Skip to main content
Log in

The role of microbial partners in heavy metal metabolism in plants: a review

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Heavy metal pollution threatens plant growth and development as well as ecological stability. Here, we synthesize current research on the interplay between plants and their microbial symbionts under heavy metal stress, highlighting the mechanisms employed by microbes to enhance plant tolerance and resilience. Several key strategies such as bioavailability alteration, chelation, detoxification, induced systemic tolerance, horizontal gene transfer, and methylation and demethylation, are examined, alongside the genetic and molecular basis governing these plant–microbe interactions. However, the complexity of plant–microbe interactions, coupled with our limited understanding of the associated mechanisms, presents challenges in their practical application. Thus, this review underscores the necessity of a more detailed understanding of how plants and microbes interact and the importance of using a combined approach from different scientific fields to maximize the benefits of these microbial processes. By advancing our knowledge of plant–microbe synergies in the metabolism of heavy metals, we can develop more effective bioremediation strategies to combat the contamination of soil by heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Not Applicable.

Code availability

Not Applicable.

References

  • Abbasi Q, Pourakbar L, Siavash Moghaddam S et al (2023) Potential role of apple wood biochar in mitigating mercury toxicity in corn (Zea mays L.). Ecotoxicol Environ Saf 267:115619

    Article  CAS  PubMed  Google Scholar 

  • Afriyie RZ, Arthur EK, Gikunoo E et al (2023) Potential health risk of heavy metals in some selected vegetable crops at an artisanal gold mining site: a case study at Moseaso in the Wassa Amenfi West District of Ghana. J Trace Elem Miner 4:100075

    Article  Google Scholar 

  • Agarwal P, Singh PC, Chaudhry V et al (2019) PGPR-induced OsASR6 improves plant growth and yield by altering root auxin sensitivity and the xylem structure in transgenic Arabidopsis thaliana. J Plant Physiol 240:153010

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Alam P, Balawi TH et al (2020) Sodium nitroprusside (SNP) improves tolerance to arsenic (As) toxicity in Vicia faba through the modifications of biochemical attributes, antioxidants, ascorbate-glutathione cycle and glyoxalase cycle. Chemosphere 244:125480

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Alyemeni MN, Wijaya L et al (2021) Nitric oxide donor, sodium nitroprusside, mitigates mercury toxicity in different cultivars of soybean. J Hazard Mater 408:124852

    Article  CAS  PubMed  Google Scholar 

  • Ahmad N, Naeem M, Ali H et al (2023) From challenges to solutions: the impact of melatonin on abiotic stress synergies in horticultural plants via redox regulation and epigenetic signaling. Sci Hortic 321:112369

    Article  Google Scholar 

  • Alp-Turgut FN, Ozfidan-Konakci C, Arikan B et al (2024) Graphene oxide-based aerogel stimulates growth, mercury accumulation, photosynthesis-related gene expression, antioxidant efficiency and redox status in wheat under mercury exposure. Environ Pollut 342:123117

    Article  CAS  PubMed  Google Scholar 

  • Alves LR, Monteiro CC, Carvalho RF et al (2017) Cadmium stress related to root-to-shoot communication depends on ethylene and auxin in tomato plants. Environ Exp Bot 134:102–115

    Article  CAS  Google Scholar 

  • Ambreetha S, Chinnadurai C, Marimuthu P et al (2018) Plant-associated Bacillus modulates the expression of auxin-responsive genes of rice and modifies the root architecture. Rhizosphere 5:57–66

    Article  Google Scholar 

  • Amna S, Qamar S, Turab Naqvi AA et al (2020) Role of sulfur in combating arsenic stress through upregulation of important proteins, and in-silico analysis to study the interaction between phosphate transporter (PHO1), arsenic and phosphate in spinach. Plant Physiol Biochem 157:348–358

    Article  CAS  PubMed  Google Scholar 

  • An T, Kuang Q, Wu Y et al (2023) Variability in cadmium stress tolerance among four maize genotypes: impacts on plant physiology, root morphology, and chloroplast microstructure. Plant Physiol Biochem 205:108135

    Article  CAS  PubMed  Google Scholar 

  • Aravin AA, Stuwe E, To KF (2014) Small but sturdy: small RNAs in cellular memory and epigenetics. Genes Dev 28:423–431

    Article  PubMed  PubMed Central  Google Scholar 

  • Arif MS, Yasmeen T, Shahzad SM et al (2019) Lead toxicity induced phytotoxic effects on mung bean can be relegated by lead tolerant Bacillus subtilis (PbRB3). Chemosphere 234:70–80

    Article  CAS  PubMed  Google Scholar 

  • Asif M, Ahmad R, Pervez A et al (2023) Combination of melatonin and plant growth promoting rhizobacteria improved the growth of Spinacia oleracea L. under the arsenic and cadmium stresses. Physiol Mol Plant Pathol 127:102097

    Article  CAS  Google Scholar 

  • Aviles-Garcia ME, Flores-Cortez I, Hernández-Soberano C et al (2016) La rizobacteria promotora del crecimiento vegetal Arthrobacter agilis UMCV2 coloniza endofíticamente a Medicago truncatula. Rev Argent Microbiol 48:342–346

    PubMed  Google Scholar 

  • Bai B, Xu T, Nie Q et al (2020) Temperature-driven migration of heavy metal Pb2+ along with moisture movement in unsaturated soils. Int J Heat Mass Transf 153:119573

    Article  CAS  Google Scholar 

  • Bai B, Chen J, Bai F et al (2024) Corrosion effect of acid/alkali on cementitious red mud-fly ash materials containing heavy metal residues. Environ Technol Innov 33:103485

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2016) Emerging techniques to decipher microRNAs ( miRNAs ) and their regulatory role in conferring abiotic stress tolerance of plants. Plant Biotechnol Rep 10:185–205

    Article  Google Scholar 

  • Barra Caracciolo A, Terenzi V (2021) Rhizosphere microbial communities and heavy metals. Microorganisms 9:1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Y, Cheng M, Liu Y et al (2023) Biomarker changes and oxidative damage in living plant cells as new biomonitoring indicators for combined heavy metal stress assessment. Ecol Indic 154:110784

    Article  CAS  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    Article  CAS  PubMed  Google Scholar 

