Skip to main content
Log in

Abscisic acid in plants under abiotic stress: crosstalk with major phytohormones

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Extensive crosstalk exists among ABA and different phytohormones that modulate plant tolerance against different abiotic stress.

Being sessile, plants are exposed to a wide range of abiotic stress (drought, heat, cold, salinity and metal toxicity) that exert unwarranted threat to plant life and drastically affect growth, development, metabolism, and yield of crops. To cope with such harsh conditions, plants have developed a wide range of protective phytohormones of which abscisic acid plays a pivotal role. It controls various physiological processes of plants such as leaf senescence, seed dormancy, stomatal closure, fruit ripening, and other stress-related functions. Under challenging situations, physiological responses of ABA manifested in the form of morphological, cytological, and anatomical alterations arise as a result of synergistic or antagonistic interaction with multiple phytohormones. This review provides new insight into ABA homeostasis and its perception and signaling crosstalk with other phytohormones at both molecular and physiological level under critical conditions including drought, salinity, heavy metal toxicity, and extreme temperature. The review also reveals the role of ABA in the regulation of various physiological processes via its positive or negative crosstalk with phytohormones, viz., gibberellin, melatonin, cytokinin, auxin, salicylic acid, jasmonic acid, ethylene, brassinosteroids, and strigolactone in response to alteration of environmental conditions. This review forms a basis for designing of plants that will have an enhanced tolerance capability against different abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Aleman F, Yazaki J, Lee M, Takahashi Y, Kim AY (2016) An ABA-increased interaction of the PYL6 ABA receptor with MYC2 transcription factor: a putative link of ABA and JA signaling. Sci Rep 6:1–10

    Article  Google Scholar 

  • Ali F, Qanmber G, Li F, Wang Z (2022) Updated role of ABA in seed maturation, dormancy, and germination. J Adv Res 35:199–214

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2018) Melatonin and its relationship to plant hormones. Ann Bot 121:195–207

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernandez-Ruiz J (2019) Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Sci 24:38–48

    Article  CAS  PubMed  Google Scholar 

  • Audenaert K, De Meyer GB, Hofte MM (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol 128:491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandurska H, Stroinski A (2005) The effect of salicylic acid on barley response to water deficit. Acta Physiol Plant 27:379–386

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2019) Melatonin application reduces fluoride uptake and toxicity in rice seedlings by altering abscisic acid, gibberellin, auxin and antioxidant homeostasis. Plant Physiol Biochem 145:164–173

    Article  PubMed  Google Scholar 

  • Breitel DA, Chappell-Maor L, Meir S, Panizel I, Puig CP, Hao Y, Yifhar T, Yasuor H, Zouine M, Bouzayen M, Granell Richart A, Rogachev I, Aharoni A (2016a) AUXIN RESPONSE FACTOR 2 intersects hormonal signals in the regulation of tomato fruit ripening. PLOS Genet 12:e1005903

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulgakov VP, Koren OG (2022) Basic protein modules combining abscisic acid and light signaling in arabidopsis. Front Plant Sci 12:808960

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran U, Luo X, Zhou W, Shu K (2020) Multifaceted signaling networks mediated by abscisic acid insensitive 4. Plant Commun 1:100040

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang X, Donnelly L, Sun D, Rao J, Reid MS, Jiang C-Z (2014) A petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence. PLoS ONE 9:e88320

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Nolan TM, Ye H, Zhang M, Tong H, Xin P, Chu J, Chu C, Li Z, Yin Y (2017) Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. Plant Cell 29:1425–1439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng W-H, Chiang M-H, Hwang S-G, Lin P-C (2009) Antagonism between abscisic acid and ethylene in Arabidopsis acts in parallel with the reciprocal regulation of their metabolism and signaling pathways. Plant Mol Biol 71:61–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chini A, Monte I, Zamarreño AM, Hamberg M, Lassueur S, Reymond P, Weiss S, Stintzi A, Schaller A, Porzel A, García-Mina JM, Solano R (2018) An OPR3-independent pathway uses 4,5-didehydrojasmonate for jasmonate synthesis. Nat Chem Biol 14:171–178

    Article  CAS  PubMed  Google Scholar 

  • Chojak-Kozniewska J, Linkiewicz A, Sowa S, Radzioch MA, Kuzniak E (2017) Interactive effects of salt stress and Pseudomonas syringae pv. lachrymans infection in cucumber: involvement of antioxidant enzymes, abscisic acid and salicylic acid. Environ Exp Bot 136:9–20

