Skip to main content

Advertisement

Log in

Arbuscular Mycorrhizae Impart Cd Tolerance in Cajans Cajan (L.) Millsp. by Upregulating the Expression of Metallothionein (CcMT1) and Phytochelatin Synthase (CcPCS1) Genes

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Cadmium pollution of soil restricts growth and yield of crop plants. Arbuscular mycorrhizae play significant roles in imparting tolerance to Cd toxicity by establishing symbiotic association with the host plants species. The present study therefore evaluated the effects of four arbuscular mycorrhizal fungal species (AMF), i.e. Claroideoglomus claroideum (AM1), Claroideoglomus etunicatum (AM2), Funneliformis mosseae (AM3) and Rhizoglomus intraradices (AM4), in modulating physiological and molecular attributes of Cd-stressed (Cd – 0, 50 mg/kg) Cajanus cajan (L.) Millsp. (pigeon pea) plants. Application of Cd reduced growth (more in roots than shoots), nitrogen fixing potential and yield. It also led to generation of reactive oxygen species as well as membrane leakiness. AMF supplementations improved growth, nutrient acquisition, rhizobial symbiosis, reduced oxidative burden and Cd uptake by enhancing the synthesis of thiols (cysteine, reduced and oxidized glutathione, phytochelatins, non-protein thiols). Activity of glutathione reductase increased significantly in AMF inoculated plants which imparted redox balance by improving GSH/GSSG ratio in roots and shoots. Quantitative RT-PCR analysis displayed abundance of transcripts encoding two metal chelator genes; metallothionein (CcMT1) and phytochelatin synthase1 (isoforms CcPCS1X1, CcPCS1X2 and CcPCS1X4) which expressed more in roots than leaves of Cd-stressed AMF plants. Moreover, expression level of CcMT1 was more intense than CcPCS1 indicating higher ability of MTs to combat Cd stress than PCS. R. intraradices was the most efficient in inducing the expression of metal responsive genes than other three species suggesting its promising role in the amelioration of Cd toxicity in pigeon pea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2019) Priority List of Hazardous Substances. https://www.atsdr.cdc.gov/spl/index.html.

  • Abdal N, Abbas G, Asad SA, Ghfar AA, Shah GM, Rizwan M, Ali S, Shahbaz M (2021) Salinity mitigates cadmium-induced phytotoxicity in quinoa (Chenopodium quinoa Willd.) by limiting the Cd uptake and improved responses to oxidative stress: implications for phytoremediation. Environ Geochem Health. https://doi.org/10.1007/s10653-021-01082-y

    Article  PubMed  Google Scholar 

  • Adhikari S, Ghosh S, Azahar I, Adhikari A, Shaw AK, Konar S, Roy S, Hossain Z (2018) Sulfate improves cadmium tolerance by limiting cadmium accumulation, modulation of sulfur metabolism and antioxidant defense system in maize. Environ Exp Bot 153:143–162

    Article  CAS  Google Scholar 

  • Alguacil MM, Diaz G, Torres P, Rodriguez-Caballero G, Roldan A (2019) Host identity and functional traits determine the community composition of the arbuscular mycorrhizal fungi in facultative epiphytic plant species. Fungal Ecol 39:307–315

    Article  Google Scholar 

  • Ayenan MAT, Ofori K, Ahoton LE, Danquah A (2017) Pigeon pea [(Cajanus cajan (L.) Millsp.)] production system, farmers’ preferred traits and implications for variety development and introduction in Benin. Agric Food Secur 6:48

    Article  Google Scholar 

  • Bashir W, Anwar S, Zhao Q, Hussain I, Xie F (2019) Interactive effect of drought and cadmium stress on soybean root morphology and gene expression. Ecotoxicol Environ Saf 175:90–101

    Article  CAS  PubMed  Google Scholar 

  • Battana S, Ghanta RG (2014) Antioxidative enzyme responses under single and combined effect of water and heavy metal stress in two Pigeon pea cultivars. J Sci Innov Res 3:72–80