  • Bhatta D, Adhikari A, Kang SM et al (2023) Hormones and the antioxidant transduction pathway and gene expression, mediated by Serratia marcescens DB1, lessen the lethality of heavy metals (As, Ni, and Cr) in Oryza sativa L. Ecotoxicol Environ Saf 263:115377

    Article  CAS  PubMed  Google Scholar 

  • Bilal S, Shahzad R, Imran M et al (2020) Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: heavy metals, high temperature and drought stress. Ind Crops Prod 143:111931

    Article  CAS  Google Scholar 

  • Bisht A, Garg N (2022) AMF species improve yielding potential of Cd stressed pigeonpea plants by modulating sucrose-starch metabolism, nutrients acquisition and soil microbial enzymatic activities. Plant Growth Regul 96:409–430

    Article  CAS  Google Scholar 

  • Bisht A, Bhalla S, Kumar A et al (2023) Arbuscular mycorrhizae impart Cd tolerance in Cajans cajan (L.) Millsp. by upregulating the expression of metallothionein (CcMT1) and phytochelatin synthase (CcPCS1) genes. J Plant Growth Regul 42:3947–3966

    Article  CAS  Google Scholar 

  • Boudjabi S, Chenchouni H (2023) Comparative effectiveness of exogenous organic amendments on soil fertility, growth, photosynthesis and heavy metal accumulation in cereal crops. Heliyon 9:e14615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooker RW, Hawes C, Iannetta PPM et al (2023) Plant diversity and ecological intensification in crop production systems. J Plant Ecol 16:rtad015

    Article  Google Scholar 

  • Buzhdygan OY, Petermann JS (2023) Multitrophic biodiversity enhances ecosystem functions, services and ecological intensification in agriculture. J Plant Ecol 16:rtad019

    Article  Google Scholar 

  • Calatrava-Morales N, McIntosh M, Soto MJ (2018) Regulation mediated by N-acyl homoserine lactone quorum sensing signals in the rhizobium-legume symbiosis. Genes (basel) 9:263

    Article  PubMed  Google Scholar 

  • Campos NV, Arcanjo-Silva S, Viana IB et al (2015) Arsenic-induced responses in Pityrogramma calomelanos (L.) link: arsenic speciation, mineral nutrition and antioxidant defenses. Plant Physiol Biochem 97:28–35

    Article  CAS  PubMed  Google Scholar 

  • Capone R, Tiwari BS, Levine A (2004) Rapid transmission of oxidative and nitrosative stress signals from roots to shoots in Arabidopsis. Plant Physiol Biochem 42:425–428

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty J, Das S (2014) Characterization and cadmium-resistant gene expression of biofilm-forming marine bacterium Pseudomonas aeruginosa JP-11. Environ Sci Pollut Res 21:14188–14201

    Article  CAS  Google Scholar 

  • Chang J, Yan Z, Dong J et al (2022) Mechanisms controlling the transformation of and resistance to mercury(II) for a plant-associated Pseudomonas sp. strain, AN-B15. J Hazard Mater 425:127948

    Article  CAS  PubMed  Google Scholar 

  • Chapotin SM, Wolt JD (2007) Genetically modified crops for the bioeconomy: meeting public and regulatory expectations. Transgenic Res 16:675–688

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wang HY, Chen YF (2021) The transcription factor MYB40 is a central regulator in arsenic resistance in Arabidopsis. Plant Commun 2:100234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XP, Le XG, Niklas KJ et al (2023) Divergent leaf nutrient-use strategies of coexistent evergreen and deciduous trees in a subtropical forest. J Plant Ecol 16:rtac093

    Article  Google Scholar 

  • Cordon G, Iriel A, Cirelli AF et al (2018) Arsenic effects on some photophysical parameters of Cichorium intybus under different radiation and water irrigation regimes. Chemosphere 204:398–404

    Article  CAS  PubMed  Google Scholar 

  • Costa TR, de Moura CC, da Silva LS et al (2023) Environmental factors determining the forest-grassland variation in the espinhaco range biosphere reserve-brazil. J Plant Ecol 16:rtac089

    Article  Google Scholar 

  • Crupper SS, Worrell V, Stewart GC (1999) Cloning and expression of cadD, a new cadmium resistance gene of Staphylococcus aureus. J Bacteriol 181:4071–4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui W, Fang P, Zhu K et al (2014) Hydrogen-rich water confers plant tolerance to mercury toxicity in alfalfa seedlings. Ecotoxicol Environ Saf 105:103–111

    Article  CAS  PubMed  Google Scholar 

  • Czajka K, Mehes M, Kabwe S (2022) DNA methylation and histone modifications induced by abiotic stressors in plants. Genes Genomics 44:279–297

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira NT, Namorato FA, Rao S et al (2023) Iron counteracts zinc-induced toxicity in soybeans. Plant Physiol Biochem 194:335–344

    Article  PubMed  Google Scholar 

  • Delias DS, Da-Silva CJ, Martins AC et al (2022) Iron toxicity increases oxidative stress and impairs mineral accumulation and leaf gas exchange in soybean plants during hypoxia. Environ Sci Pollut Res 29:22427–22438

    Article  CAS  Google Scholar 

  • Ding G, Guo D, Guan Y et al (2019) Changes of DNA methylation of Isoetes sinensis under Pb and Cd stress. Environ Sci Pollut Res 26:3428–3435

    Article  CAS  Google Scholar 

  • Ejileugha C (2022) Biochar can mitigate co-selection and control antibiotic resistant genes (ARGs) in compost and soil. Heliyon 8:e09543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Meleigy MA (1992) Copper organo-chelators in Aspergillus fumigatus and Penicillium chrysogenum. Biol Trace Elem Res 34:177–183

    Article  CAS  PubMed  Google Scholar 

  • Etesami H, Glick BR (2023) Exploring the potential: can mycorrhizal fungi and hyphosphere silicate-solubilizing bacteria synergistically alleviate cadmium stress in plants? Curr Res Biotechnol 6:100158

    Article  CAS  Google Scholar 

  • Faizan M, Bhat JA, Hessini K et al (2021) Zinc oxide nanoparticles alleviates the adverse effects of cadmium stress on Oryza sativa via modulation of the photosynthesis and antioxidant defense system. Ecotoxicol Environ Saf 220:112401

