Skip to main content

Advertisement

Log in

A summary of the Russian clinical guidelines on the diagnosis and treatment of osteoporosis

  • Position Paper
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Key statements of the Russian clinical guidelines on the diagnosis and treatment of osteoporosis are summarized. They were developed by a task force representing the key Russian professional associations involved in the management of osteoporosis and approved by the Russian Ministry of Health.

Purpose

To summarize key statements of the Russian clinical practice guidelines for the diagnosis and treatment of osteoporosis.

Methods

The Russian clinical guidelines on the diagnosis and treatment of osteoporosis were developed by a task force representing the key Russian professional associations involved in the management of osteoporosis: These comprised the Russian Association of Endocrinologists, the Russian Association for Osteoporosis, the Association of Rheumatologists of Russia, the Association of Orthopedic surgeons and Traumatologists of Russia, the Russian Association of Gynecologists-Endocrinologists, and the Russian Association of Gerontologists and Geriatrics. The guidelines are based on a systematic literature review and principles of evidence-based medicine and were compiled in accordance with the requirements for clinical recommendations developed by the Ministry of Health of the Russian Federation.

Results

Key statements included in the Russian guidelines of osteoporosis approved by the Russian Ministry of Health in 2021 are summarized. The statements are graded based on levels of evidence and supported by short comments. The guidelines are focused on the current approach to screening, diagnosis, differential diagnosis, and treatment of osteoporosis.

Conclusion

These guidelines are a practical tool for general practitioners, as well as medical specialists, primarily endocrinologists, rheumatologists, orthopedic surgeons, and other physicians who are involved in the management of patients with osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kanis JA, on behalf of the World Health Organization Scientific Group (2008) Assessment of osteoporosis at the primary healthcare level. Technical report. WHO Collaborating Centre, University of Sheffield, UK. Available at http://www.shef.ac.uk/FRAX/index.htm

  2. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group (1994) World Health Organ Tech Rep Ser 843:1–129

  3. Mikhailov EE, Benevolenskaya LI (2003) Epidemiology of osteoporosis and fractures. In: Primary on Osteoporosis. BINOM. laboratoriya znanii, Moscow, рр 10–55 (in Russian)

  4. Lesnyak OM (2011) AUDIT SOSTOYaNIYa PROBLEMY OSTEOPOROZA V STRANAKh VOSTOChNOY EVROPY I TsENTRAL'NOY AZII 2010. Osteo Bone Dis 14(2):3–6. (In Russ.) https://doi.org/10.14341/osteo201123-6

  5. Ershova OB, Sinitsyna OS, Belova KY, Degtyarev AA, Ganert OA, Romanova MA, Nazarova AV (2013) Results of the analysis of risk factors and absolute risk of fracture (FRAX) in men with fractures of the proximal femur. Osteo Bone Dis 16(1):3–6. (In Russ.) https://doi.org/10.14341/osteo201313-6

  6. Gladkova EN, Khodyrev VN, Lesnyak OM, Gladkova EN, Chodyrev VN, Lesnyak OM (2011) Analysis of epidemiology of osteoporotic fracturesusing data from primary care physicians. Osteo Bone Dis 14(1):14–18. (In Russ.) https://doi.org/10.14341/osteo2011114-18

  7. Lesnyak OM, Baranova IA, Belova KY et al (2018) Osteoporosis in russian federation: epidemiology, socio-medical and economical aspects (review) // Traumatol Ortho Russ 24(1):155–168. https://doi.org/10.21823/2311-2905-2018-24-1-155-168https://doi.org/10.21823/2311-2905-2018-24-1-155-168

  8. Dedov II, Mel'nichenko GA, Belaia ZE, Rozhinskaia LI (2011) Osteoporosis: from a rare symptom of endocrine diseases to the tacit epidemic of XX-XXI centuries. Prob Endocrinol 57(1):35–45. https://doi.org/10.14341/probl201157135-45

  9. Остеопороз. Диагностика, профилактика и лечение / Л. П. Евстигнеева, А. Г. Солодовников, О. Б. Ершова [и др.]. – Второе издание, переработанное и дополненное.. – Москва : Общество с ограниченной ответственностью Издательская группа "ГЭОТАР-Медиа", 2010. – 272 с. – (Клинические рекомендации). – ISBN 978-5-9704-1453-8. – EDN TIAYPN.

