondrial function for the treatment of acute spinal cord injury. Neurotherapeutics 8(2):168–179

    Article  PubMed  CAS  Google Scholar 

  9. Sullivan PG, Rabchevsky AG, Waldmeier PC, Springer JE (2005) Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J Neurosci Res 79(1–2):231–239

    Article  PubMed  CAS  Google Scholar 

  10. Azbill RD, Mu X, Bruce-Keller AJ, Mattson MP, Springer JE (1997) Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res 765(2):283–290

    Article  PubMed  CAS  Google Scholar 

  11. Mu X, Azbill RD, Springer JE (2000) Riluzole improves measures of oxidative stress in traumatic spinal cord injury. Brain Res 870:66–72

    Article  PubMed  CAS  Google Scholar 

  12. Mu X, Azbill RD, Springer JE (2002) Treatment with NBQX improves mitochondrial function and reduces oxidative events after traumatic spinal cord injury. J Neurotrauma 19(8):917–927

    Article  PubMed  Google Scholar 

  13. Springer JE, Azbill RD, Kennedy SE, George J, Geddes JW (1997) Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. J Neurochem 69(4):1592–1600

    Article  PubMed  CAS  Google Scholar 

  14. Maikos JT, Shreiber DI (2007) Immediate damage to the blood-spinal cord barrier due to mechanical trauma. J Neurotrauma 24(3):492–507

    Article  PubMed  Google Scholar 

  15. Banik NL, Powers JM, Hogan EL (1980) The effects of spinal cord trauma on myelin. J Neuropathol Exp Neurol 39(3):232–244

    Article  PubMed  CAS  Google Scholar 

  16. McEwen ML, Springer JE (2005) A mapping study of caspase-3 activation following acute spinal cord contusion in rats. J Histochem Cytochem 53(7):809–819

    Article  PubMed  CAS  Google Scholar 

  17. Springer J, Azbill R, Knapp P (1999) Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat Med 5(8):943–946

    Article  PubMed  CAS  Google Scholar 

  18. Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21(8):921–926

    Article  PubMed  CAS  Google Scholar 

  19. Ikeda F, Dikic I (2008) Atypical ubiquitin chains: new molecular signals. ‘Protein Modifications: beyond the Usual Suspects’ review series. EMBO Rep 9(6):536–542

    Article  PubMed  CAS  Google Scholar 

  20. Way G, Morrice N, Smythe C, O’Sullivan AJ (2002) Purification and identification of secernin, a novel cytosolic protein that regulates exocytosis in mast cells. Mol Biol Cell 13(9):3344–3354

    Article  PubMed  CAS  Google Scholar 

  21. Sullivan PG, Krishnamurthy S, Patel SP, Pandya JD, Rabchevsky AG (2007) Temporal characterization of mitochondrial bioenergetics after spinal cord injury. J Neurotrauma 24(6):991–999

    Article  PubMed  Google Scholar 

  22. Slemmer JE, Haasdijk ED, Engel DC, Plesnila N, Weber JT (2007) Aldolase C-positive cerebellar Purkinje cells are resistant to delayed death after cerebral trauma and AMPA-mediated excitotoxicity. Eur J Neurosci 26(3):649–656

    Article  PubMed  Google Scholar 

  23. Baldwin SA, Broderick R, Blades DA, Scheff SW (1998) Alterations in temporal/spatial distribution of GFAP- and vimentin-positive astrocytes after spinal cord contusion with the New York University spinal cord injury device. J Neurotrauma 15(12):1015–1026

    Article  PubMed  CAS  Google Scholar 

  24. Hadley SD, Goshgarian HG (1997) Altered immunoreactivity for glial fibrillary acidic protein in astrocytes within 1 h after cervical spinal cord injury. Exp Neurol 146(2):380–387

    Article  PubMed  CAS  Google Scholar 

  25. Fujiki M, Zhang Z, Guth L, Steward O (1996) Genetic influences on cellular reactions to spinal cord injury: activation of macrophages/microglia and astrocytes is delayed in mice carrying a mutation (WldS) that causes delayed Wallerian degeneration. J Comp Neurol 371(3):469–484

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. Melanie L. McEwen for technical support. This work was supported by the Craig H. Neilsen Foundation, the Morton Cure Paralysis Foundation, and an endowment from Cardinal Hill Rehabilitation Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe E. Springer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, A., Sun, S., Ravikumar, R. et al. Differential Proteomic Analysis of Acute Contusive Spinal Cord Injury in Rats Using iTRAQ Reagent Labeling and LC–MS/MS. Neurochem Res 38, 2247–2255 (2013). https://doi.org/10.1007/s11064-013-1132-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1132-y

Keywords

Navigation