    Article  CAS  PubMed  Google Scholar 

  • Fan M, Liu Z, Nan L et al (2018) Isolation, characterization, and selection of heavy metal-resistant and plant growth-promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Microbiol Res 217:51–59

    Article  CAS  PubMed  Google Scholar 

  • Fang GY, Liu XQ, Jiang YJ et al (2024) Horizontal gene transfer in activated sludge enhances microbial antimicrobial resistance and virulence. Sci Total Environ 912:168908

    Article  CAS  PubMed  Google Scholar 

  • Fedenko VS, Landi M, Shemet SA (2022) Metallophenolomics: a novel integrated approach to study complexation of plant phenolics with metal/metalloid ions. Int J Mol Sci 23:11370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng SJ, Liu XS, Ma LY et al (2020) Identification of epigenetic mechanisms in paddy crop associated with lowering environmentally related cadmium risks to food safety. Environ Pollut 256:113464

    Article  CAS  PubMed  Google Scholar 

  • Feng SJ, Liu XS, Cao HW et al (2021) Identification of a rice metallochaperone for cadmium tolerance by an epigenetic mechanism and potential use for clean up in wetland. Environ Pollut 288:117837

    Article  CAS  PubMed  Google Scholar 

  • Fesharaki-Esfahani M, Shahpiri A, Kazemi-Nasab A (2021) A highly efficient, thermo stable and broad pH adaptable copper-zinc super oxide dismutase (AmSOD1) mediates hydrogen peroxide tolerance in Avicennia marina. Phytochemistry 187:112766

    Article  CAS  PubMed  Google Scholar 

  • Figueira E, Matos D, Cardoso P et al (2021) An underground strategy to increase mercury tolerance in the salt marsh halophyte Juncus maritimus Lam.: lipid remodelling and Hg restriction. Environ Exp Bot 191:104619

    Article  CAS  Google Scholar 

  • Figueredo MS, Álamo T, Tonelli ML et al (2023) The native strain Paenibacillus sp. A224 induces systemic tolerance and mitigates stresses caused in peanut plants by high temperatures and the pathogen Sclerotium rolfsii. Plant Soil 4866:375–390

    Article  Google Scholar 

  • Flores A, Valencia-marín MF, Chavez-Avila S et al (2022) Genome mining, phylogenetic, and functional analysis of arsenic (As) resistance operons in Bacillus strains, isolated from As-rich hot spring microbial mats. Microbiol Res 264:127158

    Article  CAS  PubMed  Google Scholar 

  • Gaddam SR, Sharma A, Trivedi PK (2024) miR397b-LAC2 module regulates cadmium stress response by coordinating root lignification and copper homeostasis in Arabidopsis thaliana. J Hazard Mater 465:133100

    Article  CAS  PubMed  Google Scholar 

  • Galati S, Gullì M, Giannelli G et al (2021) Heavy metals modulate DNA compaction and methylation at CpG sites in the metal hyperaccumulator Arabidopsis halleri. Environ Mol Mutagen 62:133–142

    Article  CAS  PubMed  Google Scholar 

  • Ge J, Tao J, Zhao J et al (2022) Transcriptome analysis reveals candidate genes involved in multiple heavy metal tolerance in hyperaccumulator Sedum alfredii. Ecotoxicol Environ Saf 241:113795

    Article  CAS  PubMed  Google Scholar 

  • Ghouri F, Shahid MJ, Zhong M et al (2024) Alleviated lead toxicity in rice plant by co-augmented action of genome doubling and TiO2 nanoparticles on gene expression, cytological and physiological changes. Sci Total Environ 911:168709

    Article  CAS  PubMed  Google Scholar 

  • González Barrios AF, Zuo R, Hashimoto Y et al (2006) Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 188:305–316

    Article  PubMed  PubMed Central  Google Scholar 

  • Grao PL, Monteiro CC, Tezotto T et al (2015) Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants. Biometals 28:803–816

    Article  Google Scholar 

  • Große C, Scherer J, Schleuder G et al (2023) Interplay between two-component regulatory systems is involved in control of Cupriavidus metallidurans metal. J Bacteriol 4:1–17

    Google Scholar 

  • Großkinsky DK, Syaifullah SJ, Roitsch T (2018) Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants. J Exp Bot 69:825–844

    Article  PubMed  Google Scholar 

  • Gu Y, Xu W, Liu Y et al (2015) Mechanism of Cr(VI) reduction by Aspergillus niger: enzymatic characteristic, oxidative stress response, and reduction product. Environ Sci Pollut Res 22:6271–6279

    Article  CAS  Google Scholar 

  • Guan J, Yang Y, Shan Q et al (2023) Plant cadmium resistance 10 enhances tolerance to toxic heavy metals in poplar. Plant Physiol Biochem 203:108043

    Article  CAS  PubMed  Google Scholar 

  • Hak K, Ritchie RJ, Dummee V (2020) Bioaccumulation and physiological responses of the Coontail, Ceratophyllum demersum exposed to copper, zinc and in combination. Ecotoxicol Environ Saf 189:110049

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Sa G, Sun J et al (2014) Overexpression of Populus euphratica xyloglucan endotransglucosylase/hydrolase gene confers enhanced cadmium tolerance by the restriction of root cadmium uptake in transgenic tobacco. Environ Exp Bot 100:74–83

    Article  CAS  Google Scholar 

  • Han H, Zhang H, Qin S et al (2021) Mechanisms of Enterobacter bugandensis TJ6 immobilization of heavy metals and inhibition of Cd and Pb uptake by wheat based on metabolomics and proteomics. Chemosphere 276:130157

    Article  CAS  PubMed  Google Scholar 

  • Hao S, Wang P, Ge F et al (2022) Enhanced Lead (Pb) immobilization in red soil by phosphate solubilizing fungi associated with tricalcium phosphate influencing microbial community composition and Pb translocation in Lactuca sativa L. J Hazard Mater 424:127720

    Article  CAS  PubMed  Google Scholar 

  • Hareem M, Zakriya M, Waheed A et al (2023) Mitigating the negative effects of lead toxicity on Vigna mungo: the promising role of rhizobacteria. J King Saud Univ - Sci 35:102765

