Skip to main content

The TRiC/CCT Chaperonin and Its Role in Uncontrolled Proliferation

  • Chapter
  • First Online:
HSF1 and Molecular Chaperones in Biology and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1243))

Abstract

The cell cycle is a sophisticated space-time regulated mechanism where a wide variety of protein modules and complexes associate functioning in a concerted manner to regulate and transfer the genetic material to daughter cells. CCT (chaperonin containing TCP-1, also known as TRiC) is a molecular machine that forms a high molecular weight complex (1000 KDa). CCT is emerging as a key molecule during mitosis due to its essential role in the folding of many important proteins involved in cell division (Cdh1, Plk1, p27, Cdc20, PP2a regulatory subunits, tubulin or actin) suggesting its involvement in uncontrolled proliferation. The assembly is formed by eight different subunits called CCTα, β, γ, δ, ε, ζ, η and θ in mammals corresponding to CCT1–8 in yeast. CCT/TRiC is organized in a unique intra- and inter-ring arrangement. The chaperonin monomers share a common domain structure including an equatorial domain, which contains all the inter-ring contacts, most of the intra-ring contacts and the ATP binding site, whose binding and hydrolysis triggers the conformational changes that take place during the functional cycle. All chaperonins display an open substrate-receptive conformation, where the unfolded protein is recognized and trapped, and a closed conformation where the substrate is isolated from the bulk of the intracellular environment. In this chapter we discuss the complex set of intra- and inter-ring allosteric signals during chaperonin function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bakthavatsalam D, Soung RH, Tweardy DJ, Chiu W, Dixon RA, Woodside DG (2014) Chaperonin-containing TCP-1 complex directly binds to the cytoplasmic domain of the LOX-1 receptor. FEBS Lett 588:2133–2140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barford D (2011) Structural insights into anaphase-promoting complex function and mechanism. Philos Trans R Soc Lond Ser B Biol Sci 366:3605–3624

    Article  CAS  Google Scholar 

  • Blow JJ, Gillespie PJ (2008) Replication licensing and cancer – a fatal entanglement? Nat Rev Cancer 8:799–806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Booth CR, Meyer AS, Cong Y, Topf M, Sali A, Ludtke SJ, Chiu W, Frydman J (2008) Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT. Nat Struct Mol Biol 15:746–753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boudiaf-Benmammar C, Cresteil T, Melki R (2013) The cytosolic chaperonin CCT/TRiC and cancer cell proliferation. PLoS One 8:e60895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buckle AM, Zahn R, Fersht AR (1997) A structural model for GroEL-polypeptide recognition. Proc Natl Acad Sci U S A 94:3571–3575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Camasses A, Bogdanova A, Shevchenko A, Zachariae W (2003) The CCT chaperonin promotes activation of the anaphase-promoting complex through the generation of functional Cdc20. Mol Cell 12:87–100

    Article  PubMed  CAS  Google Scholar 

  • Carr AC, Khaled AS, Bassiouni R, Flores O, Nierenberg D, Bhatti H, Vishnubhotla P, Manuel JP, Santra S, Khaled AR (2017) Targeting chaperonin containing TCP1 (CCT) as a molecular therapeutic for small cell lung cancer. Oncotarget 8(66):110273–110288

    Article  PubMed  PubMed Central  Google Scholar 

  • Dekker C, Stirling PC, Mccormack EA, Filmore H, Paul A, Brost RL, Costanzo M, Boone C, Leroux MR, Willison KR (2008) The interaction network of the chaperonin CCT. EMBO J 27:1827–1839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ditzel L, Löwe J, Stock D, Stetter K-O, Huber H, Huber R, Steinbacher S (1998) Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93:125–138

    Article  PubMed  CAS  Google Scholar 

  • Dobson CM, Šali A, Karplus M (1998) Protein folding: a perspective from theory and experiment. Angew Chem Int Ed 37:868–893

    Article  Google Scholar 

  • Douglas NR, Reissmann S, Zhang J, Chen B, Jakana J, Kumar R, Chiu W, Frydman J (2011) Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber. Cell 144:240–252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farr GW, Scharl EC, Schumacher RJ, Sondek S, Horwich AL (1997) Chaperonin-mediated folding in the eukaryotic cytosol proceeds through rounds of release of native and nonnative forms. Cell 89:927–937

