Skip to main content

Advertisement

Log in

Protease—A Versatile and Ecofriendly Biocatalyst with Multi-Industrial Applications: An Updated Review

  • Perspective
  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Proteases are important industrial biocatalysts that constitute the largest group of enzymes acting as proteinases, peptidases, and amidases with a broad range of industrial applications. In this review, particular attention has been given to comprehensively scrutinize the proteases. After the succinct introduction, classification of proteases as exopeptidases (amino and carboxy proteases) and endopeptidases (serine, aspartic, cysteine, and metalloproteases), sources of alkaline, acidic and neutral protease like animal, plant and microbial sources along with the multi-industrial applications have been dissertated. Now a day’s, mostly proteases, which are present in the market, are produced from microbial sources because of the fast production rate and the limited requirement of cultivation. In addition to this, a critique on the applications of proteases in food, detergent, leather, pharmaceutical, cosmetics, silk degumming, silver recovery, chemical industry, and wastewater treatment industries is also concisely addressed. Finally, protein engineering and immobilization strategies to improve the catalytic properties of protease are thoroughly vetted. The quest for novel sources of protease enzyme has been encouraged to fulfill their ever-increasing demands for industrial exploitation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kumar P, Sharma SM (2016) Enzymes in green chemistry: the need for environment and sustainability. IJAR 2(6):337–341

    Google Scholar 

  2. Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3(3):597–611

    PubMed  PubMed Central  Google Scholar 

  3. Rekik H, Jaouadi NZ, Gargouri F et al (2019) Production, purification and biochemical characterization of a novel detergent-stable serine alkaline protease from Bacillus safensis strain RH12. Int J Biol Macromol 121:1227–1239

    CAS  PubMed  Google Scholar 

  4. Muthulakshmi C, Gomathi D, Kumar DG et al (2011) Production, purification and characterization of protease by Aspergillus flavus under solid state fermentation. Jordan J Biol Sci 4(3):137–148

    Google Scholar 

  5. Sharma M, Gat Y, Arya S et al (2019) A review on microbial alkaline protease: an essential tool for various industrial approaches. Indus Biotech 15(2):69–78

    CAS  Google Scholar 

  6. Wahab WAA, Ahmed SA (2017) Response surface methodology for production, characterization and application of solvent, salt and alkali-tolerant alkaline protease from isolated fungal strain Aspergillus niger WA. Int J Biol Macromol 115:447–458

    Google Scholar 

  7. Munawar TM, Aruna K, Swamy A (2014) Production, purification and characterization of alkaline protease from agro industrial wastes by using Aspergillus terreus (AB661667) under solid state fermentation. Int J Adv Res Eng Appl Sci 3(10):12–23

    Google Scholar 

  8. Maitig AMA, Alhoot MA, Tiwari K (2018) Isolation and screening of extracellular protease enzyme from fungal isolates of soil. J Pure Appl Microbiol 4:2059

    Google Scholar 

  9. Souza PMD, Bittencourt MLDA, Caprara CC et al (2015) A biotechnology perspective of fungal proteases. Braz J Microbiol 46(2):337–346

    PubMed  PubMed Central  Google Scholar 

  10. Kumar R, Vats R (2010) Protease production by Bacillus subtilis immobilized on different matrices. NY Sci J 3(7):20–24

    CAS  Google Scholar 

  11. Rohan M (2014) Protease enzymes market worth $2,767 million by 2019***

  12. Dettmer A, Cavalli E, Ayub MA et al (2013) Environmentally friendly hide unhairing: enzymatic hide processing for the replacement of sodium sulfide and delimig. J Clean Prod 47:11–18

    CAS  Google Scholar 

  13. Fazilat A (2016) Production, isolation, purification and partial characterization of an extracellular acid protease from Aspergillus niger. Int J Adv Res Biol Sci 3(3):32–38

    CAS  Google Scholar 

  14. Jegannathan KR, Nielsen PH (2013) Environmental assessment of enzyme use in industrial production—a literature review. J Clean Prod 42:228–240

    CAS  Google Scholar 

  15. Sawant R, Nagendran S (2014) Protease: an enzyme with multiple industrial applications. World J Pharm Pharm Sci 3:568–579

    CAS  Google Scholar 

  16. Proteases Market Size, Industry Analysis Report, Regional Outlook, Application Development Potential, Price Trends, Competitive Market Share & Forecast: 2020–2026