    Article  Google Scholar 

  • Hartmann A, Klink S, Rothballer M (2021) Plant growth promotion and induction of systemic tolerance to drought and salt stress of plants by quorum sensing auto-inducers of the N-acyl-homoserine lactone type: recent developments. Front Plant Sci 12:683546

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi AA et al (2016) Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. Saudi J Biol Sci 23:272–281

    Article  CAS  PubMed  Google Scholar 

  • He C, Gao H, Wang H et al (2020) GSK3-mediated stress signaling inhibits legume – rhizobium symbiosis by phosphorylating GmNSP1 in soybean. Mol Plant 14:488–502

    Article  PubMed  Google Scholar 

  • He M, Ren T, Jin Z (2023) Precise analysis of potassium isotopic composition in plant materials by multi-collector inductively coupled plasma mass spectrometry. Spectrochim Acta Part B at Spectrosc 209:106781

    Article  CAS  Google Scholar 

  • Hobman JL, Julian DJ, Brown NL (2012) Cysteine coordination of Pb (II) is involved in the PbrR-dependent activation of the lead-resistance promoter, P pbrA, from Cupriavidus metallidurans. BMC Microbiol 12:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang SH, Zhang JY, Tao Z et al (2014) Enzymatic conversion from pyridoxal to pyridoxine caused by microorganisms within tobacco phyllosphere. Plant Physiol Biochem 85:9–13

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Ullah F, Zhou D et al (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci 10:800

    Article  PubMed  PubMed Central  Google Scholar 

  • Iqbal B, Javed Q, Khan I et al (2023a) Influence of soil microplastic contamination and cadmium toxicity on the growth, physiology, and root growth traits of Triticum aestivum L. South Afr J Bot 160:369–375

    Article  CAS  Google Scholar 

  • Iqbal B, Li G, Alabbosh KF (2023b) Advancing environmental sustainability through microbial reprogramming in growth improvement, stress alleviation, and phytoremediation. Plant Stress 10:100283

    Article  Google Scholar 

  • Iqbal B, Zhao X, Khan KY et al (2024a) Microplastics meet invasive plants: unraveling the ecological hazards to agroecosystems. Sci Total Environ 906:167756

    Article  CAS  PubMed  Google Scholar 

  • Iqbal B, Khan I, Anwar S et al (2024b) Biochar and saline soil: mitigation strategy by incapacitating the ecological threats to agricultural land. Int J Phyto Remed. https://doi.org/10.1080/15226514.2024.2310001

    Article  Google Scholar 

  • Islam F, Yasmeen T, Riaz M et al (2014) Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants. Ecotoxicol Environ Saf 110:143–152

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Gadre R (2004) Inhibition of 5-amino levulinic acid dehydratase activity by arsenic in excised etiolated maize leaf segments during greening. J Plant Physiol 161:251–255

    Article  CAS  PubMed  Google Scholar 

  • Jalil S, Alghanem SMS, AL-Huqail AA et al (2023) Zinc oxide nanoparticles mitigated the arsenic induced oxidative stress through modulation of physio-biochemical aspects and nutritional ions homeostasis in rice (Oryza sativa L.). Chemosphere 338:139566

    Article  CAS  PubMed  Google Scholar 

  • Jian G, Dong L, Hao L et al (2019) Identification of manganese-responsive microRNAs in Arabidopsis by small RNA sequencing. Czech J Genet Plant Breed 55:76–82

    Article  Google Scholar 

  • Karmakar R, Bindiya S, Hariprasad P (2019) Convergent evolution in bacteria from multiple origins under antibiotic and heavy metal stress, and endophytic conditions of host plant. Sci Total Environ 650:858–867. https://doi.org/10.1016/j.scitotenv.2018.09.078

    Article  CAS  PubMed  Google Scholar 

  • Khalid MF, Elezz AA, Jawaid MZ et al (2023) Salicylic acid restricts mercury translocation by activating strong antioxidant defense mechanisms in sweet pepper (Capsicum annum L.). Environ Technol Innov 32:103283

    Article  CAS  Google Scholar 

  • Khan MIR, Jahan B, AlAjmi MF et al (2021) Crosstalk of plant growth regulators protects photosynthetic performance from arsenic damage by modulating defense systems in rice. Ecotoxicol Environ Saf 222:112535

    Article  CAS  PubMed  Google Scholar 

  • Khan Z, Elahi A, Bukhari DA, Rehman A (2022) Cadmium sources, toxicity, resistance and removal by microorganisms-a potential strategy for cadmium eradication. J Saudi Chem Soc 26:101569

    Article  CAS  Google Scholar 

  • Kirolinko C, Hobecker K, Wen J et al (2021) Auxin response factor 2 (ARF2), ARF3, and ARF4 mediate both lateral root and nitrogen fixing nodule development in Medicago truncatula. Front Plant Sci 12:659061

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Yadav A, Verma R et al (2022) Metallothionein (MT1): a molecular stress marker in chickpea enhances drought and heavy metal stress adaptive efficacy in transgenic plants. Environ Exp Bot 199:104871

    Article  CAS  Google Scholar 

  • Kumar RS, Koner S, Tsai HC et al (2023) Deciphering endemic rhizosphere microbiome community’s structure towards the host-derived heavy metals tolerance and plant growth promotion functions in serpentine geo-ecosystem. J Hazard Mater 452:131359

    Article  Google Scholar 

  • Li M, Xu G, Xia X et al (2017) Deciphering the physiological and molecular mechanisms for copper tolerance in autotetraploid Arabidopsis. Plant Cell Rep 36:1585–1597

    Article  CAS  PubMed  Google Scholar 

  • Li J, Sun Y, Zhang X et al (2018) A methyltransferase gene from arbuscular mycorrhizal fungi involved in arsenic methylation and volatilization. Chemosphere 209:392–400

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Hu X, Hao J et al (2020) Characterization of Cu distribution in clay-sized soil aggregates by NanoSIMS and micro-XRF. Chemosphere 249:126143

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhang T, Feng P et al (2021) Genetic engineering of glycinebetaine synthesis enhances cadmium tolerance in BADH-transgenic tobacco plants via reducing cadmium uptake and alleviating cadmium stress damage. Environ Exp Bot 191:104602