    Article  Google Scholar 

  • Belimov AA, Shaposhnikov AI, Azarova TS, Makarova NM, Safronova VI, Litvinskiy VA, Nosikov VV, Zavalin AA, Tikhonovich IA (2020) Microbial consortium of PGPR, rhizobia and arbuscular mycorrhizal fungus makes pea mutant SGECdt comparable with Indian Mustard in cadmium tolerance and accumulation. Plants 9:975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellini E, Maresca V, Betti C, Castiglione MR, Fontanini D, Capocchi A, Sorce C, Borsò M, Bruno L, Sorbo S, Basile A (2020) The moss Leptodictyum riparium counteracts severe cadmium stress by activation of glutathione transferase and phytochelatin synthase, but slightly by phytochelatins. Int J Mol Sci 21:1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhargava P, Srivastava AK, Urmil S, Rai LC (2005) Phytochelatin plays a role in UV-B tolerance in N2-fixing cyanobacterium Anabaena doliolum. J Plant Physiol 162:1220–1225

    Article  CAS  PubMed  Google Scholar 

  • Bisht A, Garg N (2022a) AMF modulated rhizospheric microbial enzyme activities and their impact on sulphur assimilation along with thiol metabolism in pigeon pea under Cd stress. Rhizosphere 21:100478

    Article  Google Scholar 

  • Bisht A, Garg N (2022b) AMF species improve yielding potential of Cd stressed pigeon pea plants by modulating sucrose-starch metabolism, nutrients acquisition and soil microbial enzymatic activities. Plant Growth Regul 96:409–430

    Article  CAS  Google Scholar 

  • Bisht A, Bhalla S, Kumar A, Kaur J, Garg N (2021) Gene expression analysis for selection and validation of suitable housekeeping gene(s) in cadmium exposed pigeon pea plants inoculated with arbuscular mycorrhizae. Plant Physiol Biochem 162:592–602

    Article  CAS  PubMed  Google Scholar 

  • Borgo L, Rabêlo FH, Budzinski IG, Cataldi TR, Ramires TG, Schaker PD, Ribas AF, Labate CA, Lavres J, Cuypers A, Azevedo RA (2021) Proline exogenously supplied or endogenously overproduced induces different nutritional, metabolic, and antioxidative responses in transgenic tobacco exposed to cadmium. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10480-6

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Breuillin-Sessoms F, Floss DS, Gomez SK, Pumplin N, Ding Y, Levesque-Tremblay V, Noar RD, Daniels DA, Bravo A, Eaglesham JB (2015) Suppression of arbuscule degeneration in Medicago truncatula phosphate transporter4 mutants is dependent on the ammonium transporter 2 family protein AMT2; 3. Plant Cell 27:1352–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caruso T, Mafrica R, Bruno M, Vescio R, Sorgonà A (2021) Root architectural traits of rooted cuttings of two fig cultivars: Treatments with arbuscular mycorrhizal fungi formulation. Sci Hortic 283:110083

    Article  CAS  Google Scholar 

  • Casieri L, Gallardo K, Wipf D (2012) Transcriptional response of Medicago truncatula sulfate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress. Planta 235:1431–1447

    Article  CAS  PubMed  Google Scholar 

  • Castillo FJ, Greppin H (1988) Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum album L. leaves after ozone exposure. Environ Exp Bot 28:231–238

    Article  CAS  Google Scholar 

  • Chaâbene Z, Rorat A, Hakim IR, Bernard F, Douglas GC, Elleuch A, Vandenbulcke F, Mejdoub H (2018) Insight into the expression variation of metal-responsive genes in the seedling of date palm (Phoenix dactylifera). Chemosphere 197:123–134

    Article  PubMed  Google Scholar 

  • Cheema A, Garg N (2022) Differential effectiveness of arbuscular mycorrhizae in improving rhizobial symbiosis by modulating sucrose metabolism and antioxidant defense in chickpea under as stress. Symbiosis 86:49–69

    Article  CAS  Google Scholar 

  • Chen B, Nayuki K, Kuga Y, Zhang X, Wu S, Ohtomo R (2018) Uptake and intraradical immobilization of cadmium by arbuscular mycorrhizal fungi as revealed by a stable isotope tracer and synchrotron radiation μX-ray fluorescence analysis. Microbes Environ 33:257–263

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiboub M, Jebara SH, Abid G, Jebara M (2019) Co-inoculation effects of Rhizobium sullae and Pseudomonas sp. on growth, antioxidant status, and expression pattern of genes associated with heavy metal tolerance and accumulation of cadmium in Sulla coronaria. J Plant Growth Regul 39:216–228

