Skip to main content
Log in

Promiscuous activity of (S,S)-butanediol dehydrogenase is responsible for glycerol production from 1,3-dihydroxyacetone in Corynebacterium glutamicum under oxygen-deprived conditions

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Corynebacterium glutamicum can consume glucose to excrete glycerol under oxygen deprivation. Although glycerol synthesis from 1,3-dihydroxyacetone (DHA) has been speculated, no direct evidence has yet been provided in C. glutamicum. Enzymatic and genetic investigations here indicate that the glycerol is largely produced from DHA and, unexpectedly, the reaction is catalyzed by (S,S)-butanediol dehydrogenase (ButA) that inherently catalyzes the interconversion between S-acetoin and (S,S)-2,3-butanediol. Consequently, the following pathway for glycerol biosynthesis in the bacterium emerges: dihydroxyacetone phosphate is dephosphorylated by HdpA to DHA, which is subsequently reduced to glycerol by ButA. This study emphasizes the importance of promiscuous activity of the enzyme in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Becker J, Klopprogge C, Wittmann C (2008) Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum. Microb Cell Factories 7:8

    Article  Google Scholar 

  • Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C (2005) Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 71:8587–8596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212

    Article  CAS  PubMed  Google Scholar 

  • Dominguez H, Rollin C, Guyonvarch A, Guerquin-Kern JL, Cocaign-Bousquet M, Lindley ND (1998) Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem 254:96–102

    Article  CAS  PubMed  Google Scholar 

  • García-Martínez J, Castrillo M, Avalos J (2014) The gene cutA of Fusarium fujikuroi, encoding a protein of the haloacid dehalogenase family, is involved in osmotic stress and glycerol metabolism. Microbiology 160:26–36

    Article  PubMed  Google Scholar 

  • Gutknecht R, Beutler R, Garcia-Alles LF, Baumann U, Erni B (2001) The dihydroxyacetone kinase of Escherichia coli utilizes a phosphoprotein instead of ATP as phosphoryl donor. EMBO J 20:2480–2486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, Inui M, Yukawa H (2011) Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation. Appl Environ Microbiol 78:865–875

    Article  PubMed  Google Scholar 

  • Horbach S, Strohhacker J, Welle R, de Graaf A, Sahm H (1994) Enzymes involved in the formation of glycerol 3-phosphate and the by-products dihydroxyacetone and glycerol in Zymomonas mobilis. FEMS Microbiol Lett 120:37–44

    Article  CAS  Google Scholar 

  • Hult K, Berglund P (2007) Enzyme promiscuity: mechanism and applications. Trends Biotechnol 25:231–238

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, Takeno S (2013) Amino acid production by Corynebacterium glutamicum. In: Yukawa H, Inui M (ed) Corynebacterium glutamicum, vol 23. Springer, Berlin Heidelberg, pp 107–147

  • Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H (2004) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254

    Article  PubMed  Google Scholar 

  • Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351–364

    Article  CAS  PubMed  Google Scholar 

  • Jin RZ, Tang JC, Lin EC (1983) Experimental evolution of a novel pathway for glycerol dissimilation in Escherichia coli. J Mol Evol 19:429–436

    Article  CAS  PubMed  Google Scholar 

  • Jojima T, Igari T, Gunji W, Suda M, Inui M, Yukawa H (2012) Identification of a HAD superfamily phosphatase, HdpA, involved in 1,3-dihydroxyacetone production during sugar catabolism in Corynebacterium glutamicum. FEBS Lett 586:4228–4232

    Article  CAS  PubMed  Google Scholar 

  • Jojima T, Inui M, Yukawa H (2013) Biorefinery applications of Corynebacterium glutamicum. In: Yukawa H, Inui M (ed) Corynebacterium glutamicum, vol 23. Springer, Berlin Heidelberg, pp 149–172

  • Kiefer P, Heinzle E, Zelder O, Wittmann C (2004) Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose. Appl Environ Microbiol 70:229–239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krömer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186:1769–1784

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin EC (1976) Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol 30:535–578

    Article  CAS  PubMed  Google Scholar 

  • Lindner SN, Meiswinkel TM, Panhorst M, Youn JW, Wiefel L, Wendisch VF (2012) Glycerol-3-phosphatase of Corynebacterium glutamicum. J Biotechnol 159:216–224