    Article  PubMed  CAS  Google Scholar 

  • Feldman DE, Thulasiraman V, Ferreyra RG, Frydman J (1999) Formation of the VHL-elongin BC tumor suppressor complex is mediated by the chaperonin TRiC. Mol Cell 4:1051–1061

    Article  PubMed  CAS  Google Scholar 

  • Feldman DE, Spiess C, Howard DE, Frydman J (2003) Tumorigenic mutations in VHL disrupt folding in vivo by interfering with chaperonin binding. Mol Cell 12:1213–1224

    Article  PubMed  CAS  Google Scholar 

  • Freund A, Zhong FL, Venteicher AS, Meng Z, Veenstra TD, Frydman J, Artandi SE (2014) Proteostatic control of telomerase function through TRiC-mediated folding of TCAB1. Cell 159:1389–1403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gallina I, Colding C, Henriksen P, Beli P, Nakamura K, Offman J, Mathiasen DP, Silva S, Hoffmann E, Groth A, Choudhary C, Lisby M (2015) Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control. Nat Commun 6:6533

    Article  PubMed  Google Scholar 

  • Gao Y, Thomas JO, Chow RL, Lee G-H, Cowan NJ (1992) A cytoplasmic chaperonin that catalyzes β-actin folding. Cell 69:1043–1050

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Sinha S, Belcastro M, Woodard C, Ramamurthy V, Stoilov P, Sokolov M (2013) Splice isoforms of phosducin-like protein control the expression of heterotrimeric G proteins. J Biol Chem 288:25760–25768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  PubMed  CAS  Google Scholar 

  • Guenther MG, Yu J, Kao GD, Yen TJ, Lazar MA (2002) Assembly of the SMRT-histone deacetylase 3 repression complex requires the TCP-1 ring complex. Genes Dev 16:3130–3135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guest ST, Kratche ZR, Bollig-Fischer A, Haddad R, Ethier SP (2015) Two members of the TRiC chaperonin complex, CCT2 and TCP1 are essential for survival of breast cancer cells and are linked to driving oncogenes. Exp Cell Res 332(2):223–235

    Google Scholar 

  • Gupta R (1990) Sequence and structural homology between a mouse T-complex protein TCP-1 and the ‘chaperonin’ family of bacterial (GroEL, 60–65 kDa heat shock antigen) and eukaryotic proteins. Biochem Int 20:833–841

    PubMed  CAS  Google Scholar 

  • Gutsche I, Essen L-O, Baumeister W (1999) Group II chaperonins: new TRiC (k) s and turns of a protein folding machine. J Mol Biol 293:295–312

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–580

    Article  PubMed  CAS  Google Scholar 

  • Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330–334

    Article  PubMed  CAS  Google Scholar 

  • Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183

    Article  PubMed  CAS  Google Scholar 

  • Hong S, Choi G, Park S, Chung AS, Hunter E, Rhee SS (2001) Type D retrovirus Gag polyprotein interacts with the cytosolic chaperonin TRiC. J Virol 75:2526–2534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115–145

    Article  PubMed  CAS  Google Scholar 

  • Howlett AC, Gray AJ, Hunter JM, Willardson BM (2009) Role of molecular chaperones in G protein beta5/regulator of G protein signaling dimer assembly and G protein betagamma dimer specificity. J Biol Chem 284:16386–16399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang R, Yu M, Li CY, Zhan YQ, Xu WX, Xu F, Ge CH, Li W, Yang XM (2012) New insights into the functions and localization of nuclear CCT protein complex in K562 leukemia cells. Proteomics Clin Appl 6:467–475

    Article  PubMed  CAS  Google Scholar 

  • Iizuka R, So S, Inobe T, Yoshida T, Zako T, Kuwajima K, Yohda M (2004) Role of the helical protrusion in the conformational change and molecular chaperone activity of the archaeal group II chaperonin. J Biol Chem 279:18834–18839

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y, Aizaki H, Hara H, Matsuda M, Ando T, Shimoji T, Murakami K, Masaki T, Shoji I, Homma S, Matsuura Y, Miyamura T, Wakita T, Suzuki T (2011) Chaperonin TRiC/CCT participates in replication of hepatitis C virus genome via interaction with the viral NS5B protein. Virology 410:38–47

    Article  PubMed  CAS  Google Scholar 

  • Irniger S, Piatti S, Michaelis C, Nasmyth K (1995) Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Cell 81:269–278

