Skip to main content
Log in

Bacterial non-specific nucleases of the phospholipase D superfamily and their biotechnological potential

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial non-specific nucleases are ubiquitously distributed and involved in numerous intra- and extracellular processes. Although all nucleases share the basic chemistry for the hydrolysis of phosphodiester bonds in nucleic acid molecules, the catalysis comprises diverse modes of action, which offers great potential for versatile biotechnological applications. A major criterium for their differentiation is substrate specificity. Specific endonucleases are widely used as restriction enzymes in molecular biology approaches, whereas the main applications of non-specific nucleases (NSNs) are the removal of nucleic acids from crude extracts in industrial downstream processing and the prevention of cell clumping in microfabricated channels. In nature, the predominant role of NSNs is the acquisition of nutrient sources such as nucleotides and phosphates. The number of extensively characterized NSNs and available structures is limited. Moreover, their applicability is mostly challenged by the presence of metal chelators that impede the hydrolysis of nucleic acids in a metal ion–dependent manner. However, a few metal ion–independent NSNs that tolerate the presence of metal chelators have been characterized in recent years with none being commercially available to date. The classification and biotechnological potential of bacterial NSNs with a special focus on metal ion–independent nucleases are presented and discussed.

Key Points

• Bacterial phospholipases (PLD-family) exhibit nucleolytic activity.

• Bacterial nucleases of the PLD-family are metal ion-independent.

• NSNs can be used in downstream processing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahrenholtz I, Lorenz MG, Wackernagel W (1994) A conditional suicide system in Escherichia coli based on the intracellular degradation of DNA. Appl Environ Microbiol 60:3746–3751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson PM, Sung YC, Fuchs JA (1990) The cyanase operon and cyanate metabolism. FEMS Microbiol Rev 7:247–252

    Article  CAS  PubMed  Google Scholar 

  • Araki T (1903) Enzymatic decomposition of nucleic acids. Z Physiol Chem 38:84–92

    Article  CAS  Google Scholar 

  • Ausubel L, Hall C, Sharma A, Shakeley R, Lopez P, Quezada V, Couture S, Laderman K, McMahon R, Huang P, Hsu D, Couture L (2012) Production of CGMP-grade lentiviral vectors. BioProcess Int 10:32–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balagurumoorthy P, Adelstein SJ, Kassis AI (2008) Method to eliminate linear DNA from mixture containing nicked circular, supercoiled, and linear plasmid DNA. Anal Biochem 381:172–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao Y, Higgins L, Zhang P, Chan SH, Laget S, Sweeney S, Lunnen K, Xu SY (2008) Expression and purification of BmrI restriction endonuclease and its N-terminal cleavage domain variants. Protein Expr Purif 58:42–52

    Article  CAS  PubMed  Google Scholar 

  • Beiter K, Wartha F, Albiger B, Normark S, Zychlinsky A, Henriques-Normark B (2006) An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr Biol 16:401–407

    Article  CAS  PubMed  Google Scholar 

  • Beliaeva MI, Kapranova MN, Vitol M, Golubenko IA, Leshchinskaia IB (1976) Nucleic acids utilized as the main source of bacterial nutrition. Mikrobiologiia 45:420–424

    CAS  PubMed  Google Scholar 

  • Belkebir A, Azeddoug H (2012) Characterization of LlaKI, a new metal ion-independent restriction endonuclease from Lactococcus lactis KLDS4. ISRN Biochem 2012:1–6

    Article  CAS  Google Scholar 

  • Benedik MJ, Strych U (1998) Serratia marcescens and its extracellular nuclease. FEMS Microbiol Lett 165:1–13

    Article  CAS  PubMed  Google Scholar 

  • Binnenkade L, Kreienbaum M, Thormann KM (2018) Characterization of ExeM, an extracellular nuclease of Shewanella oneidensis MR-1. Front Microbiol 9:1761

    Article  PubMed  PubMed Central  Google Scholar 

  • Brnakova Z (2002) Microbial sugar non-specific nucleases. Biologia 57:677–687

    CAS  Google Scholar 

  • Brown PH, Ho TH (1986) Barley aleurone layers secrete a nuclease in response to gibberellic acid : purification and partial characterization of the associated ribonuclease, deoxyribonuclease, and 3′-nucleotidase activities. Plant Physiol 82:801–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceska TA, Sayers JR (1998) Structure-specific DNA cleavage by 5′ nucleases. Trends Biochem Sci 23:331–336