    Article  Google Scholar 

  • Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S (2010) Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Ann Bot 106:791–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  • Colombo RP, Benavidez ME, Bidondo LF, Silvani VA, Bompadre MJ, Statello M, Scorza MV, Scotti A, Godeas AM (2020) Arbuscular mycorrhizal fungi in heavy metal highly polluted soil in the Riachuelo river basin – ScienceDirect. Rev Argent Microbiol 52:145–149

    PubMed  Google Scholar 

  • De Oliveira VH, Tibbett M (2018) Tolerance, toxicity and transport of Cd and Zn in Populus trichocarpa. Environ Exp Bot 155:281–292

    Article  Google Scholar 

  • De Oliveira VH, Ullah I, Dunwell JM, Tibbett M (2020) Mycorrhizal symbiosis induces divergent patterns of transport and partitioning of Cd and Zn in Populus trichocarpa. Environ Exp Bot 171:103925

    Article  Google Scholar 

  • Del Longo OT, González CA, Pastori GM, Trippi VS (1993) Antioxidant defences under hyperoxygenic and hyperosmotic conditions in leaves of two lines of maize with differential sensitivity to drought. Plant Cell Physiol 34:1023–1028

    Google Scholar 

  • Del Val C, Barea JM, Azcon-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Environ Microbiol 65:718–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delavaux CS, Smith-Ramesh LM, Kuebbing SE (2017) Beyond nutrients: a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology 98:2111–2119

    Article  PubMed  Google Scholar 

  • Dhalaria R, Kumar D, Kumar H, Nepovimova E, Kuča K, Torequl Islam M, Verma R (2020) Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants. Agronomy 10:815–837

    Article  CAS  Google Scholar 

  • Doke N (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol 23:345–357

    Article  CAS  Google Scholar 

  • Engelmoer DJ, Behm JE, Toby Kiers E (2014) Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance. Mol Ecol 23:1584–1593

    Article  CAS  PubMed  Google Scholar 

  • Faostat (2020) http://www.fao.org/faostat/en/#data/QC.

  • Gaitonde MK (1967) A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104:627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg N, Pandey R (2016) High effectiveness of exotic arbuscular mycorrhizal fungi is reflected in improved rhizobial symbiosis and trehalose turnover in Cajanus cajan genotypes grown under salinity stress. Fungal Ecol 21:57–67

    Article  Google Scholar 

  • Ghawana S, Paul A, Kumar H, Kumar A, Singh H, Bhardwaj PK, Rani A, Singh RS, Raizada J, Singh K, Kumar S (2007) An RNA isolation system for plant tissues rich in secondary metabolites. BMC Res Notes 4:85

    Article  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • González A, Laporte D, Moenne A (2021) Cadmium accumulation involves synthesis of glutathione and phytochelatins, and activation of CDPK, CaMK, CBLPK, and MAPK signaling Pathways in Ulva compressa. Front Plant Sci. https://doi.org/10.3389/fpls.2021.669096

    Article  PubMed  PubMed Central  Google Scholar 

  • Gramlich A, Tandy S, Gauggel C, López M, Perla D, Gonzalez V, Schulin R (2018) Soil cadmium uptake by cocoa in Honduras. Sci Total Environ 612:370–378

    Article  CAS  PubMed  Google Scholar 

  • Guo JJ, Qin SY, Reng Z, Gao W, Nie ZJ, Liu HG, Li C, Zhao P (2019) Cadmium stress increases antioxidant enzyme activities and decreases endogenous hormone concentrations more in Cd-tolerant than Cd-sensitive wheat varieties. Ecotoxicol Environ Saf 172:380–387

    Article  CAS  PubMed  Google Scholar 

  • Hartree EF (1957) Haematin compounds. In: Peach K, Tracey MV (eds) Modern methods of plant analysis. Springer-Verlag, Germany, Berlin, pp 197–245

    Google Scholar 

  • Hasan MK, Liu C, Wang F et al (2016) Glutathione-mediated regulation of nitric oxide, S-nitrosothiol and redox homeostasis confers cadmium tolerance by inducing transcription factors and stress response genes in tomato. Chemosphere 161:536–545