  17. Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13(4):345–351

    CAS  PubMed  Google Scholar 

  18. Sani JT, Gharibi SOS, Shariati MA (2017) The importance of alkaline protease commercial applications: a short review. Ind J Resin Pharm Biotechnol 5(1):5

    CAS  Google Scholar 

  19. Rao MB, Tanksale AM, Ghatge MS et al (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62(3):597–635

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Motyan JA, Toth F, Tozser J (2013) Research applications of proteolytic enzymes in molecular biology. Biomolecules 3(4):923–942

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Siroya H, Patel S, Upadhyay D (2020) Industrial applications of protease: a review. Stud Indian Place Names 40(71):224–232

    Google Scholar 

  22. Page M, Di Cera E (2008) Serine peptidases: classification, structure and function. Cell Mol Life Sci 65(7–8):1220–1236

    CAS  PubMed  Google Scholar 

  23. Thakur N, Goyal M, Sharma S et al (2018) Proteases: industrial applications and approaches used in strain improvement. Biol Forum J 10(1):158–167

    CAS  Google Scholar 

  24. Muhammad N (2011) Biotechnological production of alkaline protease for industrial use. University of the Punjab, Lahore

    Google Scholar 

  25. Ellaiah P, Srinivasulu B, Adinarayana K (2002) A review on microbial alkaline proteases. J Sci Ind Res 61(9):690–704

    CAS  Google Scholar 

  26. Theron LW, Divol B (2014) Microbial aspartic proteases: current and potential applications in industry. Appl Microbiol Biotechnol 98(21):8853–8868

    CAS  PubMed  Google Scholar 

  27. Vashishta A, Ohri SS, Vetvickova J et al (2007) Procathepsin D secreted by HaCaT keratinocyte cells—a novel regulator of keratinocyte growth. Eur J Cell Biol 86(6):303–313

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Souza PM, Werneck G, Aliakbarian B et al (2017) Production, purification and characterization of an aspartic protease from Aspergillus foetidus. Food Chem Toxicol 109:1103–1110

    CAS  PubMed  Google Scholar 

  29. Turk B, Turk D, Turk V (2012) Protease signalling: the cutting edge. EMBO J 31(7):1630–1643

    CAS  PubMed  PubMed Central  Google Scholar 

  30. de Castro RJS, Sato HH (2014) Production and biochemical characterization of protease from Aspergillus oryzae: an evaluation of the physical–chemical parameters using agroindustrial wastes as supports. Biocatal Agric Biotechnol 3(3):20–25

    Google Scholar 

  31. Novelli PK, Barros MM, Fleuri LF (2016) Novel inexpensive fungi proteases: production by solid state fermentation and characterization. Food Chem 198:119–124

    CAS  PubMed  Google Scholar 

  32. Chanalia P, Gandhi D, Jodha D et al (2011) Applications of microbial proteases in pharmaceutical industry: an overview. Rev Med Microbiol 22(4):96–101

    Google Scholar 

  33. Ahmad R, Zuily-Fodil Y, Passaquet C et al (2013) Bacterial expression, purification and partial characterization of new recombinant cysteine protease from maize leaves: post-transcriptional changes under ozone stress. Pak J Bot 45:441–446

    Google Scholar 

  34. Veloorvalappil NJ, Robinson BS, Selvanesan P et al (2013) Versatility of microbial proteases. Adv Enzyme Res 1(3):1–13

    Google Scholar 

  35. Adinarayana K, Ellaiah P (2002) Response surface optimization of the critical medium components for the production of alkaline protease by a newly isolated Bacillus sp. J Pharm Pharm Sci 5(3):272–278

    CAS  PubMed  Google Scholar 

  36. Singhal P, Nigam V, Vidyarthi A (2012) Studies on production, characterization and applications of microbial alkaline proteases. Int J Adv Biotechnol Res 3(3):653–669

    CAS  Google Scholar 

  37. Tavano OL, Berenguer-Murcia A, Secundo F et al (2018) Biotechnological applications of proteases in food technology. Comp Rev Food Sci Food Saf 17(2):412–436

    Google Scholar 

  38. Mishra SS, Ray RC, Rosell CM (2017) Microbial enzymes in food applications: history of progress. In: Microbial enzyme technology in food applications. CRC Press, Boca Raton, pp 17–32

  39. Freitas A, Baleeiro FCF, Fonseca RF et al (2015) Bioprocess development to add value to canola cake used as substrate for proteolytic enzyme production. Food Bioprod Process 95:173–182