    Article  CAS  PubMed  Google Scholar 

  • Chan SH, Bao Y, Ciszak E, Laget S, Xu SY (2007) Catalytic domain of restriction endonuclease BmrI as a cleavage module for engineering endonucleases with novel substrate specificities. Nucleic Acids Res 35:6238–6248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasegaran S, Carroll D (2016) Origins of programmable nucleases for genome engineering. J Mol Biol 428:963–989

    Article  CAS  PubMed  Google Scholar 

  • Chang HH, Lieber MR (2016) Structure-specific nuclease activities of Artemis and the Artemis: DNA-PKcs complex. Nucleic Acids Res 44:4991–4997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chase JW, Richardson CC (1974) Exonuclease VII of Escherichia coli. Purification and properties. J Biol Chem 249:4545–4552

    CAS  PubMed  Google Scholar 

  • Cincinnati Children’s Hospital (2019) Cincinnati children’s research flow cytometry core cell sorting guidelines. 1–8

  • Dang G, Cao J, Cui Y, Song N, Chen L, Pang H, Liu S (2016) Characterization of Rv0888, a novel extracellular nuclease from Mycobacterium tuberculosis. Sci Rep 6:19033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang G, Cui Y, Wang L, Li T, Cui Z, Song N, Chen L, Pang H, Liu S (2018) Extracellular sphingomyelinase Rv0888 of Mycobacterium tuberculosis contributes to pathological lung injury of Mycobacterium smegmatis in mice via inducing formation of neutrophil extracellular traps. Front Immunol 9:677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies DR, Interthal H, Champoux JJ, Hol WG (2004) Explorations of peptide and oligonucleotide binding sites of tyrosyl-DNA phosphodiesterase using vanadate complexes. J Med Chem 47:829–837

    Article  CAS  PubMed  Google Scholar 

  • De Falco M, Catalano F, Rossi M, Ciaramella M, De Felice M (2015) NurA is endowed with endo- and exonuclease activities that are modulated by HerA: new insight into their role in DNA-end processing. PLoS One 10:e0142345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez K, Ward W (2009) A novel nuclease activity that is activated by Ca2+ chelated to EGTA. Syst Biol Reprod Med 55:193–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doronina NV, Kaparullina EN, Trotsenko YA, Nortemann B, Bucheli-Witschel M, Weilenmann HU, Egli T (2010) Chelativorans multitrophicus gen. nov., sp. nov. and Chelativorans oligotrophicus sp. nov., aerobic EDTA-degrading bacteria. Int J Syst Evol Microbiol 60:1044–1051

  • Elleuche S, Pöggeler S (2008) A cyanase is transcriptionally regulated by arginine and involved in cyanate decomposition in Sordaria macrospora. Fungal Genet Biol 45:1458–1469

    Article  CAS  PubMed  Google Scholar 

  • Elleuche S, Klippel B, von der Heyde A, Antranikian G (2013) Comparative analysis of two members of the metal ion-containing group III-alcohol dehydrogenases from Dickeya zeae. Biotechnol Lett 35:725–733

    Article  CAS  PubMed  Google Scholar 

  • Elleuche S, Schröder C, Sahm K, Antranikian G (2014) Extremozymes--biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29:116–123

    Article  CAS  PubMed  Google Scholar 

  • Elleuche S, Schäfers C, Blank S, Schröder C, Antranikian G (2015) Exploration of extremophiles for high temperature biotechnological processes. Curr Opin Microbiol 25:113–119

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Cantu A, Ascencio D, Barona-Gomez F, DeLuna A (2015) Gene duplication and the evolution of moonlighting proteins. Front Genet 6:227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eyler E (2013) Explanatory chaper: nuclease protection assays. In: Lorsch J (ed) Laboratory methods in enzymology: RNA, vol 530. Academic Press, Waltham, p 413

    Google Scholar 

  • Filiminova MN, Garusov AV, Andreeva MA, Smetanina TA, Bogomolnya LM, Leshchinskaya IB (1996) Isoforms of Serratia marcescens nuclease. Comparative analysis of substrate specificity. Biochemistry (Mosc) 61:1274–1278