    Article  CAS  PubMed  Google Scholar 

  • He YM, Yang R, Lei G, Li B, Jiang M, Yan K, Zu YQ, Zhan FD, Li Y (2020) Arbuscular mycorrhizal fungi reduce cadmium leaching from polluted soils under simulated heavy rainfall. Environ Pollut 263:114406

    Article  CAS  PubMed  Google Scholar 

  • Heath RLC, Packer I (1968) Photoperoxidation in isolated chloroplast I, kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Herdina JA, Silsbury JH (1990) Estimating nitrogenase activity of faba bean (Vicia faba) by acetylene reduction (AR) assay. Aust J Plant Physiol 17(5):489–502

    CAS  Google Scholar 

  • Hernández LE, Sobrino-Plata J, Montero-Palmero MB, Carrasco-Gil S, Flores-Cáceres ML, Ortega-Villasante C, Escobar C (2015) Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. J Exp Bot 66:2901–2911

    Article  PubMed  Google Scholar 

  • Hetrick BA, Wilson GW, Cox TS (1992) Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can J Bot 70:2032–2040

    Article  Google Scholar 

  • Hossain MS, Latifa GA, Prianqa A-N (2019) Review of cadmium pollution in Bangladesh. J Health Pollut 9:23

    Article  Google Scholar 

  • Hu Y, Cheng H, Tao S (2016) The challenges and solutions for cadmium-contaminated rice in China: a critical review. Environ Int 92:515–532

    Article  PubMed  Google Scholar 

  • Ibiang YB, Sakamoto K (2018) Synergic effect of arbuscular mycorrhizal fungi and bradyrhizobia on biomass response, element partitioning and metallothionein gene expression of soybean-host under excess soil zinc. Rhizosphere 6:56–66

    Article  Google Scholar 

  • Ikhajiagbe B, Ogwu MC, Lato NF (2021) Growth and yield responses of soybean (Glycine max [L.] Merr.) accessions after exposure to cadmium. Vegetos 34:107–118

    Article  Google Scholar 

  • Ismael MA, Elyamine AM, Moussa MG, Cai M, Zhao X, Hu C (2019) Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 11:255–277

    Article  CAS  PubMed  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  PubMed  Google Scholar 

  • Klink S, Giesemann P, Hubmann T, Pausch J (2020) Stable C and N isotope natural abundances of intraradical hyphae of arbuscular mycorrhizal fungi. Mycorrhiza 30:773–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobae Y, Tamura Y, Takai S, Banba M, Hata S (2010) Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant Cell Physiol 51:1411–1415

    Article  CAS  PubMed  Google Scholar 

  • Kohli SK, Khanna K, Bhardwaj R, Abdallah EF, Ahmad P, Corpas FJ (2019) Assessment of subcellular ROS and NO metabolism in higher plants: multifunctional signaling molecules. Antioxidants 8:641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnamoorthy R, Kim CG, Subramanian P, Kim KY, Selvakumar G, Sa TM (2015) Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration. PLoS ONE 10:e0128784

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubier A, Wilkin RT, Pichler T (2019) Cadmium in soils and groundwater: a review. Appl Geochem 108:104388

    Article  CAS  Google Scholar 

  • Lee BD, Hwang S (2015) Tobacco phytochelatin synthase (NtPCS1) plays important roles in cadmium and arsenic tolerance and in early plant development in tobacco. Plant Biotechnol Rep 9:107–114

    Article  Google Scholar 

  • Leport L, Turner NC, Davies SL, Siddique KHM (2006) Variation in pod production and abortion among chickpea cultivars under terminal drought. Eur J Agron 24:236–246

    Article  Google Scholar 

  • Li H, Luo N, Zhang LJ, Zhao HM, Li YW, Cai QY, Wong MH, Mo CH (2016) Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice? Sci Total Environ 571:1183–1190

    Article  CAS  PubMed  Google Scholar 

  • Li L, Ai S, Li Y, Wang Y, Tang M (2018) Exogenous silicon mediates alleviation of cadmium stress by promoting photosynthetic activity and activities of antioxidative enzymes in rice. J Plant Growth Regul 37:602–611

    Article  CAS  Google Scholar 

  • Li X, Ma H, Li L, Gao Y, Li Y, Xu H (2019) Subcellular distribution, chemical forms and physiological responses involved in cadmium tolerance and detoxification in Agrocybe aegerita. Ecotoxicol Environ Saf 171:66–74

