Skip to main content
Log in

A highly diverse set of novel immunoglobulin-like transcript (NILT) genes in zebrafish indicates a wide range of functions with complex relationships to mammalian receptors

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Multiple novel immunoglobulin-like transcripts (NILTs) have been identified from salmon, trout, and carp. NILTs typically encode activating or inhibitory transmembrane receptors with extracellular immunoglobulin (Ig) domains. Although predicted to provide immune recognition in ray-finned fish, we currently lack a definitive framework of NILT diversity, thereby limiting our predictions for their evolutionary origin and function. In order to better understand the diversity of NILTs and their possible roles in immune function, we identified five NILT loci in the Atlantic salmon (Salmo salar) genome, defined 86 NILT Ig domains within a 3-Mbp region of zebrafish (Danio rerio) chromosome 1, and described 41 NILT Ig domains as part of an alternative haplotype for this same genomic region. We then identified transcripts encoded by 43 different NILT genes which reflect an unprecedented diversity of Ig domain sequences and combinations for a family of non-recombining receptors within a single species. Zebrafish NILTs include a sole putative activating receptor but extensive inhibitory and secreted forms as well as membrane-bound forms with no known signaling motifs. These results reveal a higher level of genetic complexity, interindividual variation, and sequence diversity for NILTs than previously described, suggesting that this gene family likely plays multiple roles in host immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

New transcriptome sequence read data used in this study have been deposited to NCBI under the project accession number PRJNA672972. Custom Perl and R scripts used in the processing and formatting of data can be found on https://github.com/djwcisel/nilts.

References

  • Allendorf FW, Thorgaard GH (1984) Tetraploidy and the evolution of salmonid fishes. In: Turner BJ (ed) Evolutionary genetics of fishes. Springer, US, Boston, MA, pp 1–53

    Google Scholar 

  • Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Barrow AD, Trowsdale J (2006) You say ITAM and I say ITIM, let’s call the whole thing off: the ambiguity of immunoreceptor signalling. Eur J Immunol 36:1646–1653

    Article  CAS  Google Scholar 

  • Berthelot C, Brunet F, Chalopin D et al (2014) The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun 5:3657

    Article  Google Scholar 

  • Bezbradica JS, Medzhitov R (2012) Role of ITAM signaling module in signal integration. Curr Opin Immunol 24:58–66

    Article  CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  Google Scholar 

  • Braasch I, Gehrke AR, Smith JJ et al (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet 48:427–437

    Article  CAS  Google Scholar 

  • Brown KH, Dobrinski KP, Lee AS et al (2012) Extensive genetic diversity and substructuring among zebrafish strains revealed through copy number variant analysis. Proc Natl Acad Sci U S A 109:529–534

    Article  CAS  Google Scholar 

  • Cavanaugh JE (2016) Model Selection: Bayesian Information Criterion. Wiley StatsRef: Statistics Reference Online. https://doi.org/10.1002/9781118445112.stat00247.pub2

  • Clark GJ, Ju X, Tate C, Hart DNJ (2009) The CD300 family of molecules are evolutionarily significant regulators of leukocyte functions. Trends Immunol 30:209–217

    Article  CAS  Google Scholar 

  • Desai S, Heffelfinger AK, Orcutt TM et al (2008) The medaka novel immune-type receptor (NITR) gene clusters reveal an extraordinary degree of divergence in variable domains. BMC Evol Biol 8:177

    Article  Google Scholar 

  • Dirscherl H, Yoder JA (2015) A nonclassical MHC class I U lineage locus in zebrafish with a null haplotypic variant. Immunogenetics 67:501–513

    Article  CAS  Google Scholar 

  • Dirscherl H, Yoder JA (2014) Characterization of the Z lineage major histocompatability complex class I genes in zebrafish. Immunogenetics 66:185–198

    Article  CAS  Google Scholar 

  • Dornburg A, Near TJ (2021) The emerging phylogenetic perspective on the evolution of actinopterygian fishes. Annu Rev Ecol Evol Syst 52:427–452

    Article  Google Scholar 

  • Dornburg A, Townsend JP, Friedman M, Near TJ (2014) Phylogenetic informativeness reconciles ray-finned fish molecular divergence times. BMC Evol Biol 14

  • Dornburg A, Wcisel DJ, Zapfe K et al (2021) Holosteans contextualize the role of the teleost genome duplication in promoting the rise of evolutionary novelties in the ray-finned fish innate immune system. Immunogenetics 73:479–497