    Article  PubMed  CAS  Google Scholar 

  • Jager S, Cimermancic P, Gulbahce N, Johnson JR, Mcgovern KE, Clarke SC, Shales M, Mercenne G, Pache L, Li K, Hernandez H, Jang GM, Roth SL, Akiva E, Marlett J, Stephens M, D’orso I, Fernandes J, Fahey M, Mahon C, O’donoghue AJ, Todorovic A, Morris JH, Maltby DA, Alber T, Cagney G, Bushman FD, Young JA, Chanda SK, Sundquist WI, Kortemme T, Hernandez RD, Craik CS, Burlingame A, Sali A, Frankel AD, Krogan NJ (2011) Global landscape of HIV-human protein complexes. Nature 481:365–370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joachimiak LA, Walzthoeni T, Liu CW, Aebersold R, Frydman J (2014) The structural basis of substrate recognition by the eukaryotic chaperonin TRiC/CCT. Cell 159:1042–1055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaisari S, Sitry-Shevah D, Miniowitz-Shemtov S, Teichner A, Hershko A (2017) Role of CCT chaperonin in the disassembly of mitotic checkpoint complexes. Proc Natl Acad Sci U S A 114:956–961

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalisman N, Adams CM, Levitt M (2012) Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling. Proc Natl Acad Sci U S A 109:2884–2889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanzaki T, Iizuka R, Takahashi K, Maki K, Masuda R, Sahlan M, Yébenes H, Valpuesta JM, Oka T, Furutani M (2008) Sequential action of ATP-dependent subunit conformational change and interaction between helical protrusions in the closure of the built-in lid of group II chaperonins. J Biol Chem 283:34773–34784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kasembeli M, Lau WC, Roh SH, Eckols TK, Frydman J, Chiu W, Tweardy DJ (2014) Modulation of STAT3 folding and function by TRiC/CCT chaperonin. PLoS Biol 12:e1001844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kashuba E, Pokrovskaja K, Klein G, Szekely L (1999) Epstein-Barr virus-encoded nuclear protein EBNA-3 interacts with the epsilon-subunit of the T-complex protein 1 chaperonin complex. J Hum Virol 2:33–37

    PubMed  CAS  Google Scholar 

  • Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang H-C, Stines AP, Georgopoulos C, Frishman D, Hayer-Hartl M, Mann M (2005) Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122:209–220

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Willison KR, Horwich AL (1994) Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. Trends Biochem Sci 19:543–548

    Article  PubMed  CAS  Google Scholar 

  • Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355

    Article  PubMed  CAS  Google Scholar 

  • Klumpp M, Baumeister W, Essen L-O (1997) Structure of the substrate binding domain of the thermosome, an archaeal group II chaperonin. Cell 91:263–270

    Article  PubMed  CAS  Google Scholar 

  • Komlodi-Pasztor E, Sackett D, Wilkerson J, Fojo T (2011) Mitosis is not a key target of microtubule agents in patient tumors. Nat Rev Clin Oncol 8:244–250

    Article  PubMed  CAS  Google Scholar 

  • Kubota H, Hynes G, Carne A, Ashworth A, Willison K (1994) Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin. Curr Biol 4:89–99

    Article  PubMed  CAS  Google Scholar 

  • Langer T, Pfeifer G, Martin J, Baumeister W, Hartl F (1992) Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J 11:4757–4765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leitner A, Joachimiak LA, Bracher A, Mönkemeyer L, Walzthoeni T, Chen B, Pechmann S, Holmes S, Cong Y, Ma B (2012) The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Structure 20:814–825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lewis VA, Hynes GM, Zheng D, Saibil H, Willison K (1992) T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol. Nature 358:249–252

    Article  PubMed  CAS  Google Scholar 

  • Li LJ, Zhang LS, Han ZJ, He ZY, Chen H, Li YM (2017) Chaperonin containing TCP-1 subunit 3 is critical for gastric cancer growth. Oncotarget 8(67):111470–111481

    Article  PubMed  PubMed Central  Google Scholar 

  • Lingappa JR, Martin RL, Wong ML, Ganem D, Welch WJ, Lingappa VR (1994) A eukaryotic cytosolic chaperonin is associated with a high molecular weight intermediate in the assembly of hepatitis B virus capsid, a multimeric particle. J Cell Biol 125:99–111