    Article  CAS  Google Scholar 

  • Li X, Sun J, Albinsky D et al (2022) Nutrient regulation of lipochitooligo-saccharide recognition in plants via. Nat Commun 13:6421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Wang X, Zhang B et al (2023) Transmission mechanisms of antibiotic resistance genes in arsenic-contaminated soil under sulfamethoxazole stress. Environ Pollut 326:121488

    Article  CAS  PubMed  Google Scholar 

  • Li A, Li A, Luo C et al (2024) Assessing heavy metal contamination in Amomum villosum Lour. fruits from plantations in Southern China: soil-fungi-plant interactions. Ecotoxicol Environ Saf 269:115789

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhu N, Zhang Y et al (2021) Transcription profiling-guided remodeling of sulfur metabolism in synthetic bacteria for efficiently capturing heavy metals. J Hazard Mater 403:123638

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Kong L, Gong C et al (2023) Identification of plant cadmium resistance gene family in Brassica napus and functional analysis of BnPCR10.1 involved in cadmium and copper tolerance. Plant Physiol Biochem 202:107989

    Article  CAS  PubMed  Google Scholar 

  • Luo D, Lu H, Wang C et al (2023a) Physiological and DNA methylation analysis provides epigenetic insights into kenaf cadmium tolerance heterosis. Plant Sci 331:111663

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Tan C, He Y et al (2023b) Rhizosphere activity induced mobilization of heavy metals immobilized by combined amendments in a typical lead/zinc smelter-contaminated soil. Chemosphere 313:137556

    Article  CAS  PubMed  Google Scholar 

  • Lv F, Shan Q, Qiao K et al (2023) Populus euphratica plant cadmium resistance 2 mediates Cd tolerance by root efflux of Cd ions in poplar. Plant Cell Rep 42:1777–1789

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Yang H, Bu Y et al (2023) Genome-wide identification of the NRAMP gene family in Populus trichocarpa and their function as heavy metal transporters. Ecotoxicol Environ Saf 261:115110

    Article  CAS  PubMed  Google Scholar 

  • Maity S, Sarkar D, Poddar K et al (2023) Biofilm-mediated heavy metal removal from aqueous system by multi-metal-resistant bacterial strain Bacillus sp. GH-s29. Appl Biochem Biotechnol 195:4832–4850

    Article  CAS  PubMed  Google Scholar 

  • Martínez M, Bernal P, Almela C et al (2006) An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Chemosphere 64:478–485

    Article  PubMed  Google Scholar 

  • Meng M, Yang L, Wei B et al (2021) Plastic shed production systems: the migration of heavy metals from soil to vegetables and human health risk assessment. Ecotoxicol Environ Saf 215:112106

    Article  CAS  PubMed  Google Scholar 

  • Mishra D, Singh G, Kaur G et al (2021) Comprehensive analysis of structural, functional, and evolutionary dynamics of leucine rich repeats-RLKs in Thinopyrum elongatum. Int J Biol Macromol 183:513–527

    Article  CAS  PubMed  Google Scholar 

  • Mohammed AE, Pawelzik E, Nour MM et al (2023) Mycorrhized wheat and bean plants tolerate bismuth contaminated soil via improved metal detoxification and antioxidant defense systems. Plant Physiol Biochem 205:108148

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-García A, Arbeli Z, Boyacá-Vásquez V, Vanegas J (2022) Metagenomic and genomic characterization of heavy metal tolerance and resistance genes in the rhizosphere microbiome of Avicennia germinans in a semi-arid mangrove forest in the tropics. Mar Pollut Bull 184:114204

    Article  PubMed  Google Scholar 

  • Mwelwa S, Chungu D, Tailoka F et al (2023) Data to understand the biotransfer of heavy metals along the soil-plant-edible insect-human food chain in Africa. Data Brief 49:109434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naik MM, Pandey A, Dubey SK (2012) Pseudomonas aeruginosa strain WI-1 from Mandovi estuary possesses metallothionein to alleviate lead toxicity and promotes plant growth. Ecotoxicol Environ Saf 79:129–133

    Article  CAS  PubMed  Google Scholar 

  • Niu DD, Liu HX, Jiang CH et al (2011) The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol Plant Microbe Interact 24:533–542

    Article  CAS  PubMed  Google Scholar 

  • Onyango DA, Entila F, Egdane J et al (2020) Mechanistic understanding of iron toxicity tolerance in contrasting rice varieties from Africa: 2. Root oxidation ability and oxidative stress control. Funct Plant Biol 47:145–155

    Article  CAS  PubMed  Google Scholar 

  • Palacios OA, Gomez-Anduro G, Bashan Y et al (2016) Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense. FEMS Microbiol Ecol 92:fiw077

    Article  PubMed  Google Scholar 

  • Pang B, Zuo D, Yang T et al (2024) BcaSOD1 enhances cadmium tolerance in transgenic Arabidopsis by regulating the expression of genes related to heavy metal detoxification and arginine synthesis. Plant Physiol Biochem 206:108299

    Article  CAS  PubMed  Google Scholar 

  • Pavlík M, Pavlíková D, Staszková L et al (2010) The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L. Ecotoxicol Environ Saf 73:1309–1313

    Article  PubMed  Google Scholar 

  • Pelcová P, Kopp R, Ridošková A et al (2022) Evaluation of mercury bioavailability and phytoaccumulation by means of a DGT technique and of submerged aquatic plants in an aquatic ecosystem situated in the vicinity of a cinnabar mine. Chemosphere 288:132545

    Article  PubMed  Google Scholar 

  • Peng RH, Fu XY, Zhao W et al (2014) Phytoremediation of phenanthrene by transgenic plants transformed with a naphthalene dioxygenase system from pseudomonas. Environ Sci Technol 48:12824–12832

    Article  CAS  PubMed  Google Scholar 

  • Pirzadah TB, Malik B, Tahir I et al (2020) Lead toxicity alters the antioxidant defense machinery and modulate the biomarkers in Tartary buckwheat plants. Int Biodeterior Biodegrad 151:104992

    Article  CAS  Google Scholar 

  • Praveen A, Pandey C, Khan E et al (2020) Silicon-mediated genotoxic alterations in Brassica juncea under arsenic stress: a comparative study of biochemical and molecular markers. Pedosphere 30:517–527