    Article  CAS  PubMed  Google Scholar 

  • Liang T, Ding H, Wang G, Kang J, Pang H, Lv J (2016) Sulfur decreases cadmium translocation and enhances cadmium tolerance by promoting sulfur assimilation and glutathione metabolism in Brassica chinensis L. Ecotoxicol Environ Saf 124:129–137

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Jiang W, Gao X (2003) Effects of cadmium on root growth, cell division and nucleoli in root tip cells of garlic. Biol Plant 47:79–83

    Article  CAS  Google Scholar 

  • Liu C, Ravnskov S, Liu F, Rubæk GH, Andersen MN (2018) Arbuscular mycorrhizal fungi alleviate abiotic stresses in potato plants caused by low phosphorus and deficit irrigation/partial root-zone drying. J Agric Sci 156:46–58

    Article  CAS  Google Scholar 

  • Liu J, Zhang J, Kim SH, Lee HS, Marinoia E, Song WY (2021) Characterization of Brassica rapa metallothionein and phytochelatin synthase genes potentially involved in heavy metal detoxification. PLoS ONE 16:e0252899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Loix C, Huybrechts M, Vangronsveld J, Gielen M, Keunen E, Cuypers A (2017) Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front Plant Sci 8:1867

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu RR, Hu ZH, Zhang QL, Li YQ, Lin M, Wang XL, Wu XN, Yang JT, Zhang LQ, Jing YX, Peng CL (2020) The effect of Funneliformis mosseae on the plant growth, Cd translocation and accumulation in the new Cd-hyperaccumulator Sphagneticola calendulacea. Ecotoxicol Environ Saf 203:110988

    Article  CAS  PubMed  Google Scholar 

  • Mansoor S, Ali Wani O, Lone JK, Manhas S, Kour N, Alam P, Ahmad A, Ahmad P (2022) Reactive oxygen species in plants: from source to sink. Antioxidants 11:225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marguí E, Hidalgoa M, Queraltb I (2007) XRF spectrometry for trace element analysis of vegetation samples. Spectrosc Eur 19:13–17

    Google Scholar 

  • Metsalu T, Vilo J (2015) ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res 43:566–570

    Article  Google Scholar 

  • Mir RR, Kudapa H, Srikanth S, Saxena RK, Sharma A, Azam S, Saxena K, Varma Penmetsa R, Varshney RK (2014) Candidate gene analysis for determinacy in pigeon pea (Cajanus spp.). Theor Appl Genet 127:2663–2678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motaharpoor Z, Taheri H, Nadian H (2019) Rhizophagus irregularis modulates cadmium uptake, metal transporter, and chelator gene expression in Medicago sativa. Mycorrhiza 29:389–395

    Article  CAS  PubMed  Google Scholar 

  • Pajuelo E, Rodríguez-Llorente ID, Lafuente A, Caviedes MÁ (2011) Legume–rhizobium symbioses as a tool for bioremediation of heavy metal polluted soils. In: Khan M, Zaidi A, Goel R, Musarrat J (eds) Biomanagement of metal-contaminated soils. Springer, Dordrecht, pp 95–123

    Chapter  Google Scholar 

  • Pal R, Kaur R, Rajwar D, Narayan Rai JP (2019) Induction of non-protein thiols and phytochelatins by cadmium in Eichhornia crassipes. Int J Phytoremediation 21:790–798

    Article  CAS  PubMed  Google Scholar 

  • Pawlowska TE, Charvat I (2004) Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Appl Environ Microbiol 70:6643–6649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao X, Bei S, Li C, Dong Y, Li H, Christie P, Zhang F, Zhang J (2015) Enhancement of faba bean competitive ability by arbuscular mycorrhizal fungi is highly correlated with dynamic nutrient acquisition by competing wheat. Sci Rep 5:1–10

    Article  Google Scholar 

  • Riaz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G, Deng L, Wang Y, Zhou Y, Anastopoulos I, Wang X (2021) Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review. J Hazard Mater 14:123919

    Article  Google Scholar 

  • Rono JK, Le Wang L, Wu XC, Cao HW, Zhao YN, Khan IU, Yang ZM (2021) Identification of a new function of metallothionein-like gene OsMT1e for cadmium detoxification and potential phytoremediation. Chemosphere 265:129136