    Google Scholar 

  • Friedhoff P, Gimadutdinow O, Pingoud A (1994) Identification of catalytically relevant amino acids of the extracellular Serratia marcescens endonuclease by alignment-guided mutagenesis. Nucleic Acids Res 22:3280–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes J, Steiner W (2004) The biocatalytical potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235

    CAS  Google Scholar 

  • Gottlin EB, Rudolph AE, Zhao Y, Matthews HR, Dixon JE (1998) Catalytic mechanism of the phospholipase D superfamily proceeds via a covalent phosphohistidine intermediate. Proc Natl Acad Sci U S A 95:9202–9207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grazulis S, Manakova E, Roessle M, Bochtler M, Tamulaitiene G, Huber R, Siksnys V (2005) Structure of the metal-independent restriction enzyme BfiI reveals fusion of a specific DNA-binding domain with a nonspecific nuclease. Proc Natl Acad Sci U S A 102:15797–15802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (2011) Extremophiles handbook, 1st edn. Springer, Japan

    Book  Google Scholar 

  • Hosfield DJ, Guan Y, Haas BJ, Cunningham RP, Tainer JA (1999) Structure of the DNA repair enzyme endonuclease IV and its DNA complex: double-nucleotide flipping at abasic sites and three-metal-ion catalysis. Cell 98:397–408

    Article  CAS  PubMed  Google Scholar 

  • Hsia KC, Li CL, Yuan HS (2005) Structural and functional insight into sugar-nonspecific nucleases in host defense. Curr Opin Struct Biol 15:126–134

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Meng J, Shi C, Hervin K, Fratamico PM, Shi X (2013) Characterization and comparative analysis of a second thermonuclease from Staphylococcus aureus. Microbiol Res 168:174–182

    Article  CAS  PubMed  Google Scholar 

  • Imagawa H, Toryu H, Ozawa T, Takino Y (1982) Purification and characterization of nucleases from tea leaves. Agric Biol Chem 46:1261–1269

    CAS  Google Scholar 

  • Ishikawa K, Watanabe M, Kuroita T, Uchiyama I, Bujnicki JM, Kawakami B, Tanokura M, Kobayashi I (2005) Discovery of a novel restriction endonuclease by genome comparison and application of a wheat-germ-based cell-free translation assay: PabI (5′-GTA/C) from the hyperthermophilic archaeon Pyrococcus abyssi. Nucleic Acids Res 33:e112

  • Iwanoff L (1903) Über die fermentative Zersetzung der Thymonucleinsäure durch Schimmelpilze. Z Physiol Chem 39:31–37

    Article  CAS  Google Scholar 

  • Jeucken A, Helms JB, Brouwers JF (2018) Cardiolipin synthases of Escherichia coli have phospholipid class specific phospholipase D activity dependent on endogenous and foreign phospholipids. Biochim Biophys Acta Mol Cell Biol Lipids 1863:1345–1353

    Article  CAS  PubMed  Google Scholar 

  • Jun SY, Lewis KM, Youn B, Xun L, Kang C (2016) Structural and biochemical characterization of EDTA monooxygenase and its physical interaction with a partner flavin reductase. Mol Microbiol 100:989–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamekura M, Hamakawa T, Onishi H (1982) Application of halophilic nuclease H of Micrococcus varians subsp. halophilus to commercial production of flavoring agent 5'-GMP. Appl Environ Microbiol 44:994–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knott GJ, Doudna JA (2018) CRISPR-Cas guides the future of genetic engineering. Science 361:866–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV (1996) A duplicated catalytic motif in a new superfamily of phosphohydrolases and phospholipid synthases that includes poxvirus envelope proteins. Trends Biochem Sci 21:242–243

    Article  CAS  PubMed  Google Scholar 

  • Leiros I, Secundo F, Zambonelli C, Servi S, Hough E (2000) The first crystal structure of a phospholipase D. Structure 8:655–667

    Article  CAS  PubMed  Google Scholar 

  • Li L, Rohrmann GF (2000) Characterization of a baculovirus alkaline nuclease. J Virol 74:6401–6407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Lin S, Yang F (2005) Functional identification of the non-specific nuclease from white spot syndrome virus. Virology 337:399–406

    Article  CAS  PubMed  Google Scholar 

  • Li L, Krishnan M, Baseman JB, Kannan TR (2010) Molecular cloning, expression, and characterization of a Ca2+−dependent, membrane-associated nuclease of Mycoplasma genitalium. J Bacteriol 192:4876–4884