    Article  CAS  Google Scholar 

  • Qu L, Xu Z, Huang W et al (2024) Selenium-molybdenum interactions reduce chromium toxicity in Nicotiana tabacum L. by promoting chromium chelation on the cell wall. J Hazard Mater 461:132641

    Article  CAS  PubMed  Google Scholar 

  • Rai R, Singh S, Rai KK et al (2021) Regulation of antioxidant defense and glyoxalase systems in cyanobacteria. Plant Physiol Biochem 168:353–372

    Article  CAS  PubMed  Google Scholar 

  • Safari F, Akramian M, Salehi-Arjmand H et al (2019) Physiological and molecular mechanisms underlying salicylic acid-mitigated mercury toxicity in lemon balm (Melissa officinalis L.). Ecotoxicol Environ Saf 183:109542

    Article  CAS  PubMed  Google Scholar 

  • Sarma H, Islam NF, Prasad R et al (2021) Enhancing phytoremediation of hazardous metal(loid)s using genome engineering CRISPR–Cas9 technology. J Hazard Mater 414:125493

    Article  CAS  PubMed  Google Scholar 

  • Schikora A, Schenk ST, Hartmann A (2016) Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group. Plant Mol Biol 90:605–612

    Article  CAS  PubMed  Google Scholar 

  • Serrato N, Ma G, Salgado G et al (2018) Analysis of the ars gene cluster from highly arsenic-resistant Burkholderia xenovorans LB400. World J Microbiol Biotechnol 34:142

    Article  Google Scholar 

  • Shabala S, White RG, Djordjevic MA et al (2016) Root-to-shoot signalling: integration of diverse molecules, pathways and functions. Funct Plant Biol 43:87–104

    Article  CAS  PubMed  Google Scholar 

  • Shabani L, Sabzalian MR, Mostafavi pour S (2016) Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea. Mycorrhiza 26:67–76

    Article  CAS  PubMed  Google Scholar 

  • Shah T, Munsif F, D’amato R et al (2020) Lead toxicity induced phytotoxic impacts on rapeseed and clover can be lowered by biofilm forming lead tolerant bacteria. Chemosphere 246:125766

    Article  CAS  PubMed  Google Scholar 

  • Shah T, Khan Z, Asad M et al (2023) Alleviation of cadmium toxicity in wheat by strigolactone: regulating cadmium uptake, nitric oxide signaling, and genes encoding antioxidant defense system. Plant Physiol Biochem 202:107916

    Article  CAS  PubMed  Google Scholar 

  • Shah T, Khan Z, Asad M et al (2024) Synthetic bacterial community derived from Astragalus mongholicus and plant-plant interactions inhibit cadmium uptake by modulating gene expression, antioxidant system and carbohydrate metabolism under cadmium contaminated soil. J Environ Chem Eng 12:111619

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Pourrut B et al (2014) Assessing the effect of metal speciation on lead toxicity to Vicia faba pigment contents. J Geochemical Explor 144:290–297

    Article  CAS  Google Scholar 

  • Sharma P, Chouhan R, Bakshi P et al (2022) Amelioration of chromium-induced oxidative stress by combined treatment of selected rhizobacteria and earthworms via modulating the expression of genes related to reactive oxygen species metabolism in Brassica juncea. Front Microbiol 13:802512

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi W, Zhang Y, Chen S et al (2019a) Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants. Plant Cell Environ 42:1087–1103

    Article  CAS  PubMed  Google Scholar 

  • Shi WG, Liu W, Yu W et al (2019b) Abscisic acid enhances lead translocation from the roots to the leaves and alleviates its toxicity in Populus × canescens. J Hazard Mater 362:275–285

    Article  CAS  PubMed  Google Scholar 

  • Shukla D, Waigel S, Rouchka EC et al (2021) Genome-wide expression analysis reveals contrasting regulation of phosphate starvation response (PSR) in root and shoot of Arabidopsis and its association with biotic stress. Environ Exp Bot 188:104483

    Article  CAS  Google Scholar 

  • Siddiqui MH, Alamri S, Nasir Khan M et al (2020) Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. J Hazard Mater 398:122882

    Article  CAS  PubMed  Google Scholar 

  • Sieburth LE, Lee DK (2010) BYPASS1: how a tiny mutant tells a big story about root-to-shoot signaling. J Integr Plant Biol 52:77–85

    Article  CAS  PubMed  Google Scholar 

  • Silva-Gigante M, Hinojosa-Reyes L, Rosas-Castor JM et al (2023) Heavy metals and metalloids accumulation in common beans (Phaseolus vulgaris L.): a review. Chemosphere 335:139010

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Roychoudhury A (2023) Abscisic acid in plants under abiotic stress: crosstalk with major phytohormones. Plant Cell Rep 42:961–974

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Dutta P, Chakrabarty D (2021) miRNAs play critical roles in response to abiotic stress by modulating cross-talk of phytohormone signaling. Plant Cell Rep 40:1617–1630

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Yadav JS, Kumar I et al (2022) Carpet industry irrigational sources risk assessment: heavy metal contaminated vegetables and cereal crops in northern India. Toxicol Reports 9:1906–1919

    Article  CAS  Google Scholar 

  • Sobral-Souza CE, Silva ARP, Leite NF et al (2019) Phytotoxicity reduction of the mercury chloride effect by natural products from Eugenia jambolana Lam.: a new strategy against the toxic metal pollution. Ecotoxicol Environ Saf 170:461–467

    Article  CAS  PubMed  Google Scholar 

  • Song J, Finnegan PM, Liu W et al (2019) Mechanisms underlying enhanced Cd translocation and tolerance in roots of Populus euramericana in response to nitrogen fertilization. Plant Sci 287:110206

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S (2015) Plant hormones produced by microbes. In: Lugtenberg B (ed) Principles of plant-microbe interactions: microbes for sustainable agriculture. Springer International Publishing, Cham, pp 247–256

    Chapter  Google Scholar 

  • Su S, Zeng X, Bai L et al (2017) Concurrent methylation and demethylation of arsenic by fungi and their differential expression in the protoplasm proteome. Environ Pollut 225:620–627

    Article  CAS  PubMed  Google Scholar 

  • Su Z, Wen D, Gu AZ et al (2023) Industrial effluents boosted antibiotic resistome risk in coastal environments. Environ Int 171:107714