    Article  CAS  Google Scholar 

  • Dornburg A, Yoder JA (2022) On the relationship between extant innate immune receptors and the evolutionary origins of jawed vertebrate adaptive immunity. Immunogenetics 74:111–128

    Article  CAS  Google Scholar 

  • Eddy SR, the HMMER development team. HMMER, version 3.3. 2015. http://hmmer.org

  • Fernández R, Gabaldón T (2020) Gene gain and loss across the metazoan tree of life. Nat Ecol Evol 4:524–533

    Article  Google Scholar 

  • Flajnik MF, Tlapakova T, Criscitiello MF et al (2012) Evolution of the B7 family: co-evolution of B7H6 and NKp30, identification of a new B7 family member, B7H7, and of B7’s historical relationship with the MHC. Immunogenetics 64:571–590

    Article  CAS  Google Scholar 

  • Gasiorowski RE, Ju X, Hart DNJ, Clark GJ (2013) CD300 molecule regulation of human dendritic cell functions. Immunol Lett 149:93–100

    Article  CAS  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  Google Scholar 

  • Haffter P, Granato M, Brand M et al (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36

    Article  CAS  Google Scholar 

  • Hamuro K, Suetake H, Saha NR et al (2007) A teleost polymeric Ig receptor exhibiting two Ig-like domains transports tetrameric IgM into the skin. J Immunol 178:5682–5689

    Article  CAS  Google Scholar 

  • Harpaz Y, Chothia C (1994) Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. J Mol Biol 238:528–539

    Article  CAS  Google Scholar 

  • Hiby SE, Walker JJ, O’shaughnessy KM et al (2004) Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med 200:957–965

    Article  CAS  Google Scholar 

  • Hoang DT, Chernomor O, von Haeseler A et al (2018) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522

    Article  CAS  Google Scholar 

  • Honjo Y, Takano K, Ichinohe T (2021) Characterization of novel zebrafish MHC class I U lineage genes and their haplotype. Dev Comp Immunol 116:103952

    Article  CAS  Google Scholar 

  • Howe K, Clark MD, Torroja CF et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    Article  CAS  Google Scholar 

  • Hwang WY, Fu Y, Reyon D et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  Google Scholar 

  • Jack RS (2015) Evolution of immunity and pathogens. Results Probl Cell Differ 57:1–20

    Article  CAS  Google Scholar 

  • Joerink M, Ribeiro CMS, Stet RJM et al (2006) Head kidney-derived macrophages of common carp (Cyprinus carpio L.) show plasticity and functional polarization upon differential stimulation. J Immunol 177:61–69

    Article  CAS  Google Scholar 

  • Kapustin Y, Souvorov A, Tatusova T, Lipman D (2008) Splign: algorithms for computing spliced alignments with identification of paralogs. Biol Direct 3:20

    Article  Google Scholar 

  • Klesney-Tait J, Turnbull IR, Colonna M (2006) The TREM receptor family and signal integration. Nat Immunol 7:1266–1273

    Article  CAS  Google Scholar 

  • Kock H, Fischer U (2008) A novel immunoglobulin-like transcript from rainbow trout with two Ig-like domains and two isoforms. Mol Immunol 45:1612–1622

    Article  CAS  Google Scholar 

  • Kortum AN, Rodriguez-Nunez I, Yang J et al (2014) Differential expression and ligand binding indicate alternative functions for zebrafish polymeric immunoglobulin receptor (pIgR) and a family of pIgR-like (PIGRL) proteins. Immunogenetics 66:267–279

    Article  CAS  Google Scholar 

  • Kruiswijk CP, Hermsen TT, Westphal AH et al (2002) A novel functional class I lineage in zebrafish (Danio rerio), carp (Cyprinus carpio), and large barbus (Barbus intermedius) showing an unusual conservation of the peptide binding domains. J Immunol 169:1936–1947

    Article  CAS  Google Scholar 

  • Krzywinski M, Schein J, Birol I et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  Google Scholar 

  • LaFave MC, Varshney GK, Vemulapalli M et al (2014) A defined zebrafish line for high-throughput genetics and genomics: NHGRI-1. Genetics 198:167–170

    Article  Google Scholar 

  • Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9:495–502

    Article  CAS  Google Scholar 

  • Lefranc MP, Giudicelli V, Ginestoux C et al (1999) IMGT, the international ImMunoGeneTics database. Nucleic Acids Res 27:209–212

    Article  CAS  Google Scholar 

  • Lefranc M-P, Pommié C, Ruiz M et al (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 27:55–77