  • Linder T (2018) Cyanase-independent utilization of cyanate as a nitrogen source in ascomycete yeasts. World J Microbiol Biotechnol 35:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linn S, Robert RJ (1982) Nucleases. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Loenen WA, Dryden DT, Raleigh EA, Wilson GG, Murray NE (2014) Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res 42:3–19

    Article  CAS  PubMed  Google Scholar 

  • Lunin VY, Levdikov VM, Shlyapnikov SV, Blagova EV, Lunin VV, Wilson KS, Mikhailov AM (1997) Three-dimensional structure of Serratia marcescens nuclease at 1.7 a resolution and mechanism of its action. FEBS Lett 412:217–222

    Article  CAS  PubMed  Google Scholar 

  • Luque-Almagro VM, Huertas MJ, Saez LP, Luque-Romero MM, Moreno-Vivian C, Castillo F, Roldan MD, Blasco R (2008) Characterization of the Pseudomonas pseudoalcaligenes CECT5344 cyanase, an enzyme that is not essential for cyanide assimilation. Appl Environ Microbiol 74:6280–6288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma F, Guo X, Fan H (2017) Extracellular nucleases of Streptococcus equi subsp zooepidemicus degrade neutrophil extracellular traps and impair macrophage activity of the host. Appl Environ Microbiol 83:e02468-16

  • Maciejewska N, Walkusz R, Olszewski M, Szymanska A (2019) New nuclease from extremely psychrophilic microorganism Psychromonas ingrahamii 37: identification and characterization. Mol Biotechnol 61:122–133

    Article  CAS  PubMed  Google Scholar 

  • Maeda M, Taga N (1976) Extracellular nuclease produced by a marine bacterium. II. Purification and properties of extracellular nuclease from a marine Vibrio sp. Can J Microbiol 22:1443–1452

    Article  CAS  PubMed  Google Scholar 

  • Martin CE, Wagner RP (1975) Two forms of a mitochondrial endonuclease in Neurospora crassa. Can J Biochem 53:823–825

    Article  CAS  PubMed  Google Scholar 

  • Miller MD, Benedik MJ, Sullivan MC, Shipley NS, Krause KL (1991) Crystallization and preliminary crystallographic analysis of a novel nuclease from Serratia marcescens. J Mol Biol 222:27–30

    Article  CAS  PubMed  Google Scholar 

  • Miltenyi S, Hübel T, Nölle V (2018) Process for sorting cells by microfabricated components using a nuclease. US 10, 018,541 B2, 10.07.2018

  • Miyazono K, Watanabe M, Kosinski J, Ishikawa K, Kamo M, Sawasaki T, Nagata K, Bujnicki JM, Endo Y, Tanokura M, Kobayashi I (2007) Novel protein fold discovered in the PabI family of restriction enzymes. Nucleic Acids Res 35:1908–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazono K, Furuta Y, Watanabe-Matsui M, Miyakawa T, Ito T, Kobayashi I, Tanokura M (2014) A sequence-specific DNA glycosylase mediates restriction-modification in Pyrococcus abyssi. Nat Commun 5:3178

    Article  CAS  PubMed  Google Scholar 

  • Moon AF, Krahn JM, Lu X, Cuneo MJ, Pedersen LC (2016) Structural characterization of the virulence factor Sda1 nuclease from Streptococcus pyogenes. Nucleic Acids Res 44:3946–3957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullis KB, Ferre F, Gibbs RA (1994) The polymerase chain reaction (PCR). Birkhäuser Verlag, Basel

    Book  Google Scholar 

  • Pan CQ, Lazarus RA (1998) Hyperactivity of human DNase I variants. Dependence on the number of positively charged residues and concentration, length, and environment of DNA. J Biol Chem 273:11701–11708

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Xiao L, Li AS, Zhang X, Sirois P, Zhang J, Li K (2013) Biological and biomedical applications of engineered nucleases. Mol Biotechnol 55:54–62

    Article  CAS  PubMed  Google Scholar 

  • Pandya C, Farelli JD, Dunaway-Mariano D, Allen KN (2014) Enzyme promiscuity: engine of evolutionary innovation. J Biol Chem 289:30229–30236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panfilova ZI, Salganik RI (1983) Isolation of Serratia marcescens mutants superproducers of endonuclease by exposure to nitrosomethylurea in a synchronized culture. Mikrobiologiia 52:974–978

