Skip to main content

Advertisement

Log in

Characterization of the Z lineage Major histocompatability complex class I genes in zebrafish

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Zebrafish (Danio rerio) are a valuable model for studying immunity, infection, and hematopoietic disease and have recently been employed for transplantation assays. However, the lack of syngeneic zebrafish creates challenges with identifying immune-matched individuals. The MHC class I genes, which mediate allogeneic recognition in mammals, have been grouped into three broad lineages in zebrafish: the classical U genes on chromosome 19, the Z genes which have been reported to map to chromosome 1, and the L genes that map to multiple loci. Transplantations between individual zebrafish that are matched at the U locus fail to consistently engraft suggesting that additional loci contribute to allogeneic recognition. Although two full-length zebrafish Z transcripts have been described, the genomic organization and diversity of these genes have not been reported. Herein we define ten Z genes on chromosomes 1 and 3 and on an unplaced genomic scaffold. We report that neither of the Z transcripts previously described match the current genome assembly and classify these transcripts as additional gene loci. We characterize full-length transcripts for 9 of these 12 genes. We demonstrate a high level of expression variation of the Z genes between individual zebrafish suggestive of haplotypic variation. We report low level sequence variation for individual Z genes between individual zebrafish reflecting a possible nonclassical function, although these molecules may still contribute to allogeneic recognition. Finally, we present a gene nomenclature system for the Z genes consistent with MHC nomenclature in other species and with the zebrafish gene nomenclature guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barclay AN (1997) The leucocyte antigen factsbook. Academic, San Diego

    Google Scholar 

  • Chakrabarti S, Streisinger G, Singer F, Walker C (1983) Frequency of gamma-ray induced specific locus and recessive lethal mutations in mature germ cells of the zebrafish, Brachydanio rerio. Genetics 103:109–123

    CAS  PubMed  Google Scholar 

  • Chang MX, Wang YP, Nie P (2009) Zebrafish peptidoglycan recognition protein SC (zfPGRP-SC) mediates multiple intracellular signaling pathways. Fish Shellfish Immunol 26:264–274

    Article  CAS  PubMed  Google Scholar 

  • de Jong JL, Zon LI (2012) Histocompatibility and hematopoietic transplantation in the zebrafish. Adv Hematol 2012:282318

    PubMed Central  PubMed  Google Scholar 

  • de Jong JL, Burns CE, Chen AT, Pugach E, Mayhall EA, Smith AC, Feldman HA, Zhou Y, Zon LI (2011) Characterization of immune-matched hematopoietic transplantation in zebrafish. Blood 117:4234–4242

    Article  PubMed  Google Scholar 

  • Dijkstra JM, Katagiri T, Hosomichi K, Yanagiya K, Inoko H, Ototake M, Aoki T, Hashimoto K, Shiina T (2007) A third broad lineage of major histocompatibility complex (MHC) class I in teleost fish; MHC class II linkage and processed genes. Immunogenetics 59:305–321

    Article  CAS  PubMed  Google Scholar 

  • Dixon B, Stet RJ (2001) The relationship between major histocompatibility receptors and innate immunity in teleost fish. Dev Comp Immunol 25:683–699

    Article  CAS  PubMed  Google Scholar 

  • Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Hashimoto K, Nakanishi T, Kurosawa Y (1990) Isolation of carp genes encoding major histocompatibility complex antigens. Proc Natl Acad Sci U S A 87:6863–6867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klein J, Bontrop RE, Dawkins RL, Erlich HA, Gyllensten UB, Heise ER, Jones PP, Parham P, Wakeland EK, Watkins DI (1990) Nomenclature for the major histocompatibility complexes of different species: a proposal. Immunogenetics 31:217–219

    CAS  PubMed  Google Scholar 

  • Kruiswijk CP, Hermsen TT, Westphal AH, Savelkoul HF, Stet RJ (2002) A novel functional class I lineage in zebrafish (Danio rerio), carp (Cyprinus carpio), and large barbus (Barbus intermedius) showing an unusual conservation of the peptide binding domains. J Immunol 169:1936–1947

    CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–D305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lukacs MF, Harstad H, Bakke HG, Beetz-Sargent M, McKinnel L, Lubieniecki KP, Koop BF, Grimholt U (2010) Comprehensive analysis of MHC class I genes from the U-, S-, and Z-lineages in Atlantic salmon. BMC Genomics 11:154