    Article  CAS  PubMed  Google Scholar 

  • Sanders IR, Rodriguez A (2016) Aligning molecular studies of mycorrhizal fungal diversity with ecologically important levels of diversity in ecosystems. ISME J 10:2780–2786

    Article  PubMed  PubMed Central  Google Scholar 

  • Sardar R, Ahmed S, Shah AA, Yasin NA (2022) Selenium nanoparticles reduced cadmium uptake, regulated nutritional homeostasis and antioxidative system in Coriandrum sativum grown in cadmium toxic conditions. Chemosphere 287:132332

    Article  CAS  PubMed  Google Scholar 

  • Savary R, Dupuis C, Masclaux FG, Mateus ID, Rojas EC, Sanders IR (2020) Genetic variation and evolutionary history of a mycorrhizal fungus regulate the currency of exchange in symbiosis with the food security crop cassava. ISME J 14(6):1333–1344

    Article  PubMed  PubMed Central  Google Scholar 

  • Saxena KB (2008) Genetic improvement of pigeon pea—A review. Trop Plant Biol 1:159–178

    Article  Google Scholar 

  • Sghayar S, Ferri A, Lancilli C, Lucchini G, Abruzzese A, Porrini M, Ghnaya T, Nocito FF, Abdelly C, Sacchi GA (2015) Analysis of cadmium translocation, partitioning and tolerance in six barley (Hordeum vulgare L.) cultivars as a function of thiol metabolism. Biol Fertil Soils 51:311–320

    Article  CAS  Google Scholar 

  • Shanying HE, Xiaoe YANG, Zhenli HE, Baligar VC (2017) Morphological and physiological responses of plants to cadmium toxicity: a review. Pedosphere 27:421–438

    Article  Google Scholar 

  • Sharma S, Agarwal N, Verma P (2011) Pigeon pea (Cajanus cajan L.): a hidden treasure of regime nutrition. J Funct Environ Bot 1:91–101

    Article  Google Scholar 

  • Sharma S, Paul PJ, Sameer Kumar CV, Nimje C (2020) Utilizing wild Cajanus platycarpus, a tertiary genepool species for enriching variability in the primary genepool for pigeon pea improvement. Front Plant Sci 11:1055

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh PK, Singh M, Tripathi BN (2013) Glomalin: an arbuscular mycorrhizal fungal soil protein. Protoplasma 250:663–669

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Misra AN, Sharma P (2021) Differential responses of thiol metabolism and genes involved in arsenic detoxification in tolerant and sensitive genotypes of bioenergy crop Ricinus communis. Protoplasma 258:391–401

    Article  CAS  PubMed  Google Scholar 

  • Smith IK, Vierhaller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5-dithiobis (2-nitrobenzoic acid). Anal Biochem 175:408–413

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Jin L, Wang X (2017) Cadmium absorption and transportation pathways in plants. Int J Phytoremediation 19:133–141

    Article  CAS  PubMed  Google Scholar 

  • Stambulska UY, Bayliak MM (2020) Legume-rhizobium symbiosis: secondary metabolites, free radical processes, and effects of heavy metals. In: Mérillon JM, Ramawat K (eds) Co-evolution of secondary metabolites. Reference series in phytochemistry. Springer, Cham, pp 291–322

    Chapter  Google Scholar 

  • Talebi M, Tabatabaei BES, Akbarzadeh H (2019) Hyperaccumulation of Cu, Zn, Ni, and Cd in Azolla species inducing expression of methallothionein and phytochelatin synthase genes. Chemosphere 230:488–497

    Article  CAS  PubMed  Google Scholar 

  • Thirkell TJ, Pastok D, Field KJ (2020) Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration. Glob Change Biol 26:1725–1738

    Article  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidative systems in acid rain treated bean plants. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang Q, Bao Y, Liu X, Du G (2014) Spatio-temporal dynamics of arbuscular mycorrhizal fungi associated with glomalin-related soil protein and soil enzymes in different managed semiarid steppes. Mycorrhiza 24:525–538

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Shi J, Xie Q, Jiang Y, Yu N, Wang E (2017) Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol Plant 10:147–1158