    CAS  PubMed  Google Scholar 

  • Pedersen J, Filimonova M, Roepstorff P, Biedermann K (1995) Nuclease isoforms of natural and recombinant strains of Serratia marcescens. Biokhimiia 60:450–461

    CAS  PubMed  Google Scholar 

  • Pinchuk GE, Ammons C, Culley DE, Li SM, McLean JS, Romine MF, Nealson KH, Fredrickson JK, Beliaev AS (2008) Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: ecological and physiological implications for dissimilatory metal reduction. Appl Environ Microbiol 74:1198–1208

    Article  CAS  PubMed  Google Scholar 

  • Pohlman RF, Liu F, Wang L, More MI, Winans SC (1993) Genetic and biochemical analysis of an endonuclease encoded by the IncN plasmid pKM101. Nucleic Acids Res 21:4867–4872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pommer AJ, Wallis R, Moore GR, James R, Kleanthous C (1998) Enzymological characterization of the nuclease domain from the bacterial toxin colicin E9 from Escherichia coli. Biochem J 334:387–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponting CP, Kerr ID (1996) A novel family of phospholipase D homologues that includes phospholipid synthases and putative endonucleases: identification of duplicated repeats and potential active site residues. Protein Sci 5:914–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prazeres DM (2016) Considerations on the use of enzymes in downstream processing of biopharmaceuticals. Pharm Bioprocess 4:91–95

    Google Scholar 

  • Rangarajan ES, Shankar V (2001) Sugar non-specific endonucleases. FEMS Microbiol Rev 25:583–613

    Article  CAS  PubMed  Google Scholar 

  • Romier C, Dominguez R, Lahm A, Dahl O, Suck D (1998) Recognition of single-stranded DNA by nuclease P1: high resolution crystal structures of complexes with substrate analogs. Proteins 32:414–424

    Article  CAS  PubMed  Google Scholar 

  • Rudolph AE, Stuckey JA, Zhao Y, Matthews HR, Patton WA, Moss J, Dixon JE (1999) Expression, characterization, and mutagenesis of the Yersinia pestis murine toxin, a phospholipase D superfamily member. J Biol Chem 274:11824–11831

    Article  CAS  PubMed  Google Scholar 

  • Saez LP, Cabello P, Ibanez MI, Luque-Almagro VM, Roldan MD, Moreno-Vivian C (2019) Cyanate assimilation by the alkaliphilic cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344: mutational analysis of the cyn gene cluster. Int J Mol Sci 20

  • Saha SK, Saikot FK, Rahman MS, Jamal M, Rahman SMK, Islam SMR, Kim KH (2019) Programmable molecular scissors: applications of a new tool for genome editing in biotech. Mol Ther Nucleic Acids 14:212–238

    Article  CAS  PubMed  Google Scholar 

  • Sasnauskas G, Zakrys L, Zaremba M, Cosstick R, Gaynor JW, Halford SE, Siksnys V (2010) A novel mechanism for the scission of double-stranded DNA: BfiI cuts both 3′-5′ and 5′-3′ strands by rotating a single active site. Nucleic Acids Res 38:2399–2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satomi M (2014) The family Shewanellaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 597–625

    Google Scholar 

  • Schmitz S, Börner P, Nölle V, Elleuche S (2019a) Comparative analysis of two non-specific nucleases of the phospholipase D family from the plant pathogen competitor bacterium Pantoea agglomerans. Appl Microbiol Biotechnol 103:2635–2648

    Article  CAS  PubMed  Google Scholar 

  • Schmitz S, Nölle V, Elleuche S (2019b) A non-specific nucleolytic enzyme and its application potential in EDTA-containing buffer solutions. Biotechnol Lett 41:129–136

    Article  CAS  PubMed  Google Scholar 

  • Schmitz S, Wieczorek M, Nölle V, Elleuche S (2020) Characterization of single amino acid variations in a cold-active and EDTA-tolerating non-specific nuclease from the ice-nucleating bacterium Pseudomonas syringae. Mol Biotechnol 62:67–78

    Article  CAS  PubMed  Google Scholar 

  • Schwardmann LS, Schmitz S, Nölle V, Elleuche S (2019) Decoding essential amino acid residues in the substrate groove of a non-specific nuclease from Pseudomonas syringae. Catalysts 9:941