    Article  PubMed  CAS  Google Scholar 

  • Litterman N, Ikeuchi Y, Gallardo G, O’connell BC, Sowa ME, Gygi SP, Harper JW, Bonni A (2011) An OBSL1-Cul7Fbxw8 ubiquitin ligase signaling mechanism regulates Golgi morphology and dendrite patterning. PLoS Biol 9:e1001060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Lin CY, Lei M, Yan S, Zhou T, Erikson RL (2005) CCT chaperonin complex is required for the biogenesis of functional Plk1. Mol Cell Biol 25:4993–5010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu YJ, Kumar V, Lin YF, Liang PH (2017) Disrupting CCT-β: β-tubulin selectively kills CCT-β overexpressed cancer cells through MAPKs activation. Cell Death Dis 8(9):e3052

    Google Scholar 

  • Llorca O, Smyth MG, Marco S, Carrascosa JL, Willison KR, Valpuesta JM (1998) ATP binding induces large conformational changes in the apical and equatorial domains of the eukaryotic chaperonin containing TCP-1 complex. J Biol Chem 273:10091–10094

    Google Scholar 

  • Loeb KR, Kostner H, Firpo E, Norwood T, Tsuchiya KD, Clurman BE, Roberts JM (2005) A mouse model for cyclin E-dependent genetic instability and tumorigenesis. Cancer Cell 8:35–47

    Article  PubMed  CAS  Google Scholar 

  • Lopez T, Dalton K, Frydman J (2015) The mechanism and function of group II chaperonins. J Mol Biol 427:2919–2930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manchado E, Guillamot M, DE Carcer G, Eguren M, Trickey M, Garcia-Higuera I, Moreno S, Yamano H, Canamero M, Malumbres M (2010) Targeting mitotic exit leads to tumor regression in vivo: modulation by Cdk1, Mastl, and the PP2A/B55alpha, delta phosphatase. Cancer Cell 18:641–654

    Article  PubMed  CAS  Google Scholar 

  • Martin-Benito J, Bertrand S, Hu T, Ludtke PJ, Mclaughlin JN, Willardson BM, Carrascosa JL, Valpuesta JM (2004) Structure of the complex between the cytosolic chaperonin CCT and phosducin-like protein. Proc Natl Acad Sci U S A 101:17410–17415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Melki R, Cowan NJ (1994) Facilitated folding of actins and tubulins occurs via a nucleotide-dependent interaction between cytoplasmic chaperonin and distinctive folding intermediates. Mol Cell Biol 14:2895–2904

    PubMed  PubMed Central  CAS  Google Scholar 

  • Melki R, Vainberg IE, Chow RL, Cowan NJ (1993) Chaperonin-mediated folding of vertebrate actin-related protein and gamma-tubulin. J Cell Biol 122:1301–1310

    Article  PubMed  CAS  Google Scholar 

  • Melki R, Batelier G, Soulie S, Williams RCJ (1997) Cytoplasmic chaperonin containing TCP-1: structural and functional characterization. Biochemistry 36:5817–5826

    Article  PubMed  CAS  Google Scholar 

  • Meyer AS, Gillespie JR, Walther D, Millet IS, Doniach S, Frydman J (2003) Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell 113:369–381

    Article  PubMed  CAS  Google Scholar 

  • Mitchison TJ (2012) The proliferation rate paradox in antimitotic chemotherapy. Mol Biol Cell 23:1–6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muñoz IG, Yébenes H, Zhou M, Mesa P, Serna M, Park AY, Bragado-Nilsson E, Beloso A, de Cárcer G, Malumbres M (2011) Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin. Nat Struct Mol Biol 18:14–19

    Article  PubMed  CAS  Google Scholar 

  • Munoz IG, Yebenes H, Zhou M, Mesa P, Serna M, Park AY, Bragado-Nilsson E, Beloso A, de Carcer G, Malumbres M, Robinson CV, Valpuesta JM, Montoya G (2011) Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin. Nat Struct Mol Biol 18:14–19

    Article  PubMed  CAS  Google Scholar 

  • Netzer WJ, Hartl FU (1997) Recombination of protein domains facilitated by co-translational folding in eukaryotes. Nature 388:343–349

    Article  PubMed  CAS  Google Scholar 

  • Nicola AV, Chen W, Helenius A (1999) Co-translational folding of an alphavirus capsid protein in the cytosol of living cells. Nat Cell Biol 1:341–345

    Article  PubMed  CAS  Google Scholar 

  • Peters JM (2006) The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7:644–656