    Article  CAS  PubMed  Google Scholar 

  • Subhanullah M, Hassan N, Ali S et al (2024) The detrimental effects of heavy metals on tributaries exert pressure on water quality, Crossocheilus aplocheilus, and the well-being of human health. Sci Rep 14:2868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Liu X, Li W et al (2023) The regulatory metabolic networks of the Brassica campestris L. hairy roots in response to cadmium stress revealed from proteome studies combined with a transcriptome analysis. Ecotoxicol Environ Saf 263:115214

    Article  CAS  PubMed  Google Scholar 

  • Swift S, Allan Downie J, Whitehead NA et al (2001) Quorum sensing as a population-density-dependent determinant of bacterial physiology. Adv Microb Physiol 45:199–270

    Article  CAS  PubMed  Google Scholar 

  • Tagumira A, Biira S, Amabayo EB (2022) Concentrations and human health risk assessment of selected heavy metals in soils and food crops around Osukuru phosphate mine, Tororo District, Uganda. Toxicol Reports 9:2042–2049

    Article  CAS  Google Scholar 

  • Tang L, Mao B, Li Y et al (2017) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7:14438

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Li G, Iqbal B et al (2023) Soil nutrient levels regulate the effect of soil microplastics contamination on microbial element metabolism and carbon use efficiency. Ecotoxicol Environ Saf 267:115640

    Article  CAS  PubMed  Google Scholar 

  • Tariq M, Iqbal B, Khan I et al (2024) Microplastic contamination in the agricultural soil: mitigation strategies, heavy metals contamination, and impact on human health-a review. Plant Cell Rep 43:65

    Article  CAS  PubMed  Google Scholar 

  • Tatung M, Deb CR (2024) Screening and characterization of heavy metal tolerant rhizobacteria from wild Musa rhizosphere from coal mining area of Changki, Nagaland, India and assessment of their growth promoting potential under Cd/Cu contaminated conditions. South African J Bot 165:217–227

    Article  CAS  Google Scholar 

  • Terzi H, Yıldız M (2021) Proteomic analysis reveals the role of exogenous cysteine in alleviating chromium stress in maize seedlings. Ecotoxicol Environ Saf 209:111784

    Article  CAS  PubMed  Google Scholar 

  • Teshita A, Khan W, Alabbosh KF et al (2024) Dynamic changes of soil nematodes between bulk and rhizosphere soils in the maize (Zea mays L.)/alfalfa (Medicago sativa L) intercropping system. Plant Stress 11:100345

    Article  CAS  Google Scholar 

  • Tewari RK, Yadav N, Gupta R et al (2021) Oxidative stress under macronutrient deficiency in plants. J Soil Sci Plant Nutr 21:832–859

    Article  CAS  Google Scholar 

  • Thaden JT, Lory S, Gardner TS (2010) Quorum-sensing regulation of a copper toxicity system in Pseudomonas aeruginosa. J Bacteriol 192:2557–2568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornhill SG, Kumar M, Vega LM et al (2017) Cadmium ion inhibition of quorum signalling in chromobacterium violaceum. Microbiology 163:1429–1435

    Article  CAS  PubMed  Google Scholar 

  • Tiecher TL, Ceretta CA, Tiecher T et al (2016) Effects of zinc addition to a copper-contaminated vineyard soil on sorption of Zn by soil and plant physiological responses. Ecotoxicol Environ Saf 129:109–119

    Article  CAS  PubMed  Google Scholar 

  • Tu C, Wei J, Guan F et al (2020) Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil. Environ Int 137:105576

    Article  CAS  PubMed  Google Scholar 

  • Turco F, Garavaglia M, Van Houdt R et al (2022) Synthetic biology toolbox, including a single-plasmid CRISPR-Cas9 system to biologically engineer the electrogenic, metal-resistant bacterium Cupriavidus metallidurans CH34. ACS Synth Biol 11:3617–3628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ummara U, Noreen S, Afzal M et al (2022) Induced systemic tolerance mediated by plant-microbe interaction in maize (Zea mays L.) plants under hydrocarbon contamination. Chemosphere 290:133327

    Article  CAS  PubMed  Google Scholar 

  • Vega LM, Mathieu J, Yang Y et al (2014) Nickel and cadmium ions inhibit quorum sensing and biofilm formation without affecting viability in Burkholderia multivorans. Int Biodeterior Biodegrad 91:82–87

    Article  CAS  Google Scholar 

  • Verma P, Sanyal SK, Pandey GK (2021) Ca2+–CBL–CIPK: a modulator system for efficient nutrient acquisition. Plant Cell Rep 40:2111–2122

    Article  CAS  PubMed  Google Scholar 

  • Wan JSH, Pang CK, Bonser SP (2017) Does the cost of adaptation to extremely stressful environments diminish over time? A literature synthesis on how plants adapt to heavy metals and pesticides. Evol Biol 44:411–426

    Article  Google Scholar 

  • Wang W, Xia M, Chen J et al (2016) Genome-wide analysis of superoxide dismutase gene family in Gossypium raimondii and G. arboreum. Plant Gene 6:18–29

    Article  CAS  Google Scholar 

  • Wang X, Cai D, Ji M et al (2022) Isolation of heavy metal-immobilizing and plant growth-promoting bacteria and their potential in reducing Cd and Pb uptake in water spinach. Sci Total Environ 819:153242

    Article  CAS  PubMed  Google Scholar 

  • Xia Y (2022) Reactive oxygen species partly mediate DNA methylation in responses to different heavy metals in pokeweed. Front Plant Sci 13:845108

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiang M, Ma J, Cheng J et al (2022) Collaborative evaluation of heavy metal pollution of soil-crop system in the southeast of Yangtze River Delta. China Ecol Indic 143:109412

    Article  CAS  Google Scholar 

  • Xiang Y, Zhang M, Hu Y et al (2024) Epigenetic modifications of 45S rDNA associates with the disruption of nucleolar organisation during Cd stress response in Pakchoi. Ecotoxicol Environ Saf 270:115859

    Article  CAS  PubMed  Google Scholar 

  • Xie Q, Zhang Y, Cheng Y et al (2022) The role of melatonin in tomato stress response, growth and development. Plant Cell Rep 41:1631–1650