    Article  CAS  Google Scholar 

  • Corot A, Roman H, Douillet O, Autret H, Perez-Garcia MD, Citerne S, Bertheloot J, Sakr S, Leduc N, Demotes-Mainard S (2017) Cytokinins and abscisic acid act antagonistically in the regulation of the bud outgrowth pattern by light intensity. Front Plant Sci 8:1724

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Chang 2:45–65

    Article  Google Scholar 

  • Ding ZJ, Yan JY, Li CX, Li GX, Wu YR, Zheng SJ (2015) Transcription factor WRKY 46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis. The Plant J 84:56–69

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Shi Y, Yang S (2019) Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol 222:1690–1704

    Article  PubMed  Google Scholar 

  • dos Reis SP, Lima AM, de Souza CRB (2012) Recent molecular advances on downstream plant responses to abiotic stress. Int J Mol Sci 13:8628–8647

    Article  PubMed  PubMed Central  Google Scholar 

  • Emenecker RJ, Strader LC (2020) Auxin-abscisic acid interactions in plant growth and evelopment. Biomolecules 10:281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrante A, Trivellini A, Scuderi D, Romano D, Vernieri P (2015) Post-production physiology and handling of ornamental potted plants. Posthar Biol Technol 100:99–108

    Article  CAS  Google Scholar 

  • Finkelstein R (2013) Abscisic Acid synthesis and response. Arabidopsis Book 11:e0166

    Article  PubMed  PubMed Central  Google Scholar 

  • Footitt S, Douterelo-Soler I, Clay H, Finch-Savage WE (2011) Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. Proc Natl Acad Sci USA 108:20236–20241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu J, Wu Y, Miao Y, Xu Y, Zhao E, Wang J, Sun H, Liu Q, Xue Y, Xu Y, Hu T (2017) Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways. Sci Rep 7:1–11

    Google Scholar 

  • Gong T, Shu D, Zhao M, Zhong J, Deng HY, Tan H (2014) Isolation of genes related to abscisic acid production in Botrytis cinerea TB-3-H8 by cDNA-AFLP. J Basic Microbiol 54:204–214

    Article  CAS  PubMed  Google Scholar 

  • Gui J, Zheng S, Liu C, Shen J, Li J, Li L (2016) OsREM4.1 interacts with OsSERK1 to coordinate the interlinking between abscisic acid and brassinosteroid signaling in rice. Dev Cell 38:201–213

    Article  CAS  PubMed  Google Scholar 

  • Guilfoyle T, Hagen G, Gazzarrini S, Tsai AYL (2015) Hormone cross-talk during seed germination. Essays Biochem 58:151–164

    Article  Google Scholar 

  • Ha YM, Shang Y, Yang D, Nam KH (2018) Brassinosteroid reduces ABA accumulation leading to the inhibition of ABA-induced stomatal closure. Biochem Biophys Res Commun 504:143–148

    Article  CAS  PubMed  Google Scholar 

  • Hewage KAH, Yang JF, Wang D, Hao GF, Yang GF, Zhu JK (2020) Chemical manipulation of abscisic acid signaling: a new approach to abiotic and biotic stress management in agriculture. Adv Sci 7:2001265

    Article  CAS  Google Scholar 

  • Hou Y, Wang Y, Tang L, Tong X, Wang L, Liu L, Huang S, Zhang J (2019) SAPK10-mediated phosphorylation on WRKY72 releases its suppression on jasmonic acid biosynthesis and bacterial blight resistance. iScience 16:499–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Yu D (2014) BRASSINOSTEROID INSENSITIVE2 interacts with ABSCISIC ACID INSENSITIVE5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis. Plant Cell 26:4394–4408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu E, Liu M, Zhou R, Jiang F, Sun M, Wen J, Zhu Z, Wu Z (2021) Relationship between melatonin and abscisic acid in response to salt stress of tomato. Sci Hortic 285:110176

    Article  CAS  Google Scholar 

  • Huang X, Zhang X, Gong Z, Yang S, Shi Y (2017) ABI4 represses the expression of type-A ARRs to inhibit seed germination in Arabidopsis. Plant J 89:354–365

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Hou L, Meng J, You H, Li Z, Gong Z, Yang S, Shi Y (2018) The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in Arabidopsis. Mol Plant 11:970–982

    Article  CAS  PubMed  Google Scholar 

  • Hyun Y, Richter R, Vincent C, Martinez-Gallegos R, Porri A, Coupland G (2016) Multi-layered regulation of SPL15 and cooperation with SOC1 integrate endogenous flowering pathways at the Arabidopsis shoot meristem. Dev Cell 37:254–266