    Article  PubMed  CAS  Google Scholar 

  • Pijnappel WW, Schaft D, Roguev A, Shevchenko A, Tekotte H, Wilm M, Rigaut G, Seraphin B, Aasland R, Stewart AF (2001) The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. Genes Dev 15:2991–3004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qian-Lin Z, Ting-Feng W, Qi-Feng C, Min-Hua Z, Ai-Guo L (2010) Inhibition of cytosolic chaperonin CCTζ-1 expression depletes proliferation of colorectal carcinoma in vitro. J Surg Oncol 102(5):419–423

    Article  PubMed  CAS  Google Scholar 

  • Reissmann S, Parnot C, Booth CR, Chiu W, Frydman J (2007) Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins. Nat Struct Mol Biol 14:432–440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reissmann S, Joachimiak LA, Chen B, Meyer AS, Nguyen A, Frydman J (2012) A gradient of ATP affinities generates an asymmetric power stroke driving the chaperonin TRIC/CCT folding cycle. Cell Rep 2:866–877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roh SH, Kasembeli M, Galaz-Montoya JG, Trnka M, Lau WC, Burlingame A, Chiu W, Tweardy DJ (2016) Chaperonin TRiC/CCT modulates the folding and activity of leukemogenic fusion Oncoprotein AML1-ETO. J Biol Chem 291:4732–4741

    Article  PubMed  CAS  Google Scholar 

  • Rommelaere H, de Neve M, Melki R, Vandekerckhove J, Ampe C (1999) The cytosolic class II chaperonin CCT recognizes delineated hydrophobic sequences in its target proteins. Biochemistry 38:3246–3257

    Article  PubMed  CAS  Google Scholar 

  • Roobol A, Roobol J, Carden MJ, Smith ME, Hershey JW, Bastide A, Knight JR, Willis AE, Smales CM (2014) The chaperonin CCT interacts with and mediates the correct folding and activity of three subunits of translation initiation factor eIF3: b, i and h. Biochem J 458:213–224

    Article  PubMed  CAS  Google Scholar 

  • Rüßmann F, Stemp MJ, Mönkemeyer L, Etchells SA, Bracher A, Hartl FU (2012) Folding of large multidomain proteins by partial encapsulation in the chaperonin TRiC/CCT. Proc Natl Acad Sci U S A 109:21208–21215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rye HS, Burston SG, Fenton WA, Beechem JM, Xu Z, Sigler PB, Horwich AL (1997) Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388:792–798

    Article  PubMed  CAS  Google Scholar 

  • Sergeeva OA, Chen B, Haase-Pettingell C, Ludtke SJ, Chiu W, King JA (2013) Human CCT4 and CCT5 chaperonin subunits expressed in Escherichia coli form biologically active homo-oligomers. J Biol Chem 288(24):17734–17744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi Y, Deng X, Zhan Q, Shen B, Jin X, Zhu Z, Chen H, Li H, Peng C (2013) A prospective proteomic-based study for identifying potential biomarkers for the diagnosis of cholangiocarcinoma. J Gastrointest Surg 17(9):1584–1591

    Article  PubMed  PubMed Central  Google Scholar 

  • Spiess C, Meyer AS, Reissmann S, Frydman J (2004) Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol 14:598–604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spiess C, Miller EJ, Mcclellan AJ, Frydman J (2006) Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins. Mol Cell 24:25–37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srikakulam R, Winkelmann DA (1999) Myosin II folding is mediated by a molecular chaperonin. J Biol Chem 274:27265–27273

    Article  PubMed  CAS  Google Scholar 

  • Sudakin V, Ganoth D, Dahan A, Heller H, Hershko J, Luca FC, Ruderman JV, Hershko A (1995) The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol Biol Cell 6:185–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szpikowska BK, Sherman MA, Mas MT, Swiderek KM (1998) MgATP binding to the nucleotide-binding domains of the eukaryotic cytoplasmic chaperonin induces conformational changes in the putative substrate-binding domains. Protein Sci 7:1524–1530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tomczak K, Czerwińska P, Wiznerowicz M (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn) 19(1A):A68–A77

    Google Scholar 

  • Trent JD, Nimmesgern E, Wall JS, Hartl F-U, Horwich AL (1991) A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature 354:490–493