    CAS  Google Scholar 

  40. Khan F (2013) New microbial proteases in leather and detergent industries. Innov Res Chem 1(1):1–6

    CAS  Google Scholar 

  41. Benluvankar V, Jebapriya GR, Gnanadoss JJ (2015) Protease production by Penicillium sp. LCJ228 under solid state fermentation using groundnut oilcake as substrate. Life 50:1–12

    Google Scholar 

  42. Sharma N (2019) A review on fungal alkaline protease. J Emerg Tech Innov Res 6(6):1–14

    CAS  Google Scholar 

  43. Oyeleke S, Egwim EC, Auta S (2010) Screening of Aspergillus flavus and Aspergillus fumigatus strains for extracellular protease enzyme production. J Microbiol Antimicrob 2(7):83–87

    CAS  Google Scholar 

  44. Charles P, Devanathan V, Anbu P et al (2008) Purification, characterization and crystallization of an extracellular alkaline protease from Aspergillus nidulans HA-10. J Basic Microbiol 48(5):347–352

    CAS  PubMed  Google Scholar 

  45. Sharma AK, Sharma V, Saxena J et al (2015) Isolation and screening of extracellular protease enzyme from bacterial and fungal isolates of soil. Int J Sci Res Environ Sci 3(9):0334–0340

    CAS  Google Scholar 

  46. Nadeem F, Mehmood T, Naveed M et al (2019) Protease production from Cheotomium globusum through central composite design using agricultural wastes and its immobilization for industrial exploitation. Waste Biomass Valor. https://doi.org/10.1007/s12649-019-00890-9

    Article  Google Scholar 

  47. Romsomsa N, Chim-anagae P, Jangchud A (2010) Optimization of silk degumming protease production from Bacillus subtilis C4 using Plackett-Burman design and response surface methodology. Sci Asia 36:118–124

    CAS  Google Scholar 

  48. Santos Aguilar D, Sato JG, Sato HH (2018) Microbial proteases: production and application in obtaining protein hydrolysates. Food Res Int 103:253–262

    PubMed  Google Scholar 

  49. Al-Qodah Z, Daghistani H, Alananbeh K (2013) Isolation and characterization of thermostable protease producing Bacillus pumilus from thermal spring in Jordan. Afr J Microbiol Res 7(29):3711–3719

    CAS  Google Scholar 

  50. Jaswal R, Kocher G, Virk M (2008) Production of alkaline protease by Bacillus circulans using agricultural residues: a statistical approach. Ind J Biotechnol 7:356–360

    CAS  Google Scholar 

  51. Panda SK, Mishra SS, Kayitesi E et al (2016) Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: biotechnology and scopes. Environ Res 146:161–172

    CAS  PubMed  Google Scholar 

  52. Li N, Zong MH (2010) Lipases from the genus Penicillium: production, purification, characterization and applications. J Mol Catal B 66(1):43–54

    Google Scholar 

  53. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19(8):627–662

    CAS  PubMed  Google Scholar 

  54. Leisola M, Jokela J, Pastinen O et al (2001) Industrial use of enzymes. Eolss Publication, Oxford

    Google Scholar 

  55. Sumantha A, Larroche C, Pandey A (2006) Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food Technol Biotechnol 44(2):211

    CAS  Google Scholar 

  56. Devi MK, Banu AR, Gnanaprabhal GR et al (2008) Purification, characterization of alkaline protease enzyme from native isolate Aspergillus niger and its compatibility with commercial detergents. Ind J Sci Technol 1(7):1–6

    Google Scholar 

  57. Samal BB, Karan B, Stabinsky Y (1990) Stability of two novel serine proteinases in commercial laundry detergent formulations. Biotechnol Bioeng 35(6):650–652

    CAS  PubMed  Google Scholar 

  58. Banik RM, Prakash M (2004) Laundry detergent compatibility of the alkaline protease from Bacillus cereus. Microbiol Res 159(2):135–140

    CAS  PubMed  Google Scholar 

  59. Yadav SK, Bisht D, Shikha S et al (2011) Oxidant and solvent stable alkaline protease from Aspergillus flavus and its characterization. Afr J Biotechnol 10(43):8630–8640

    CAS  Google Scholar 

  60. Rao K, Narasu ML (2007) Alkaline protease from Bacillus firmus 7728. Afri J Biotechnol 6(21):2493–2496

    CAS  Google Scholar 

  61. Benmrad MO, Moujehed E, Elhoul MB et al (2018) Production, purification, and biochemical characterization of serine alkaline protease from Penicillium chrysogenium strain X5 used as excellent bio-additive for textile processing. Int J Biol Macromol 119:1002–1016