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo-Bueno I, González-Rodríguez VE, Simon A, Dalmais B, Pradier J-M, Le Pêcheur P, Mercier A, Walker A-S, Garrido C, Collado IG, Viaud M (2018) Biosynthesis of abscisic acid in fungi: identification of a sesquiterpene cyclase as the key enzyme in Botrytis cinerea. Environ Microbiol. https://doi.org/10.1111/1462-2920.14258

    Article  PubMed  Google Scholar 

  • Izydorczyk C, Nguyen T-N, Jo S, Son S, Tuan PA, Ayele BT (2017) Spatiotemporal modulation of abscisic acid and gibberellin metabolism and signaling mediates the effects of suboptimal and supraoptimal temperatures on seed germination in wheat (Triticum aestivum L.). Plant Cell Environ 41:1022–1037

    Article  PubMed  Google Scholar 

  • Jakubowicz M, Nowak W, Gałganski Ł, Babula-Skowronska D, Kubiak P (2020) Expression profiling of the genes encoding ABA route components and the ACC oxidase isozymes in the senescing leaves of Populus tremula. J Plant Physiol 248:153143

    Article  CAS  PubMed  Google Scholar 

  • Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S, Leonhardt N, Ellis BE, Murata Y, Kwak JM (2009) MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci USA 106:20520–20525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang F, Hartung W (2008) Long-distance signaling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J Exp Bot 59:37–43

    Article  CAS  PubMed  Google Scholar 

  • Jogawat A (2019) Crosstalk among phytohormone signaling pathways during abiotic stress. In: Roychoudhury A, Tripathi DK (eds) Molecular plant abiotic stress: biology and biotechnology, 1st edn. Wiley, New York, pp 209–220

    Chapter  Google Scholar 

  • Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the Phytohormone abscisic acid. Proc Natl Acad Sci USA 107:2355–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanno Y, Hanada A, Chiba Y, Ichikawa T, Nakazawa M, Matsui M, Koshiba T, Kamiya Y, Seo M (2012) Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc Natl Acad Sci USA 109:9653–9658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SY, Warpeha KM, Huber SC (2019) The brassinosteroid receptor kinase, BRI1, plays a role in seed germination and the release of dormancy by cold stratification. J Plant Physiol 241:153031

    Article  CAS  PubMed  Google Scholar 

  • Kozaki A, Aoyanagi T (2022) Molecular aspects of seed development controlled by gibberellins and abscisic acids. Int J Mol Sci 23:1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Hazra S, Datta R, Chattopadhyay S (2016) Transcriptome analysis of Arabidopsis mutants suggests a crosstalk between ABA, ethylene and GSH against combined cold and osmotic stress. Sci Rep 6:1–13

    Article  Google Scholar 

  • Kumar M, Kesawat MS, Ali A, Lee SC, Gill SS, Kim U (2019) Integration of abscisic acid signaling with other signaling pathways in plant stress responses and development. Plants 8:592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kundu S, Gantait S (2017) Abscisic acid signal crosstalk during abiotic stress response. Plant Gene 11:61–69

    Article  CAS  Google Scholar 

  • Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Suqimoto E, Kamiya A, Moriyama Y, Shinozaki K (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci USA 107:2361–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusajima M, Okumura Y, Fujita M, Nakashita H (2017) Abscisic acid modulates salicylic acid biosynthesis for systemic acquired resistance in tomato. Biosci Biotechnol Biochem 81:1850–1853

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Yoon GM (2018) Regulation of ethylene biosynthesis by phytohormones in etiolated rice (Oryza sativa L.) seedlings. Mol Cells 41:311–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HY, Chen YC, Kieber JJ, Yoon GM (2017) Regulation of the turnover of ACC synthases by phytohormones and heterodimerization in Arabidopsis. Plant J 91:491–504

    Article  CAS  PubMed  Google Scholar 

  • Li C, Tan D-X, Liang D, Chang C, Jia D, Ma F (2015a) Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. J Exp Bot 66:669–680

    Article  CAS  PubMed  Google Scholar 

  • Li H, Mo Y, Cui Q (2019) Transcriptomic and physiological analyses reveal drought adaptation strategies in drought-tolerant and-susceptible watermelon genotypes. Plant Sci 278:32–43

    Article  CAS  PubMed  Google Scholar 

  • Li H, Guo Y, Lan Z (2020a) Melatonin antagonizes ABA action to promote seed germination by regulating Ca2+ efflux and H2O2 accumulation. Plant Sci 303:110761