    Article  CAS  Google Scholar 

  • Shlyapnikov SV, Lunin VV, Perbandt M, Polyakov KM, Lunin VY, Levdikov VM, Betzel C, Mikhailov AM (2000) Atomic structure of the Serratia marcescens endonuclease at 1.1 a resolution and the enzyme reaction mechanism. Acta Crystallogr D Biol Crystallogr 56:567–572

    Article  CAS  PubMed  Google Scholar 

  • Smith JG, Liu X, Kaufhold RM, Clair J, Caulfield MJ (2001) Development and validation of a gamma interferon ELISPOT assay for quantitation of cellular immune responses to varicella-zoster virus. Clin Diagn Lab Immunol 8:871–879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song Q, Zhang X (2008) Characterization of a novel non-specific nuclease from thermophilic bacteriophage GBSV1. BMC Biotechnol 8:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuckey JA, Dixon JE (1999) Crystal structure of a phospholipase D family member. Nat Struct Biol 6:278–284

    Article  CAS  PubMed  Google Scholar 

  • Vafina G, Zainutdinova E, Bulatov E, Filimonova MN (2018) Endonuclease from gram-negative bacteria Serratia marcescens is as effective as Pulmozyme in the hydrolysis of DNA in sputum. Front Pharmacol 9:114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varley DL, Hitchcock AG, Weiss AM, Horler WA, Cowell R, Peddie L, Sharpe GS, Thatcher DR, Hanak JA (1999) Production of plasmid DNA for human gene therapy using modified alkaline cell lysis and expanded bed anion exchange chromatography. Bioseparation 8:209–217

    Article  CAS  PubMed  Google Scholar 

  • Vassylyeva MN, Klyuyev S, Vassylyev AD, Wesson H, Zhang Z, Renfrow MB, Wang H, Higgins NP, Chow LT, Vassylyev DG (2017) Efficient, ultra-high-affinity chromatography in a one-step purification of complex proteins. Proc Natl Acad Sci U S A 114:E5138–E5147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vitkute J, Maneliene Z, Petrusyte M, Janulaitis A (1998) BfiI, a restriction endonuclease from Bacillus firmus S8120, which recognizes the novel non-palindromic sequence 5'-ACTGGG(N)5/4-3′. Nucleic Acids Res 26:3348–3349

  • Vlassov VV, Laktionov PP, Rykova EY (2007) Extracellular nucleic acids. Bioessays 29:654–667

    Article  CAS  PubMed  Google Scholar 

  • Waite M (1999) The PLD superfamily: insights into catalysis. Biochim Biophys Acta 1439:187–197

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Miyazono KI, Tanokura M (2016) Tetrameric structure of the restriction DNA glycosylase R.PabI in complex with nonspecific double-stranded DNA. Sci Rep 6:35197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witteveldt J, Van Hulten MC, Vlak JM (2001) Identification and phylogeny of a non-specific endonuclease gene of white spot syndrome virus of shrimp. Virus Genes 23:331–337

    Article  CAS  PubMed  Google Scholar 

  • Wu SI, Lo SK, Shao CP, Tsai HW, Hor LI (2001) Cloning and characterization of a periplasmic nuclease of Vibrio vulnificus and its role in preventing uptake of foreign DNA. Appl Environ Microbiol 67:82–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin XF, Kvitko B, He SY (2018) Pseudomonas syringae: what it takes to be a pathogen. Nat Rev Microbiol 16:316–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W (2011) Nucleases: diversity of structure, function and mechanism. Q Rev Biophys 44:1–93

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Stuckey JA, Lohse DL, Dixon JE (1997) Expression, characterization, and crystallization of a member of the novel phospholipase D family of phosphodiesterases. Protein Sci 6:2655–2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the department “Recombinant proteins” at Miltenyi Biotec B.V. & Co. KG and especially Sarah Schmitz and Marek Wieczorek for discussion.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the concept: SE; Wrote the paper: LSS, SE; Reviewed and edited the manuscript: VN.

Corresponding author

Correspondence to Skander Elleuche.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwardmann, L.S., Nölle, V. & Elleuche, S. Bacterial non-specific nucleases of the phospholipase D superfamily and their biotechnological potential. Appl Microbiol Biotechnol 104, 3293–3304 (2020). https://doi.org/10.1007/s00253-020-10459-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10459-5

Keywords

Navigation