    Article  CAS  PubMed  Google Scholar 

  • Xing Q, Hasan MK, Li Z et al (2023) Melatonin-induced plant adaptation to cadmium stress involves enhanced phytochelatin synthesis and nutrient homeostasis in Solanum lycopersicum L. J Hazard Mater 456:131670

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Xia L, Zhu W et al (2015) Role of Penicillium chrysogenum XJ-1 in the detoxification and bioremediation of cadmium. Front Microbiol 6:1–10

    Article  CAS  Google Scholar 

  • Xu Z, Dong M, Peng X et al (2019) New insight into the molecular basis of cadmium stress responses of wild paper mulberry plant by transcriptome analysis. Ecotoxicol Environ Saf 171:301–312

    Article  CAS  PubMed  Google Scholar 

  • Yadav S, Tripathi S, Purchase D et al (2023) Development of a biofilm-forming bacterial consortium and quorum sensing molecules for the degradation of lignin-containing organic pollutants. Environ Res 226:115618

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Fang X, Chen M et al (2022) Copper stress in grapevine: consequences, responses, and a novel mitigation strategy using 5-aminolevulinic acid. Environ Pollut 307:119561

    Article  CAS  PubMed  Google Scholar 

  • Yi S, Li F, Wu C et al (2022) Synergistic leaching of heavy metal-polycyclic aromatic hydrocarbon in co-contaminated soil by hydroxamate siderophore: role of cation-π and chelation. J Hazard Mater 424:127514

    Article  CAS  PubMed  Google Scholar 

  • Yoo S-J, Sang MK (2017) Induced systemic tolerance to multiple stresses including biotic and abiotic factors by rhizobacteria. Res Plant Dis 23:99–113

    Article  CAS  Google Scholar 

  • Yu XZ, Lin YJ, Zhang Q (2019) Metallothioneins enhance chromium detoxification through scavenging ROS and stimulating metal chelation in Oryza sativa. Chemosphere 220:300–313

    Article  CAS  PubMed  Google Scholar 

  • Yuan M, Huang Y, Huang Y et al (2019) Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber. BMC Genomics 20:144

    Article  PubMed  PubMed Central  Google Scholar 

  • Zare L, Ronaghi A, Ghasemi-Fasaei R et al (2023) Arbuscular mycorrhizal fungi and nitric oxide alleviate cadmium phytotoxicity by improving internal detoxification mechanisms of corn plants. Environ Sci Pollut Res 30:93602–93616

    Article  CAS  Google Scholar 

  • Zhang LD, Song LY, Dai MJ et al (2023) Inventory of cadmium-transporter genes in the root of mangrove plant Avicennia marina under cadmium stress. J Hazard Mater 459:132321

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Gong Z, Jia Y et al (2024) Response characteristics and functional predictions of soil microorganisms to heavy metals, antibiotics, and their resistance genes originating from different animal farms amended with Herbaspirillum huttiense. Carbohydr Polym 246:118143

    CAS  Google Scholar 

  • Zhao Q, Zhou L, Liu J et al (2018) Involvement of CAT in the detoxification of HT-induced ROS burst in rice anther and its relation to pollen fertility. Plant Cell Rep 37:741–757

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Xie R, Lin J et al (2022) SaMT3 in Sedum alfredii drives Cd detoxification by chelation and ROS-scavenging via Cys residues. Environ Pollut 315:120410

    Article  CAS  PubMed  Google Scholar 

  • Zhi J, Liu X, Yin P et al (2020) Overexpression of the metallothionein gene PaMT3-1 from Phytolacca americana enhances plant tolerance to cadmium. Plant Cell Tissue Organ Cult 143:211–218

    Article  CAS  Google Scholar 

  • Zhou ZS, Wang SJ, Yang ZM (2008) Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere 70:1500–1509

    Article  CAS  PubMed  Google Scholar 

  • Zhu N, Zhang B, Yu Q (2020) Genetic engineering-facilitated coassembly of synthetic bacterial cells and magnetic nanoparticles for efficient heavy metal removal. ACS Appl Mater Interfaces 12:22948–22957

    Article  CAS  PubMed  Google Scholar 

  • Zlobin IE, Kartashov AV, Shpakovski GV (2017) Different roles of glutathione in copper and zinc chelation in Brassica napus roots. Plant Physiol Biochem 118:333–341

    Article  CAS  PubMed  Google Scholar 

  • Zuo D, Hu M, Zhou W et al (2023) EcAGL enhances cadmium tolerance in transgenic Arabidopsis thaliana through inhibits cadmium transport and ethylene synthesis pathway. Plant Physiol Biochem 201:107900

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Open Project of the Carbon Peak and Carbon Neutrality Technology Innovation Foundation of Jiangsu Province (BK20220030), the National Natural Science Foundation of China (32271587; 3235041400), and the Senior Talent Foundation of Jiangsu University (18JDG039). The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University Saudi Arabia for funding this work through Large Groups Project under grant number RGP2/360/44.

Funding

This work was financially supported by the Open Project of the Carbon Peak and Carbon Neutrality Technology Innovation Foundation of Jiangsu Province (BK20220030), the National Natural Science Foundation of China (32271587; 3235041400), and the Senior Talent Foundation of Jiangsu University (18JDG039). The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University Saudi Arabia for funding this work through Large Groups Project under grant number RGP2/132/45.

Author information

Authors and Affiliations

Authors

Contributions

Fu Shilin: Roles/writing—original draft, conceptualization, investigation; Babar Iqbal: Conceptualization, investigation, project administration, resources, writing—review & editing; Guanlin Li: Supervision, visualization, writing—review & editing; Khulood Fahad Alabbosh: Validation; Khalid Ali Khan: Writing—review & editing; Xin Zhao: Resources, investigation, writing—review & editing; Abdulkareem Raheem: Investigation, validation; Daolin Du: Supervision, visualization, writing—review & editing. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Guanlin Li, Abdulkareem Raheem or Daolin Du.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Not Applicable.

Consent to participate

Not Applicable.

Consent for publication

Not Applicable.

Additional information

Communicated by Anis Ali Shah.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, S., Iqbal, B., Li, G. et al. The role of microbial partners in heavy metal metabolism in plants: a review. Plant Cell Rep 43, 111 (2024). https://doi.org/10.1007/s00299-024-03194-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00299-024-03194-y

Keywords

Navigation