    Google Scholar 

  62. Dayanandan A, Kanagaraj J, Sounderraj L et al (2003) Application of an alkaline protease in leather processing: an ecofriendly approach. J Clean Prod 11(5):533–536

    Google Scholar 

  63. Ahmed SA, Al-domany RA, El-Shayeb NM et al (2008) Optimization, immobilization of extracellular alkaline protease and characterization of its enzymatic properties. Res J Agric Biol Sci 4(5):434–446

    CAS  Google Scholar 

  64. Kainoor PS, Naik G (2010) Production and characterization of feather degrading keratinase from Bacillus sp. JB 99. Ind J Biotechnol 9(4):384–390

    CAS  Google Scholar 

  65. Shrinivas D, Naik G (2011) Characterization of alkaline thermostable keratinolytic protease from thermoalkalophilic Bacillus halodurans JB 99 exhibiting dehairing activity. Int Biodeterior Biodegrad 65(1):29–35

    CAS  Google Scholar 

  66. Craik CS, Page MJ, Madison EL (2011) Proteases as therapeutics. Biochem J 435(1):1–16

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Puente X, Sanchez LM, Gutierrez-Fernandez A et al (2005) A genomic view of the complexity of mammalian proteolytic systems. Biochem Soc Trans 33(2):331–334

    CAS  PubMed  Google Scholar 

  68. Kohli R (2013) Microbial cleaning for removal of surface contaminaton. Dev Surf Contam Clean. https://doi.org/10.1016/B978-1-4377-7879-3.00004-2

    Article  Google Scholar 

  69. Brandelli A, Daroit DJ, Riffel A (2010) Biochemical features of microbial keratinases and their production and applications. Appl Microbiol Biotechnol 85(6):1735–1750

    CAS  PubMed  Google Scholar 

  70. Kudrya V, Simonenko I (1994) Alkaline serine proteinase and lectin isolation from the culture fluid of Bacillus subtilis. Appl Microbiol Biotechnol 41(5):505–509

    CAS  Google Scholar 

  71. Barthomeuf C, Pourrat H, Pourrat A (1992) Collagenolytic activity of a new semi-alkaline protease from Aspergillus niger. J Ferment Bioeng 73(3):233–236

    CAS  Google Scholar 

  72. Da Silva RR (2017) Bacterial and fungal proteolytic enzymes: production, catalysis and potential applications. Appl Biochem Biotechnol 183(1):1–19

    PubMed  Google Scholar 

  73. Ni H, Chen Q, Chen F et al (2011) Improved keratinase production for feather degradation by Bacillus licheniformis ZJUEL31410 in submerged cultivation. Afr J Biotechnol 10(37):7236–7244

    CAS  Google Scholar 

  74. Gulrajani M, Agarwal R, Chand S (2000) Degumming of silk with a fungal protease. Indian J Fibre Text Res 25(2):138–142

    CAS  Google Scholar 

  75. Mahmoodi NM, Arami M, Mazaheri F et al (2010) Degradation of sericin (degumming) of Persian silk by ultrasound and enzymes as a cleaner and environmentally friendly process. J Clean Prod 18(2):146–151

    CAS  Google Scholar 

  76. Nakiboglu N, Toscali D, Yasa I (2001) Silver recovery from waste photographic films by using enzymatic method. Turk J Chem 25(3):349–353

    CAS  Google Scholar 

  77. Shankar S, More S, Laxman RS (2010) Recovery of silver from waste X-ray film by alkaline protease from Conidiobolus coronatus. Kathmandu Univ Sci Eng Technol 6(1):60–69

    Google Scholar 

  78. Gupta A, Khare S (2007) Enhanced production and characterization of a solvent stable protease from solvent tolerant Pseudomonas aeruginosa PseA. Enzyme Microbial Technol 42(1):11–16

    CAS  Google Scholar 

  79. Jaouadi B, Abdelmalek B, Jaouadi ZaraI BN (2011) The bioengineering and industrial applications of bacterial alkaline proteases: the case of SAPB and KERAB. IntechOpen, London

    Google Scholar 

  80. Hou RZ, Yang Y, Li G et al (2006) Synthesis of a precursor dipeptide of RGDS (Arg-Gly-Asp-Ser) catalysed by the industrial protease alcalase. Biotechnol Appl Biochem 44(2):73–80