    Article  PubMed  CAS  Google Scholar 

  • Trinidad AG, Muller PA, Cuellar J, Klejnot M, Nobis M, Valpuesta JM, Vousden KH (2013) Interaction of p53 with the CCT complex promotes protein folding and wild-type p53 activity. Mol Cell 50:805–817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valpuesta JM, Carrascosa JL, Willison KR (2005) Structure and function of the cytosolic chaperonin CCT. In: Protein folding handbook. Wiley, Weinheim, pp 725–755

    Chapter  Google Scholar 

  • Vinh DB, Drubin DG (1994) A yeast TCP-1-like protein is required for actin function in vivo. Proc Natl Acad Sci U S A 91:9116–9120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wells CA, Dingus J, Hildebrandt JD (2006) Role of the chaperonin CCT/TRiC complex in G protein betagamma-dimer assembly. J Biol Chem 281:20221–20232

    Article  PubMed  CAS  Google Scholar 

  • Won KA, Schumacher RJ, Farr GW, Horwich AL, Reed SI (1998) Maturation of human cyclin E requires the function of eukaryotic chaperonin CCT. Mol Cell Biol 18:7584–7589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yaffe MB, Farr GW, Miklos D, Horwich AL, Sternlicht ML, Sternlicht H (1992) TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature 358:245–248

    Article  PubMed  CAS  Google Scholar 

  • Yam AY, Xia Y, Lin HT, Burlingame A, Gerstein M, Frydman J (2008) Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nat Struct Mol Biol 15:1255–1262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yébenes H, Mesa P, Muñoz IG, Montoya G, Valpuesta JM (2011) Chaperonins: two rings for folding. Trends Biochem Sci 36:424–432

    Article  PubMed  CAS  Google Scholar 

  • Yokota S, Yamamoto Y, Shimizu K, Momoi H, Kamikawa T, Yamaoka Y, Yanagi H, Yura T, Kubota H (2001) Increased expression of cytosolic chaperonin CCT in human hepatocellular and colonic carcinoma. Cell Stress Chaperones 6(4):345–350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan J, Kramer A, Matthess Y, Yan R, Spankuch B, Gatje R, Knecht R, Kaufmann M, Strebhardt K (2006) Stable gene silencing of cyclin B1 in tumor cells increases susceptibility to taxol and leads to growth arrest in vivo. Oncogene 25:1753–1762

    Article  PubMed  CAS  Google Scholar 

  • Zang Y, Jin M, Wang H, Cui Z, Kong L, Liu C, Cong Y (2016) Staggered ATP binding mechanism of eukaryotic chaperonin TRiC (CCT) revealed through high-resolution cryo-EM. Nat Struct Mol Biol 23:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Zang Y, Wang H, Cui Z, Jin M, Liu C, Han W, Wang Y, Cong Y (2018) Development of a yeast internal-subunit eGFP labeling strategy and its application in subunit identification in eukaryotic group II chaperonin TRiC/CCT. Sci Rep 8:2374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zebol JR, Hewitt NM, Moretti PA, Lynn HE, Lake JA, Li P, Vadas MA, Wattenberg BW, Pitson SM (2009) The CCT/TRiC chaperonin is required for maturation of sphingosine kinase 1. Int J Biochem Cell Biol 41:822–827

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Wu X, Zan J, Wu Y, Ye C, Ruan X, Zhou J (2013) Cellular chaperonin CCTgamma contributes to rabies virus replication during infection. J Virol 87:7608–7621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Wang Y, Wei Y, Wu J, Zhang P, Shen S, Saiyin H, Wumaier R, Yang X, Wang C (2016) Molecular chaperone CCT3 supports proper mitotic progression and cell proliferation in hepatocellular carcinoma cells. Cancer Lett 372:101–109

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Novo Nordisk Foundation Center for Protein Research is supported financially by the Novo Nordisk Foundation (Grant NNF14CC0001). This work was also supported by the cryoEM (Grant NNF0024386) and cryoNET (Grant NNF17SA0030214) grants to GM, Guillermo Montoya is a member of the Integrative Structural Biology Cluster (ISBUC) at the University of Copenhagen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Montoya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, D.Y., Kamuda, K., Montoya, G., Mesa, P. (2020). The TRiC/CCT Chaperonin and Its Role in Uncontrolled Proliferation. In: Mendillo, M.L., Pincus, D., Scherz-Shouval, R. (eds) HSF1 and Molecular Chaperones in Biology and Cancer. Advances in Experimental Medicine and Biology, vol 1243. Springer, Cham. https://doi.org/10.1007/978-3-030-40204-4_2

Download citation

Publish with us

Policies and ethics