    Article  Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107

    Article  CAS  Google Scholar 

  • Xu Z, Ban Y, Li Z, Chen H, Yang R, Tang M (2014) Arbuscular mycorrhizal fungi play a role in protecting roots of Sophora viciifolia Hance. from Pb damage associated with increased phytochelatin synthase gene expression. Environ Sci Pollut Res 21:12671–12683

    Article  CAS  Google Scholar 

  • Xu X, Zhang S, Xian J, Yang Z, Cheng Z, Li T, Jia Y, Pu Y, Li Y (2018) Subcellular distribution, chemical forms and thiol synthesis involved in cadmium tolerance and detoxification in Siegesbeckia orientalis L. Int J Phytoremediation 20:973–980

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Yao Q, Guo J, Long L, Huang Y, Zhu H (2010) Influence of P and Cd on the spore germination, hyphal growth and polyphosphate accumulation in extraradical hyphae of Glomus intraradices. Mycosystema 29:421–428

    Google Scholar 

  • Yang Y, Han X, Liang Y, Ghosh A, Chen J, Tang M (2015) The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. PLoS ONE 10:e0145726

    Article  PubMed  PubMed Central  Google Scholar 

  • Yashona DS, Mishra US, Aher SB, Sirothia P, Mishra SP (2020) Nutrient uptake, zinc use efficiency and yield of pigeon pea as influenced by various modes of zinc application under rainfed condition. J Food Legumes 33:151–159

    Google Scholar 

  • Zarei M, Hempel S, Wubet T, Schäfer T, Savaghebi G, Jouzani GS, Nekouei MK, Buscot F (2010) Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollut 158:2757–2765

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Xu W, Guo J, He Z, Ma M (2005) Coordinated responses of phytochelatins and metallothioneins to heavy metals in garlic seedlings. Plant Sci 169:1059–1065

    Article  CAS  Google Scholar 

  • Zhang X, Rui H, Zhang F, Hu Z, Xia Y, Shen Z (2018) Overexpression of a functional Vicia sativa PCS1 homolog increases cadmium tolerance and phytochelatins synthesis in Arabidopsis. Front Plant Sci 9:107

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Liu M, Li Y, Che Y, Xiao Y (2019) Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Sci Total Environ 655:1150–1158

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Geng J, Du Y, Zhao Q, Zhang W, Fang Q, Yin Z, Li J, Yuan X, Fan Y, Cheng X (2022) Heat shock transcription factor (Hsf) gene family in common bean (Phaseolus vulgaris): genome-wide identification, phylogeny, evolutionary expansion and expression analyses at the sprout stage under abiotic stress. BMC Plant Biol 22:1–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Li Y, Shang W, Dong X, Tang Q, Cheng H (2019) The inhibitory effect of cadmium and/or mercury on soil enzyme activity, basal respiration, and microbial community structure in coal mine–affected agricultural soil. Ann Microbiol 69:849–859

    Article  CAS  Google Scholar 

  • Zwiazek JJ, Blake TJ (1990) Effects of preconditioning on electrolyte leakage and lipid composition in black spruce (Picea mariand) stressed with polyethylene glycol. Physiol Plant 79:71–77

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge TERI and IARI (New Delhi) for providing the biological research material. We sincerely thank the Sophisticated Analytical Instrumentation Facility (SAIF) Panjab University Chandigarh, India, for technical support.

Funding

The authors are thankful to the Council of Scientific and Industrial Research, New Delhi, India, and the Department of Biotechnology, Government of India, for providing financial assistance in undertaking the research work vide their Grants [09/135(0819)/2018-EMR-I] and [BT/PR13409/BPA/118/122/2015], respectively.

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author (NG) planned and designed the research experiment. AB and SB perform the experiments, collected the data and analyzed it. The other authors, including the corresponding author (AK, JK, NG), monitored the experiments and gave final shape to the manuscript.

Corresponding author

Correspondence to Neera Garg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Axel Mithöfer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 195 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisht, A., Bhalla, S., Kumar, A. et al. Arbuscular Mycorrhizae Impart Cd Tolerance in Cajans Cajan (L.) Millsp. by Upregulating the Expression of Metallothionein (CcMT1) and Phytochelatin Synthase (CcPCS1) Genes. J Plant Growth Regul 42, 3947–3966 (2023). https://doi.org/10.1007/s00344-022-10864-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10864-2

Keywords

Navigation