    Article  PubMed  Google Scholar 

  • Li K, Wang S, Wu H, Wang H (2020b) Protein levels of several Arabidopsis auxin response factors are regulated by multiple factors and ABA promotes ARF6 protein ubiquitination. Int J Mol Sci 21:9437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, He H, Vitali M, Visentin I, Charnikhova T, Haider I, Schubert A, Ruyter-Spira C, Bouwmeester HJ, Lovisolo C, Cardinale F (2015a) Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress. Planta 241:1435–1451

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Li RJ, Han TT, Cai W, Fu ZW, Lu YT (2015b) Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis. Plant Physiol 168:343–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Lv Z, Liu Y, Li L, Zhang L (2018) Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana. Genet Mol Biol 41:624–637

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Huang H, Huber DJ, Pan Y, Shi X, Zhang Z (2020a) Delay of ripening and softening in ‘Guifei’ mango fruit by postharvest application of melatonin. Postharvest Biol Technol 163:111136

    Article  CAS  Google Scholar 

  • Liu X, Hu Q, Yan J, Sun K, Liang Y, Jia M, Meng X, Fang S, Wang Y, Jing Y, Liu G, Wu D, Chu C, Smith SM, Chu J, Wang Y, Li J, Wang B (2020b) ζ-Carotene isomerase suppresses tillering in rice through the coordinated biosynthesis of strigolactone and abscisic acid. Mol Plant 3:1784–1801

    Article  Google Scholar 

  • Lopez-Orenes A, Alba JM, Kant MR, Calderon AA, Ferrer MA (2020) OPDA and ABA accumulation in Pb-stressed Zygophyllum fabago can be primed by salicylic acid and coincides with organ-specific differences in accumulation of phenolics. Plant Physiol Biochem 154:612–621

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Raez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ, Verstappen F, Bugg TDH, Thompson AJ, Ruyter-Spira C, Bouwmeester H (2010) Does abscisic acid affect strigolactone biosynthesis? New Phytol 187:343–354

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Ruiz BA, Zluhan-Martínez E, Sanchez MDLP, Alvarez-Buylla ER, Garay-Arroyo A (2020) Interplay between hormones and several abiotic stress conditions on Arabidopsis thaliana primary root development. Cells 9:2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magome H, Kamiya Y (2018) Inactivation processes. Annu Plant Rev Online 73–93

  • Manohar M, Wang D, Manosalva PM, Choi HW, Kombrink E, Klessig DF (2017) Members of the abscisic acid co-receptor PP2C protein family mediate salicylic acid–abscisic acid crosstalk. Plant Direct 1:e00020

    Article  PubMed  PubMed Central  Google Scholar 

  • Mantri N, Patade V, Penna S, Ford R, Pang E (2012) Abiotic stress responses in plants: present and future. In: Ahmad P, Prasad M (eds) Abiotic stress responses in plants. Springer, New York, pp 1–19

    Google Scholar 

  • Min Z, Li R, Chen L, Zhang Y, Li Z, Liu M, Ju Y, Fang Y (2019) Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiol Biochem 135:99–110

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Li W, Nguyen KH, Fujita M, Tran LSP (2018) Strigolactones in plant adaptation to abiotic stresses: an emerging avenue of plant research. Plant, Cell Environ 41:2227–2243

    Article  CAS  PubMed  Google Scholar 

  • Muller M, Munne-Bosch S (2021) Hormonal impact on photosynthesis and photoprotection in plants. Plant Physiol 185:1500–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz-Espinoza VA, Lopez-Climent MF, Casaretto JA, Gomez-Cadenas A (2015) Water stress responses of tomato mutants impaired in hormone biosynthesis reveal abscisic acid, jasmonic acid and salicylic acid interactions. Front Plant Sci 6:997

    Article  PubMed  PubMed Central  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  CAS  PubMed  Google Scholar 

  • Nguyen KH, Ha CV, Nishiyama R, Watanabe Y, Leyva-Gonzalez MA, Fujita Y, Tran UT, Li W, Tanaka M, Seki M, Schaller GE, Herrera-Estrella L, Tran LS (2016) Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. Proc Natl Acad Sci USA 113:3090–3095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • North HM, De Almeida A, Boutin JP, Frey A, To A, Botran Sotta B, Marion-Poll A (2007) The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers. Plant J 50:810–824

    Article  CAS  PubMed  Google Scholar 

  • Novikova GV, Stepanchenko NS, Zorina AA, Nosov AV, Rakitin VY, Moshkov IE, Los DA (2020) Coupling of cell division and differentiation in Arabidopsis thaliana cultured cells with interaction of ethylene and ABA signaling pathways. Life 10:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peian Z, Haifeng J, Peijie G, Sadeghnezhad E, Qianqian P, Tianyu D, Teng L, Huanchun J, Jinggui F (2020) Chitosan induces jasmonic acid production leading to resistance of ripened fruit against Botrytis cinerea infection. Food Chem 337:127772