    Article  CAS  PubMed  Google Scholar 

  • Machielsen R, Uria AR, Kengen SWM, van der Oost J (2006) Production and characterization of a thermostable alcohol dehydrogenase that belongs to the Aldo-keto reductase superfamily. Appl Environ Microbiol 72:233–238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neish AC, Blackwood AC, Ledingham GA (1945) Dissimilation of glucose by Bacillus subtilis (Ford’s strain). Can J Res 23:290–296

    Article  CAS  PubMed  Google Scholar 

  • Nissen TL, Hamann CW, Kielland-Brandt MC, Nielsen J, Villadsen J (2000) Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis. Yeast 16:463–474

    Article  CAS  PubMed  Google Scholar 

  • Otagiri M, Ui S, Takusagawa Y, Ohtsuki T, Kurisu G, Kusunoki M (2010) Structural basis for chiral substrate recognition by two 2,3-butanediol dehydrogenases. FEBS Lett 584:219–223

    Article  CAS  PubMed  Google Scholar 

  • Pepper RE, Costilow RN (1964) Glucose catabolism by Bacillus popilliae and Bacillus lentimorbus. J Bacteriol 87:303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raspoet D, Pot B, De Deyn D, De Vos P, Kersters K, De Ley J (1991) Differentiation between 2, 3-butanediol producing Bacillus licheniformis and B. polymyxa strains by fermentation product profiles and whole-cell protein electrophoretic patterns. Syst Appl Microbiol 14:1–7

    Article  CAS  Google Scholar 

  • Suzuki N, Okai N, Nonaka H, Tsuge Y, Inui M, Yukawa H (2006) High-throughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library. Appl Environ Microbiol 72:3750–3755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takusagawa Y, Otagiri M, Ui S, Ohtsuki T, Mimura A, Ohkuma M, Kudo T (2001) Purification and characterization of L-2, 3-butanediol dehydrogenase of Brevibacterium saccharolyticum C-1012 expressed in Escherichia coli. Biosci Biotechnol Biochem 65:1876–1878

    Article  CAS  PubMed  Google Scholar 

  • Ui S, Masuda H, Muraki H (1983) Stereopecific and electrophoretic natures of bacterial 2, 3-butanediol dehydrogenases. J Ferment Technol 61:467–471

    CAS  Google Scholar 

  • Ui S, Otagiri M, Mimura A, Dohmae N, Takio K, Ohkuma M, Kudo T (1998) Cloning, expression and nucleotide sequence of the l-2,3-butanediol dehydrogenase gene from Brevibacterium saccharolyticum C-1012. J Ferment Bioeng 86:290–295

    Article  CAS  Google Scholar 

  • Veiga-DA-Cunha M, Santos H, Van Schaftingen E (1993) Pathway and regulation of erythritol formation in Leuconostoc oenos. J Bacteriol 175:3941–3948

    CAS  PubMed Central  PubMed  Google Scholar 

  • Viikari L, Berry DR (1988) Carbohydrate metabolism in Zymomonas. Crit Rev Biotechnol 7:237–261

    Article  CAS  Google Scholar 

  • Wang Y, Tao F, Xu P (2014) Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2,3-butanediol formation in Klebsiella pneumoniae. J Biol Chem 289:6080–6090

    Article  CAS  PubMed  Google Scholar 

  • Wang ZX, Zhuge J, Fang H, Prior BA (2001) Glycerol production by microbial fermentation: a review. Biotechnol Adv 19:201–223

    Article  CAS  PubMed  Google Scholar 

  • Wittmann C, Kiefer P, Zelder O (2004) Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl Environ Microbiol 70:7277–7287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolf A, Krämer R, Morbach S (2003) Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Mol Microbiol 49:1119–1134

    Article  CAS  PubMed  Google Scholar 

  • Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertes AA, Inui M (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Crispinus A. Omumasaba (RITE) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Inui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 178 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jojima, T., Igari, T., Moteki, Y. et al. Promiscuous activity of (S,S)-butanediol dehydrogenase is responsible for glycerol production from 1,3-dihydroxyacetone in Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol 99, 1427–1433 (2015). https://doi.org/10.1007/s00253-014-6170-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6170-0

Keywords

Navigation