    Article  CAS  Google Scholar 

  • Letunic I, Bork P (2018) 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 46:D493–D496

    Article  CAS  Google Scholar 

  • Lien S, Koop BF, Sandve SR et al (2016) The Atlantic salmon genome provides insights into rediploidization. Nature 533:200–205

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  Google Scholar 

  • Marçais G, Delcher AL, Phillippy AM et al (2018) MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol 14:e1005944

    Article  Google Scholar 

  • Martin MP, Carrington M (2013) Immunogenetics of HIV disease. Immunol Rev 254:245–264

    Article  Google Scholar 

  • McConnell SC, Hernandez KM, Wcisel DJ et al (2016) Alternative haplotypes of antigen processing genes in zebrafish diverged early in vertebrate evolution. Proc Natl Acad Sci U S A 113:E5014–E5023

    Article  CAS  Google Scholar 

  • McConnell SC, Hernandez KM, Andrade J et al (2022) Immune gene variation associated with chromosome-scale differences among individual zebrafish genomes. bioRxiv. https://doi.org/10.1101/2022.06.08.495387

  • Minh BQ, Schmidt HA, Chernomor O et al (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534

    Article  CAS  Google Scholar 

  • Misra MK, Augusto DG, Martin GM et al (2018) Report from the killer-cell immunoglobulin-like receptors (KIR) component of the 17th International HLA and Immunogenetics Workshop. Hum Immunol 79:825–833

    Article  Google Scholar 

  • Mizgirev IV, Revskoy S (2014) A new zebrafish model for experimental leukemia therapy. Cancer Biol Ther 9:895–902

    Article  Google Scholar 

  • Montgomery BC, Cortes HD, Mewes-Ares J et al (2011) Teleost IgSF immunoregulatory receptors. Dev Comp Immunol 35:1223–1237

    Article  CAS  Google Scholar 

  • Near TJ, Eytan RI, Dornburg A et al (2012) Resolution of ray-finned fish phylogeny and timing of diversification. Proc Natl Acad Sci 109:13698–13703

    Article  CAS  Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    Article  CAS  Google Scholar 

  • Østergaard AE, Lubieniecki KP, Martin SAM et al (2010) Genomic organisation analysis of novel immunoglobulin-like transcripts in Atlantic salmon (Salmo salar) reveals a tightly clustered and multigene family. BMC Genomics 11:697

    Article  Google Scholar 

  • Østergaard AE, Martin SAM, Wang T et al (2009) Rainbow trout (Oncorhynchus mykiss) possess multiple novel immunoglobulin-like transcripts containing either an ITAM or ITIMs. Dev Comp Immunol 33:525–532

    Article  Google Scholar 

  • Panagos PG, Dobrinski KP, Chen X et al (2006) Immune-related, lectin-like receptors are differentially expressed in the myeloid and lymphoid lineages of zebrafish. Immunogenetics 58:31–40

    Article  CAS  Google Scholar 

  • Papkou A, Guzella T, Yang W et al (2019) The genomic basis of Red Queen dynamics during rapid reciprocal host-pathogen coevolution. Proc Natl Acad Sci U S A 116:923–928

    Article  CAS  Google Scholar 

  • Pleyte KA, Duncan SD, Phillips RB (1992) Evolutionary relationships of the salmonid fish genus Salvelinus inferred from DNA sequences of the first internal transcribed spacer (ITS 1) of ribosomal DNA. Mol Phylogenet Evol 1:223–230

    Article  CAS  Google Scholar 

  • Robinson JT, Thorvaldsdóttir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  Google Scholar 

  • Rodríguez-Nunez I, Wcisel DJ, Litman GW, Yoder JA (2014) Multigene families of immunoglobulin domain-containing innate immune receptors in zebrafish: deciphering the differences. Dev Comp Immunol 46:24–34

    Article  Google Scholar 

  • Rodriguez-Nunez I, Wcisel DJ, Litman RT et al (2016) The identification of additional zebrafish DICP genes reveals haplotype variation and linkage to MHC class I genes. Immunogenetics 68:295–312

    Article  CAS  Google Scholar 

  • Sheng X, Qian X, Tang X et al (2018) Polymeric immunoglobulin receptor mediates immune excretion of mucosal IgM-antigen complexes across intestinal epithelium in flounder (Paralichthys olivaceus). Front Immunol 9:1562

    Article  Google Scholar 

  • Sievers F, Higgins DG (2021) The Clustal Omega Multiple Alignment Package. Methods Mol Biol 2231:3–16