    Article  PubMed  Google Scholar 

  • Per TS, Khan MIR, Anjum NA, Masood A, Hussain SJ, Khan NA (2018) Jasmonates in plants under abiotic stresses: crosstalk with other phytohormones matters. Environ Exp Bot 145:104–120

    Article  CAS  Google Scholar 

  • Perez-Alonso MM, Ortiz-García P, Moya-Cuevas J, Lehmann T, Sánchez-Parra B, Björk RG, Karim S, Amirjani MR, Aronsson H, Wilkinson MD, Pollmann S (2021) Endogenous indole-3-acetamide levels contribute to the crosstalk between auxin and abscisic acid, and trigger plant stress responses in Arabidopsis. J Exp Bot 72:459–475

    Article  CAS  PubMed  Google Scholar 

  • Prodhan MY, Munemasa S, Nahar MNEN, Nakamura Y, Murata Y (2018) Guard cell salicylic acid signaling is integrated into abscisic acid signaling via the Ca2+/CPK-dependent pathway. Plant Physiol 178:441–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prodhan Y, Issak M, Munemasa S, Nakamura Y, Murata Y (2020) Salicylic acid receptor NPR1 is involved in guard cell chitosan signaling. Biosci Biotechnol Biochem 84:963–969

    Article  CAS  PubMed  Google Scholar 

  • Promchuea S, Zhu Y, Chen Z, Zhang J, Gong Z (2017) ARF2 coordinates with PLETHORAs and PINs to orchestrate ABA-mediated root meristem activity in Arabidopsis. J Integr Plant Biol 59:30–43

    Article  CAS  PubMed  Google Scholar 

  • Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. In: Natural Resources Forum (United Nations: Wiley Online Library), pp 282–295

  • Raftery AE, Zimmer A, Frierson DMW, Startz R, Liu P (2017) Less than 2°C warming by 2100 unlikely. Nat Clim Chang 7:637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman K, Fatima F, Waheed I, Akash MSH (2018) Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem 119:157–184

    Article  CAS  PubMed  Google Scholar 

  • Riboni M, Galbiati M, Tonelli C, Conti L (2013) GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and suppressor of overexpression of constans. Plant Physiol 162:1706–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronen G, Karchi H, Diber A, Vinocur BJ, Ayal S, Emmanuel E, Gang M, Dimet D (2019) Polynucleotides, polypeptides encoded thereby, and methods of using same for increasing abiotic stress tolerance and/or biomass and/or yield in plants expressing same. U.S. Pat Appl 16: 833.

  • Roychoudhury A, Basu S (2012) Ascorbate-glutathione and plant tolerance to various abiotic stresses. In: Anjum NA, Umar S, Ahmad A (eds) Oxidative stress in plants causes, consequences and tolerance. IK International Publishing House Pvt. Ltd., New Delhi, pp 177–258

    Google Scholar 

  • Roychoudhury A, Paul S, Basu S (2013) Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32:985–1006

    Article  CAS  PubMed  Google Scholar 

  • Ruan J, Zhou Y, Zhou M, Yan J, Khurshid M, Weng W, Cheng J, Zhang K (2019a) Jasmonic acid signaling pathway in plants. Int J Mol Sci 20:2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    Article  PubMed  PubMed Central  Google Scholar 

  • Saika H, Okamoto M, Miyoshi K, Kushiro T, Shinoda S, Jikumaru Y, Fujimoto M, Arikawa T, Takahashi H, Ando M, Arimura S, Miyao A, Hirochika H, Kamiya Y, Tsutsumi N, Nambara E, Nakazono M (2006) Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8’-hydroxylase in rice. Plant Cell Physiol 48:287–298

    Article  Google Scholar 

  • Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M (2004) Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134:1439–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samanta S, Banerjee A, Roychoudhury A (2021) Exogenous melatonin regulates endogenous phytohormone homeostasis and thiol-mediated detoxification in two indica rice cultivars under arsenic stress. Plant Cell Rep 40:1585–1602

    Article  CAS  PubMed  Google Scholar 

  • Seo M, Koshiba T (2011) Transport of ABA from the site of biosynthesis to the site of action. J Plant Res 124:501–507

    Article  CAS  PubMed  Google Scholar 

  • Seo M, Aoki H, Koiwai H, Kamiya Y, Nambara E, Koshiba T (2004) Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant Cell Physiol 45:1694–1703