    CAS  PubMed  Google Scholar 

  81. Wang CH, Guan Z, He YH (2011) Biocatalytic domino reaction: synthesis of 2 H-1-benzopyran-2-one derivatives using alkaline protease from Bacillus licheniformis. Green Chem 13(8):2048–2054

    CAS  Google Scholar 

  82. Tapia DM, Simoes MLG (2008) Production and partial characterization of keratinase produced by a microorganism isolated from poultry processing plant wastewater. Afr J Biotechnol 7(3):296–300

    CAS  Google Scholar 

  83. Kojima M, Kanai M, Tominaga M et al (2006) Isolation and characterization of a feather-degrading enzyme from Bacillus pseudofirmus FA30-01. Extremophiles 10(3):229–235

    CAS  PubMed  Google Scholar 

  84. Vijayalakshmi S, Venkatkumar S, Thankamani V (2011) Screening of alkalophilic thermophilic protease isolated from Bacillus RV.B2.90 for industrial applications. Int J Res Biotechnol 2(3):32–41

    Google Scholar 

  85. Ramnani P, Singh R, Gupta R (2005) Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can J Microbiol 51(3):191–196

    CAS  PubMed  Google Scholar 

  86. Cortezi M, Contiero J, Lima C et al (2008) Characterization of a feather degrading by Bacillus amyloliquefaciens protease: a new strain. World J Agric Sci 4(5):648–656

    Google Scholar 

  87. Tork S, Aly M, Nawar L (2010) Biochemical and molecular characterization of a new local keratinase producing Pseudomomanas sp., MS21. Asian J Biotechnol 2(1):1–13

    CAS  Google Scholar 

  88. Ali TH, Ali NH, Mohamed LA (2011) Production, purification and some properties of extracellular keratinase from feathers-degradation by Aspergillus oryzae NRRL-447. J Appl Sci Environ Sanit 6(2):123–136

    CAS  Google Scholar 

  89. Lonhienne T, Gerday C, Feller G (2000) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophy Acta (BBA) 1543(1):1–10

    CAS  Google Scholar 

  90. Silva C, Martins M, Jing S et al (2018) Practical insights on enzyme stabilization. Crit Rev Biotechnol 38(3):335–350

    CAS  PubMed  Google Scholar 

  91. Xia W, Xu X, Qian L et al (2016) Engineering a highly active thermophilic β-glucosidase to enhance its pH stability and saccharification performance. Biotechnol Biofuels 9(1):147

    PubMed  PubMed Central  Google Scholar 

  92. Hasunuma T, Okazaki F, Okai N et al (2013) A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour Technol 135:513–522

    CAS  PubMed  Google Scholar 

  93. Bilal M, Iqbal HM (2019) Tailoring multipurpose biocatalysts via protein engineering approaches: a review. Catal Lett 149(8):2204–2217

    CAS  Google Scholar 

  94. Wu I, Arnold FH (2013) Engineered thermostable fungal Cel6A and Cel7A cellobiohydrolases hydrolyze cellulose efficiently at elevated temperatures. Biotechnol Bioeng 110(7):1874–1883

    CAS  PubMed  Google Scholar 

  95. Woodley JM (2018) Integrating protein engineering with process design for biocatalysis. Philos Trans R Soc A Math Phys Eng Sci 376(2110):20170062

    Google Scholar 

  96. Wang C, Huang R, He B et al (2012) Improving the thermostability of alpha-amylase by combinatorial coevolving-site saturation mutagenesis. BMC Bioinform 13(1):263

    Google Scholar 

  97. Blum JK, Ricketts MD, Bommarius AS (2012) Improved thermostability of AEH by combining B-FIT analysis and structure-guided consensus method. J Biotechnol 160(3–4):214–221

    CAS  PubMed  Google Scholar 

  98. Jaouadi B, Aghajari N, Haser R et al (2010) Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site-directed mutagenesis. Biochimie 92(4):360–369

    CAS  PubMed  Google Scholar 

  99. Jaouadi NZ, Jaouadi B, Hlima HB et al (2014) Probing the crucial role of Leu31 and Thr33 of the Bacillus pumilus CBS alkaline protease in substrate recognition and enzymatic depilation of animal hide. PLoS ONE 9(9):e108367

    PubMed  PubMed Central  Google Scholar 

  100. Ashraf NM, Krishnagopal A, Hussain A et al (2019) Engineering of serine protease for improved thermostability and catalytic activity using rational design. Int J Biol Macrobiol 126:229–237