    Article  CAS  Google Scholar 

  • Stafford JL, Bengtén E, Du Pasquier L et al (2006) A novel family of diversified immunoregulatory receptors in teleosts is homologous to both mammalian Fc receptors and molecules encoded within the leukocyte receptor complex. Immunogenetics 58:758–773

    Article  CAS  Google Scholar 

  • Stet RJM, Hermsen T, Westphal AH et al (2005) Novel immunoglobulin-like transcripts in teleost fish encode polymorphic receptors with cytoplasmic ITAM or ITIM and a new structural Ig domain similar to the natural cytotoxicity receptor NKp44. Immunogenetics 57:77–89

    Article  CAS  Google Scholar 

  • Tadiso TM, Sharma A, Hordvik I (2011) Analysis of polymeric immunoglobulin receptor- and CD300-like molecules from Atlantic salmon. Mol Immunol 49:462–473

    Article  CAS  Google Scholar 

  • Taylor LS, Paul SP, McVicar DW (2000) Paired inhibitory and activating receptor signals. Rev Immunogenet 2:204–219

    CAS  Google Scholar 

  • Thompson AW, Hawkins MB, Parey E et al (2021) The bowfin genome illuminates the developmental evolution of ray-finned fishes. Nat Genet 53:1373–1384

    Article  CAS  Google Scholar 

  • Traver D, Yoder JA (2020) Chapter 19 - immunology. In: Cartner SC, Eisen JS, Farmer SC et al (eds) The zebrafish in biomedical research. Academic Press, pp 191–216

    Chapter  Google Scholar 

  • Truett GE, Heeger P, Mynatt RL et al (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29:52–54

    Article  CAS  Google Scholar 

  • Wang Y, Tang H, Debarry JD et al (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49

    Article  CAS  Google Scholar 

  • Wcisel DJ, Ota T, Litman GW, Yoder JA (2017) Spotted gar and the evolution of innate immune receptors. J Exp Zool B Mol Dev Evol 328:666–684

    Article  Google Scholar 

  • Wcisel DJ, Yoder JA (2016) The confounding complexity of innate immune receptors within and between teleost species. Fish Shellfish Immunol 53:24–34

    Article  CAS  Google Scholar 

  • Wong RY, Perrin F, Oxendine SE et al (2012) Comparing behavioral responses across multiple assays of stress and anxiety in zebrafish (Danio rerio). Behaviour 149:1205–1240

    Article  Google Scholar 

  • Yoder JA, Litman GW (2011) The phylogenetic origins of natural killer receptors and recognition: relationships, possibilities, and realities. Immunogenetics 63:123–141

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dereje Jima (North Carolina State University) for early discussions about zebrafish NILTs, James (Thomas) Howard (North Carolina State University) for technical support, and Shawn Burgess (National Human Genome Research Institute), John Godwin (North Carolina State University), David Langenau (Mass General Research Institute), John Rawls (Duke University), and Sergei Revskoy (University of Kentucky College of Medicine) for zebrafish lines.

Funding

This work was supported by the National Science Foundation (IOS1755330 to JAY and IOS1755242 to AD), the National Institutes of Health (R01 AI057559 to GWL and JAY and R01 AI23337 to GWL), the National Evolutionary Synthesis Center, NSF EF0905606 (DJW), the Triangle Center for Evolutionary Medicine (AD and JAY), and the Chicago Biomedical Consortium (CCT Searle Fund to JdJ and SCM), and by services provided by the University of Chicago Genomics Core Facility and Bioinformatics Core Facility which are supported by the UChicago Medicine Comprehensive Cancer Center NCI Cancer Support Center Grant (P30 CA014599).

Author information

Authors and Affiliations

Authors

Contributions

DJW, GWL, and JAY conceived the project; DJW assembled transcriptome, datamined public databases, and wrote custom scripts to facilitate these processes; AD performed phylogenetic analyses; SCM, KMH, JA, and JdJ completed genome sequencing and assembly; DJW, AD, and JAY collected and analyzed the data, created graphics, and wrote the manuscript; JAY supervised the project. All authors read and approved the manuscript.

Corresponding author

Correspondence to Jeffrey A. Yoder.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wcisel, D.J., Dornburg, A., McConnell, S.C. et al. A highly diverse set of novel immunoglobulin-like transcript (NILT) genes in zebrafish indicates a wide range of functions with complex relationships to mammalian receptors. Immunogenetics 75, 53–69 (2023). https://doi.org/10.1007/s00251-022-01270-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-022-01270-9

Keywords

Navigation