    Article  CAS  PubMed  Google Scholar 

  • Setsungnern A, Munoz P, Perez-Llorca M, Müller M, Thiravetyan P, Munne-Bosch S (2020) A defect in BRI1-EMS-SUPPRESSOR 1 (BES1)-mediated brassinosteroid signaling increases photoinhibition and photo-oxidative stress during heat stress acclimation in Arabidopsis. Plant Sci 296:110470

    Article  CAS  PubMed  Google Scholar 

  • Shakirova FM, Bezrukova MV, Allagulova CR, Maslennikova DR, Lubyanova AR (2017) Wheat germ agglutinin and dehydrins as ABA-regulated components of SA-induced cadmium resistance in wheat plants. In: Khan NA, Iqbal N, Nazar R (eds) Salicylic acid: a multifaceted hormone. Springer, Singapore, pp 77–96

  • Sharp RE (2002) LeNoble ME (2002) ABA, ethylene and the control of shoot and root growth under water stress. J Exp Bot 53(366):33–37

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress tolerance and response. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang P, Li Y, Wang S, Tang S, Liu C, Yang W, Cao X, Serino G, Xie Q (2016a) ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels. Plant J 85:348–361

    Article  CAS  PubMed  Google Scholar 

  • Shu K, Liu XD, Xie Q, He ZH (2016b) Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant 9:34–45

    Article  CAS  PubMed  Google Scholar 

  • Shu K, Zhou W, Chen F, Luo X, Yang W (2018) Abscisic acid and gibberellins antagonistically mediate plant development and abiotic stress responses. Front Plant Sci 9:416

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh A, Banerjee A, Roychoudhury A (2022) Fluoride tolerance in rice is negatively regulated by the “stress-phytohormone” abscisic acid (ABA), but promoted by ABA-antagonist growth regulators, melatonin, and gibberellic acid. Protoplasma 259:1331–1350

    Article  CAS  PubMed  Google Scholar 

  • Sirko A, Wawrzynska A, Brzywczy J, Sienko M (2021) Control of ABA signaling and crosstalk with other hormones by the selective degradation of pathway components. Int J Mol Sci 22:4638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skalak J, Nicolas KL, Vankova R, Hejatko J (2021) Signal integration in plant abiotic stress responses via multistep phosphorelay signaling. Front Plant Sci 12:12

    Article  Google Scholar 

  • Skubacz A, Daszkowska-Golec A, Szarejko I (2016) The role and regulation of ABI5 (ABA-Insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk. Front Plant Sci 7:1884

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun LR, Wang YB, He SB, Hao FS (2018a) Mechanisms for abscisic acid inhibition of primary root growth. Plant Signal Behav 13:e1500069

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun LR, Wang YB, He SB, Hao FS (2018b) Mechanisms for abscisic acid inhibition of primary root growth. Plant Signal Behav 13:e1500069

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun M, Tuan PA, Izydorczyk MS, Ayele BT (2020) Ethylene regulates post-germination seedling growth in wheat through spatial and temporal modulation of ABA/GA balance. J Exp Bot 71:1985–2004

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Ji X, Song L, Wang X, You C, Hao Y (2021) Functional identification of MdSMXL8. 2, the homologous gene of strigolactones pathway repressor protein gene in Malus × domestica. Hortic Plant J 7:275–285

    Article  CAS  Google Scholar 

  • Swamy PM, Smith B (1999) Role of abscisic acid in plant stress tolerance. Curr Sci 76:1220–1227

    CAS  Google Scholar 

  • Szalai G, Pál M, Janda T (2011) Abscisic acid may alter the salicylic acid-related abiotic stress response in maize. Acta Biol Szeged 55:155–157

    Google Scholar 

  • Szepesi Á, Csiszár J, Gémes K, Horváth E, Horváth F, Simon ML, Tari I (2009) Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. J Plant Physiol 166:914–925

    Article  CAS  PubMed  Google Scholar 

  • Tan BC, Joseph LM, Deng WT, Liu L, Li QB, Cline K, McCarty DR (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 35:44–56

    Article  CAS  PubMed  Google Scholar 

  • Tan X, Fan Z, Kuang J, Lu W, Reiter RJ, Prakash L, Su X-G, Zhou J, Chen J-Y, Shan W (2019) Melatonin delays leaf senescence of Chinese flowering cabbage by suppressing ABFs-mediated abscisic acid biosynthesis and chlorophyll degradation. J Pineal Res 67:e12570