    CAS  Google Scholar 

  101. Takagi H, Morinaga Y, Ikemura H et al (1988) Mutant subtilisin E with enhanced protease activity obtained by site-directed mutagenesis. J Biol Chem 263(36):19592–19596

    CAS  PubMed  Google Scholar 

  102. Li Y, Hu F, Wang X et al (2013) A rational design for trypsin-resistant improvement of Armillariella tabescens β-mannanase MAN47 based on molecular structure evaluation. J Biotechnol 163(4):401–407

    CAS  PubMed  Google Scholar 

  103. Qiu Y, Wu X, Xie C et al (2016) A rational design for improving the trypsin resistance of aflatoxin-detoxifizyme (ADTZ) based on molecular structure evaluation. Enzyme Microbial Technol 86:84–92

    CAS  Google Scholar 

  104. Hu W, Liu X, Li Y et al (2017) Rational design for the stability improvement of Armillariella tabescens β-mannanase MAN47 based on N-glycosylation modification. Enzyme Microbial Technol 97:82–89

    CAS  Google Scholar 

  105. Arnold FH, Wintrode PL, Miyazaki K et al (2001) How enzymes adapt: lessons from directed evolution. Trends Biochem Sci 26(2):100–106

    CAS  PubMed  Google Scholar 

  106. Porter JL, Boon PL, Murray TP et al (2015) Directed evolution of new and improved enzyme functions using an evolutionary intermediate and multidirectional search. ACS Chem Biol 10(2):611–621

    CAS  PubMed  Google Scholar 

  107. Muller R, Debler EW, Steinmann M et al (2007) Bifunctional catalysis of proton transfer at an antibody active site. J Am Chem Soc 129(3):460–461

    PubMed  Google Scholar 

  108. Reetz MT, Carballeira JD (2007) Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc 2(4):891

    CAS  PubMed  Google Scholar 

  109. Porter JL, Rusli RA, Ollis DL (2016) Directed evolution of enzymes for industrial biocatalysis. ChemBioChem 17(3):197–203

    CAS  PubMed  Google Scholar 

  110. Zhu F, He B, Gu F et al (2020) Improvement in organic solvent resistance and activity of metalloprotease by directed evolution. J Biotechnol 309:68–74

    CAS  PubMed  Google Scholar 

  111. Bilal M, Zhao Y, Noreen S, Shah SZH, Bharagava RN, Iqbal HM (2019) Modifying bio-catalytic properties of enzymes for efficient biocatalysis: a review from immobilization strategies viewpoint. Biocatal Biotransform 37(3):159–182

    CAS  Google Scholar 

  112. Bilal M, Mehmood S, Iqbal HM (2019) Immobilized enzyme-based biocatalytic cues: an effective approach to tackle industrial effluent waste. In: Microbes for sustainable development and bioremediation. CRC Press, Boca Raton, pp 287–311

  113. Ren S, Li C, Jiao X, Jia S, Jiang Y, Bilal M, Cui J (2019) Recent progress in multienzymes co-immobilization and multienzyme system applications. Chem Eng J 373:1254–1278

    CAS  Google Scholar 

  114. Morsi R, Bilal M, Iqbal HM, Ashraf SS (2020) Laccases and peroxidases: the smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. Sci Total Environ 714:136572

    CAS  PubMed  Google Scholar 

  115. Bilal M, Iqbal HM (2019) Chemical, physical, and biological coordination: an interplay between materials and enzymes as potential platforms for immobilization. Coord Chem Rev 388:1–23

    CAS  Google Scholar 

  116. Poonsin T, Simpson BK, Visessanguan W et al (2020) Optimal immobilization of trypsin from the spleen of albacore tuna (Thunnus alalunga) and its characterization. Int J Biol Macromol 143:462–471

    CAS  PubMed  Google Scholar 

  117. de Melo BM, Ceron AA, Costa SM et al (2020) Bromelain immobilization in cellulose triacetate nanofiber membranes from sugarcane bagasse by electrospinning technique. Enzyme Microbiol Technol 132:109384

    Google Scholar 

  118. Awad GE, Ghanem AF, Wahab WAA et al (2020) Functionalized κ-carrageenan/hyperbranched poly (amidoamine) for protease immobilization: thermodynamics and stability studies. Int J Biol Macromol 148:1140–1155