    Article  PubMed Central  PubMed  Google Scholar 

  • Michalova V, Murray BW, Sultmann H, Klein J (2000) A contig map of the Mhc class I genomic region in the zebrafish reveals ancient synteny. J Immunol 164:5296–5305

    CAS  PubMed  Google Scholar 

  • Mizgirev IV, Revskoy S (2010) A new zebrafish model for experimental leukemia therapy. Cancer Biol Ther 9:895–902

    Article  CAS  PubMed  Google Scholar 

  • Mohseny AB, Xiao W, Carvalho R, Spaink HP, Hogendoorn PC, Cleton-Jansen AM (2012) An osteosarcoma zebrafish model implicates Mmp-19 and Ets-1 as well as reduced host immune response in angiogenesis and migration. J Pathol 227:245–253

    Article  CAS  PubMed  Google Scholar 

  • Nonaka MI, Aizawa K, Mitani H, Bannai HP, Nonaka M (2011) Retained orthologous relationships of the MHC Class I genes during euteleost evolution. Mol Biol Evol 28:3099–3112

    Article  CAS  PubMed  Google Scholar 

  • Okamura K, Nakanishi T, Kurosawa Y, Hashimoto K (1993) Expansion of genes that encode MHC class I molecules in cyprinid fishes. J Immunol 151:188–200

    CAS  PubMed  Google Scholar 

  • Sambrook JG, Figueroa F, Beck S (2005) A genome-wide survey of Major Histocompatibility Complex (MHC) genes and their paralogues in zebrafish. BMC Genomics 6:152

    Article  PubMed Central  PubMed  Google Scholar 

  • Srisapoome P, Ohira T, Hirono I, Aoki T (2004) Genes of the constant regions of functional immunoglobulin heavy chain of Japanese flounder, Paralichthys olivaceus. Immunogenetics 56:292–300

    Article  CAS  PubMed  Google Scholar 

  • Stet RJ, Kruiswijk CP, Dixon B (2003) Major histocompatibility lineages and immune gene function in teleost fishes: the road not taken. Crit Rev Immunol 23:441–471

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi H, Figueroa F, O'hUigin C, Klein J (1995) Cloning and characterization of class I Mhc genes of the zebrafish, Brachydanio rerio. Immunogenetics 42:77–84

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Wong RY, Perrin F, Oxendine SE, Kezios ZD, Sawyer S, Zhou L, Dereje S, Godwin J (2012) Comparing behavioral responses across multiple assays of stress and anxiety in zebrafish (Danio rerio). Behaviour 149:1205–1240

    Article  Google Scholar 

  • Yang D, Liu Q, Yang M, Wu H, Wang Q, Xiao J, Zhang Y (2012) RNA-seq liver transcriptome analysis reveals an activated MHC-I pathway and an inhibited MHC-II pathway at the early stage of vaccine immunization in zebrafish. BMC Genomics 13:319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The zebrafish Z gene nomenclature has been approved by the Zebrafish Nomenclature Committee. We thank Brian Dixon (University of Waterloo), Hans (JM) Dijkstra (Fujita Health University), and Amy Singer (Zebrafish Model Organism Database, University of Oregon) for very helpful discussions and advice on MHC gene nomenclature, and Jill de Jong and Sean McConnell (University of Chicago) for sharing their knowledge regarding the MHC class I U genes. We thank John Rawls (University of North Carolina), John Godwin (NC State University), and Sergei Revskoy (Northwestern University) for sharing their TU, LSB, and CG2 fish, respectively. We thank Ivan Rodriguez-Nunez (North Carolina State University) and Carlos Rivera (Millbrook High School) for assistance with experiments. H.D. is supported in part by a National Institutes of Health Biotechnology Traineeship (T32 GM008776) and by a Joseph E. Pogue Fellowship through the UNC Royster Society of Fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Yoder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 331 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dirscherl, H., Yoder, J.A. Characterization of the Z lineage Major histocompatability complex class I genes in zebrafish. Immunogenetics 66, 185–198 (2014). https://doi.org/10.1007/s00251-013-0748-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-013-0748-z

Keywords

Navigation