    Article  PubMed  Google Scholar 

  • Tigchelaar M, Battisti DS, Naylor RL, Ray DK (2018) Future warming increases probability of globally synchronized maize production shocks. Proc Natl Acad Sci 115:6644–6649

    Article  PubMed  PubMed Central  Google Scholar 

  • Tosetti R, Waters A, Chope GA, Cools K, Alamar MC, McWilliam S, Thompson AJ, Terry LA (2021) New insights into the effects of ethylene on ABA catabolism, sweetening and dormancy in stored potato tubers. Postharvest Biol Technol 173:111420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran LSP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci USA 104:20623–20628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuan PA, Kumar R, Rehal PK, Toora PK, Ayele BT (2018) Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals. Front Plant Sci 9:668

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueno Y, Yoshida R, Kishi-Kaboshi M, Matsushita A, Jiang CJ, Goto S, Takahashi A, Hirochika H, Takatsuji H (2015) Abiotic stresses antagonize the rice defence pathway through the tyrosine-dephosphorylation of OsMPK6. PLoS Pathog 11:e1005231

    Article  PubMed  PubMed Central  Google Scholar 

  • ur Rehman N, Ali M, Ahmad MZ, Liang G, Zhao J (2018) Strigolactones promote rhizobia interaction and increase nodulation in soybean (Glycine max). Microb Pathog 114:420–430

    Article  Google Scholar 

  • Urano K, Maruyama K, Jikumaru Y, Kamiya Y, Yamaguchi-Shinozaki K, Shinozaki K (2017) Analysis of plant hormone profiles in response to moderate dehydration stress. Plant J 90:17–36

    Article  CAS  PubMed  Google Scholar 

  • Vaistij FE, Barros-Galvao T, Cole AF, Gilday AD, He Z, Li Y, Harvey D, Larson TR, Graham IA (2018) MOTHER-OF-FT-AND-TFL1 represses seed germination under far-red light by modulating phytohormone responses in Arabidopsis thaliana. Proc Natl Acad Sci USA 115:8442–8447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Vishal B, Kumar PP (2018) Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid. Front Plant Sci 9:838

    Article  PubMed  PubMed Central  Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li L, Ye T, Lu Y, Chen X, Wu Y (2013) The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis. J Exp Bot 64:675–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Takahashi H, Saito T (2015) Jasmonate application influences endogenous abscisic acid, jasmonic acid and aroma volatiles in grapes infected by a pathogen (Glomerella cingulata). Sci Hortic 192:166–172

    Article  CAS  Google Scholar 

  • Wang F, Guo Z, Li H, Wang M, Onac E, Zhou J, Xia X, Shi K, Yu J, Zhou Y (2016a) Phytochrome A and B function antagonistically to regulate cold tolerance via abscisic acid-dependent jasmonate signaling. Plant Physiol 170:459–471

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Saito T, Ohkawa K, Ohara H, Shishido M, Ikeura H, Takagi K, Ogawa S, Yokoyama M, Kondo S (2016b) α-Ketol linolenic acid (KODA) application affects endogenous abscisic acid, jasmonic acid and aromatic volatiles in grapes infected by a pathogen (Glomerella cingulata). J Plant Physiol 192:90–97

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Wei H, Xue Z, Zhang WH (2017) Gibberellins regulate iron deficiency-response by influencing iron transport and translocation in rice seedlings (Oryza sativa). Ann Bot 119:945–956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Wang X, Huang M, Cai J, Zhou Q, Dai T, Cao W, Jiang D (2018) Hydrogen peroxide and abscisic acid mediate salicylic acid-induced freezing tolerance in wheat. Front Plant Sci 9:1137

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zeng W, Ding Y, Wang Y, Niu L, Yao JL, Pan L, Lu Z, Cui G, Li G, Wang Z (2019a) Peach ethylene response factor PpeERF2 represses the expression of ABA biosynthesis and cell wall degradation genes during fruit ripening. Plant Sci 283:116–126

    Article  CAS  PubMed  Google Scholar 

  • Wang YT, Chen ZY, Jiang Y, Duan BB, Xi ZM (2019b) Involvement of ABA and antioxidant system in brassinosteroid-induced water stress tolerance of grapevine (Vitis vinifera L.). Sci Hortic 256:108596

    Article  CAS  Google Scholar 

  • Wang X, Li Q, Xie J (2020) Abscisic acid and jasmonic acid are involved in drought priming-induced tolerance to drought in wheat. Crop J 9:120–132