    CAS  PubMed  Google Scholar 

  119. Benucci I, Caso MC, Bavaro T et al (2020) Prolyl endopeptidase from Aspergillus niger immobilized on a food-grade carrier for the production of gluten-reduced beer. Food Contam 110:106987

    CAS  Google Scholar 

  120. Kamini NR, Hemachander C, Mala JGS et al (1999) Microbial enzyme technology as an alternative to conventional chemicals in leather industry. Curr Sci 77(1):80–86

    CAS  Google Scholar 

  121. Racheal OO, Ahmed ATF, Ndigwe EV et al (2015) Extraction, purification and characterization of protease from Aspergillus niger isolated from yam peels. Int J Nutr Food Sci 4(2):125–131

    CAS  Google Scholar 

  122. Arunachalam C, Saritha K (2009) Protease enzyme: an eco-friendly alternative for leather industry. Indian J Sci Technol 2(12):29–32

    CAS  Google Scholar 

  123. Paranthaman R, Alagusundaram K, Indhumathi J (2009) Production of protease from rice mill wastes by Aspergillus niger in solid state fermentation. World J Agric Sci 5(3):308–312

    CAS  Google Scholar 

  124. Ahmed I, Zia MA, Iftikhar T et al (2011) Characterization and detergent compatibility of purified protease produced from Aspergillus niger by utilizing agro wastes. BioResources 6(4):4505–4522

    CAS  Google Scholar 

  125. Sankeerthana C, Pinjar S, Jambagi R et al (2013) Production and Partial characterization of protease from Aspergillus flavus using rice mill waste as a substrate and its comparision with Aspergillus niger protease. Int J Curr Eng Technol 1:143–147

    Google Scholar 

  126. Ahmed I, Zia MA, Iqbal HN (2011) Purification and kinetic parameters characterization of an alkaline protease produced from Bacillus subtilis through submerged fermentation technique. World Appl Sci J 12(6):751–757

    CAS  Google Scholar 

  127. Abidi F, Aissaoui N, Lazar S et al (2014) Purification and biochemical characterization of a novel alkaline protease from Aspergillus niger use in antioxidant peptides production. J Mater Environ Sci 5(5):1490–1499

    Google Scholar 

  128. Takami H, Nakamura S, Aono R et al (1992) Degradation of human hair by a thermostable alkaline protease from alkaliphilic Bacillus sp. No. AH-101. Biosci Biotechnol Biochem 56(10):1667–1669

    CAS  Google Scholar 

  129. Upadhyay MK, Kumar R, Kumar A et al (2010) Optimization and characterization of an extracellular proteases from Aspergillus flavus MTCC 277. Afr J Agric Res 5(14):1845–1850

    Google Scholar 

  130. Ortiz GE, Noseda DG, Ponce Mora MC et al (2016) A comparative study of new Aspergillus strains for proteolytic enzymes production by solid state fermentation. Enzyme Res 2016:1–11

    Google Scholar 

  131. Singh J, Batra N, Sobti R (2001) Serine alkaline protease from a newly isolated Bacillus sp. SSR1. Process Biochem 36(8):781–785

    CAS  Google Scholar 

  132. Kalaiarasi K, Sunitha P (2009) Optimization of alkaline protease production from Pseudomonas fluorescens isolated from meat waste contaminated soil. Afr J Biotechnol 8(24):7035–7041

    CAS  Google Scholar 

  133. Samarntarn W, Cheevadhanarak S, Tanticharoen M (1999) Production of alkaline protease by a genetically engineered Aspergillus oryzae U1521. J Gen Appl Microbiol 45(3):99–103

    CAS  PubMed  Google Scholar 

  134. Chellapandi P (2010) Production and preliminary characterization of alkaline protease from Aspergillus flavus and Aspergillus terreus. J Chem 7(2):479–482

    CAS  Google Scholar 

  135. Adinarayana K, Ellaiah P, Prasad DS (2003) Purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus subtilis PE-11. AAPS PharmSciTech 4(4):440–448

    PubMed Central  Google Scholar 

  136. Joo HS, Kumar CG, Park GC et al (2002) Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochem 38(2):155–159

    CAS  Google Scholar 

  137. Yang JK, Shih L, Tzeng YM et al (2000) Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzyme Microbial Technol 26(5):406–413

    CAS  Google Scholar 

  138. Pant G, Prakash A, Pavani JVP et al (2015) Production, optimization and partial purification of protease from Bacillus subtilis. J Taiwan Univ Sci 9(1):50–55

    Google Scholar 

  139. Ahmetoglu N et al (2015) Production, purification and characterisation of thermostable metallo-protease from newly isolated Bacillus sp. KG5. Eur J BioSci 9:1–11

    CAS  Google Scholar 

  140. Jasmin C, Chellappan S, Sukumaran RK et al (2010) Molecular cloning and homology modelling of a subtilisin-like serine protease from the marine fungus, Engyodontium album BTMFS10. World J Microbiol Biotechnol 26(7):1269–1279

    CAS  PubMed  Google Scholar 

  141. Haddar A, Hmidet N, Ghorbel-Bellaaj O et al (2011) Alkaline proteases produced by Bacillus licheniformis RP1 grown on shrimp wastes: Application in chitin extraction, chicken feather-degradation and as a dehairing agent. Biotechnol Bioprocess Eng 16(4):669–678

    CAS  Google Scholar 

  142. Kuddus M, Ramteke PW (2009) Cold-active extracellular alkaline protease from an alkaliphilic Stenotrophomonas maltophilia: production of enzyme and its industrial applications. Can J Microbiol 55(11):1294–1301

    CAS  PubMed  Google Scholar 

  143. Lakshmi G, Prasad N (2015) Purification and characterization of alkaline protease from a mutant Bacillus licheniformis Bl8. Adv Biol Res 9(1):15–23

    CAS  Google Scholar 

  144. Badoei-dalfard A, Khajeh K, Karami Z (2019) Protein engineering of a metalloprotease in order to improve organic solvents stability and activity. Catal Lett 150(5):1219–1229

    Google Scholar 

  145. Osire T, Yang T, Xu M et al (2019) Lys-Arg mutation improved the thermostability of Bacillus cereus neutral protease through increased residue interactions. World J Microbiol Biotechnol 35(11):173

    PubMed  Google Scholar 

  146. Zhao HY, Feng H (2018) Engineering Bacillus pumilus alkaline serine protease to increase its low-temperature proteolytic activity by directed evolution. BMC Biotechnol 18(1):34

    PubMed  PubMed Central  Google Scholar 

  147. Fang Z, Zhang J, Liu B et al (2016) Enhancement of the catalytic efficiency and thermostability of S tenotrophomonas sp. keratinase KerSMD by domain exchange with KerSMF. Microb Biotechnol 9(1):35–46

    CAS  PubMed  Google Scholar 

  148. Zhao HY, Wu LY, Liu G et al (2016) Single-site substitutions improve cold activity and increase thermostability of the dehairing alkaline protease (DHAP). Biosci Biotechnol Biochem 80(12):2480–2485

    CAS  PubMed  Google Scholar 

  149. Van Den Berg S, Lofdahl PA, Hard T et al (2006) Improved solubility of TEV protease by directed evolution. J Biotechnol 121(3):291–298

    PubMed  Google Scholar 

  150. Saha S, Chowdhury J (2020) Sustained and improved enzymatic activity of trypsin immobilized in the Langmuir Blodgett film of DPPC: a rapid enzyme sensor for the detection of Azocasein. Mater Chem Phys 243:122647

    CAS  Google Scholar 

  151. Sahin S, Ozmen I (2020) Covalent immobilization of trypsin on polyvinyl alcohol-coated magnetic nanoparticles activated with glutaraldehyde. J Pharm Biomed Anal 184:113195

    CAS  PubMed  Google Scholar 

  152. Thakrar FJ, Singh SP (2019) Catalytic, thermodynamic and structural properties of an immobilized and highly thermostable alkaline protease from a haloalkaliphilic actinobacteria, Nocardiopsis alba TATA-5. Bioresour Technol 278:150–158

    CAS  PubMed  Google Scholar 

  153. Icimoto MY, Brito AMM, Ramos MPC et al (2020) Increased stability of oligopeptidases immobilized on gold nanoparticles. Catalysis 10(1):78

    CAS  Google Scholar 

  154. Cloete WJ, Hayward S, Swart P et al (2019) Degradation of proteins and starch by combined immobilization of protease, α-amylase and β-galactosidase on a single electrospun nanofibrous membrane. Molecules 24(3):508

    PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Naveed or Muhammad Bilal.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveed, M., Nadeem, F., Mehmood, T. et al. Protease—A Versatile and Ecofriendly Biocatalyst with Multi-Industrial Applications: An Updated Review. Catal Lett 151, 307–323 (2021). https://doi.org/10.1007/s10562-020-03316-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03316-7

Keywords

Navigation