    Article  Google Scholar 

  • Wang D, Chen Q, Chen W, Guo Q, Xia Y, Wang S, Jing D, Liang G (2021) Physiological and transcription analyses reveal the regulatory mechanism of melatonin in inducing drought resistance in loquat (Eriobotrya japonica Lindl.) seedlings. Environ Exp Bot 181: 104291

  • Wilmowicz E, Kaaaesy J, Kopcewicz J (2008a) Ethylene and ABA interactions in the regulation of flower induction in Pharbitis nil. J Plant Physiol 165:1917–1928

    Article  CAS  PubMed  Google Scholar 

  • Wilmowicz E, Kęsy J, Kopcewicz J (2008b) Ethylene and ABA interactions in the regulation of flower induction in Pharbitis nil. J Plant Physiol 165:1917–1928

    Article  CAS  PubMed  Google Scholar 

  • Wilmowicz E, Frankowski K, Kućko A, Kaaaesy J, Kopcewicz J (2014) Involvement of the iaa-regulated acc oxidase gene PNACO3 in Pharbitis nil flower inhibition. Acta Biol Crac Ser Bot 56:90–96

    CAS  Google Scholar 

  • Xu ZY, Lee KH, Dong T, Jeong JC, Jin JB, Kanno Y, Kim DH, Kim SY, Seo M, Bressan RA, Yun DJ, Hwang I (2012) A vacuolar b-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis. Plant Cell 24:2184–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Chen H, Cai W (2020) Transcription factor CDF4 promotes leaf senescence and floral organ abscission by regulating abscisic acid and reactive oxygen species pathways in Arabidopsis. EMBO Rep 21:e48967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue LW, Du JB, Yang H, Xu F, Yuan S, Lin HH (2009) Brassinosteroids counteract abscisic acid in germination and growth of Arabidopsis. Z Für Naturforsch C 64:225–230

    Article  CAS  Google Scholar 

  • Yaish MW, El-Kereamy A, Zhu T, Beatty PH, Good AG, Bi YM, Rothstein SJ (2010) The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice. PLoS Genet 6:e1001098

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Zhang J, He J, Qin Y, Hua D, Duan Y, Chen Z, Gong Z (2014) ABA mediated ROS in mitochondria regulate root meristem activity by controlling PLETHORA expression in Arabidopsis. PLoS Genet 10:e1004791

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X, Bai Y, Shang J, Xin R, Tang W (2016) The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of abscisic acid insensitive 5 expression by brassinazole resistant 1. Plant Cell Environ 39:1994–2003

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama K, Brewer PB (2021) Strigolactones, how are they synthesized to regulate plant growth and development? Curr Opin Plant Biol 63:102072

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Wang J, Li S, Kakan X, Zhou Y, Miao Y, Wang F, Qin H, Huang R (2019) Ascorbic acid integrates the antagonistic modulation of ethylene and abscisic acid in the accumulation of reactive oxygen species. Plant Physiol 179:1861–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaharah SS, Singh Z, Symons GM, Reid JB (2013) Mode of action of abscisic acid in triggering ethylene biosynthesis and softening during ripening in mango fruit. Postharvest Biol Technol 75:37–44

    Article  CAS  Google Scholar 

  • Zahedi SM, Hosseini MS, Abadía J, Marjani M (2020) Melatonin foliar sprays elicit salinity stress tolerance and enhance fruit yield and quality in strawberry (Fragaria × ananassa Duch.). Plant Physiol Biochem 149:313–323

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Shi Y, Zhang X, Du H, Xu B, Huang B (2017) Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environ Exp Bot 138:36–45

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial assistance from Science and Engineering Research Board, Government of India through the grant [EMR/2016/004799] and Department of Higher Education, Science and Technology and Biotechnology, Government of West Bengal, through the grant [264(Sanc.)/ST/P/S&T/1G-80/2017] to Prof. Aryadeep Roychoudhury is gratefully acknowledged.

Funding

This study was funded by Science and Engineering Research Board, Government of India, and Department of Higher Education, Science and Technology and Biotechnology, Government of West Bengal.

Author information

Authors and Affiliations

Authors

Contributions

AS drafted the entire manuscript. AR critically analyzed the manuscript, incorporated necessary modifications, and supervised the whole work.

Corresponding author

Correspondence to Aryadeep Roychoudhury.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in publishing the manuscript.

Additional information

Communicated by Wusheng Liu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Roychoudhury, A. Abscisic acid in plants under abiotic stress: crosstalk with major phytohormones. Plant Cell Rep 42, 961–974 (2023). https://doi.org/10.1007/s00299-023-03013-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-023-03013-w

Keywords

Navigation