  10. Mel’nichenko GA, Belaya ZE, Rozhinskaya LY, Toroptsova NV, Alekseeva LI, Biryukova EV, Grebennikova TA, Dzeranova LK, Dreval’ AV, Zagorodniy NV, Ilyin AV, Kryukova IV, Lesnyak OM, Mamedova EO, Nikitinskaya OA, Pigarova EA, Rodionova SS, Skripnikova IA, Tarbaeva NV, LYa Farba, Tsoriev TT, Chernova TO, Yureneva SV, Yakushevskaya OV, Dedov II (2017) Russian Federal clinical guidelines on diagnostics, treatment and prophylaxis of osteoporosis. Probl Endokrinol (Mosk) 63(6):392–426. https://doi.org/10.14341/probl2017636392-426

    Article  Google Scholar 

  11. Belaya ZhE, Belova KYu, Biryukova EV, Dedov II, Dzeranova LK, Drapkina OM, Dreval AV, Dubovitskaya TA, Dudinskaya EN, Ershova OB, Zagorodniy NV, Ilyukhina OB, Kanis JA, Kryukova IV, Lesnyak OM, Mamedova EO, Marchenkova LA, Melnichenko GA, Nikankina LV, Nikitinskaya OA, Petryaikin AV, Pigarova EA, Rodionova SS, Lya R, Skripnikova IA, Tarbaeva NV, Tkacheva ON, Toroptsova NV, Farba LYA, Tsoriev TT, Chernova TO, Yureneva SV, Yakushevskaya OV (2021) Federal clinical guidelines for diagnosis, treatment and prevention of osteoporosis. Osteopor Bone Dis 24(2):4–47. https://doi.org/10.14341/osteo12930

    Article  Google Scholar 

  12. Kanis JA, Cooper C, Rizzoli R, Reginster J-Y, Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis (ESCEO) and the Committees of Scientific Advisors and National Societies of the International Osteoporosis Foundation (IOF) (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 30(1):3–44. https://doi.org/10.1007/s00198-018-4704-5

    Article  CAS  Google Scholar 

  13. Lesnyak O, Ershova O, Belova K, Gladkova E, Sinitsina O, Ganert O, Romanova M, Khodirev V, Johansson H, McCloskey E, Kanis JA (2012) Epidemiology of fracture in the Russian Federation and the development of a FRAX model. Arch Osteoporos 7(1–2):67–73. https://doi.org/10.1007/s11657-012-0082-3

    Article  Google Scholar 

  14. Shepstone L, Lenaghan E, Cooper C, Clarke S, Fong-Soe-Khioe R, Fordham R, Gittoes N, Harvey I, Harvey N, Heawood A, Holland R, Howe A, Kanis J, Marshall T, O’Neill T, Peters T, Redmond N, Torgerson D, Turner D, McCloskey E (2018) Screening in the community to reduce fractures in older women (SCOOP): a randomised controlled trial. The Lancet 391(10122):741–777. https://doi.org/10.1016/S0140-6736(17)32640-5

    Article  Google Scholar 

  15. Marques A, Ferreira RJO, Santos E, Loza E, Carmona L, da Silva JAP (2015) The accuracy of osteoporotic fracture risk prediction tools: a systematic review and meta-analysis. Ann Rheum Dis 74(11):1958–1967. https://doi.org/10.1136/annrheumdis-2015-207907

    Article  Google Scholar 

  16. Turner DA, Khioe RFS, Shepstone L, Lenaghan E, Cooper C, Gittoes N, Harvey NC, Holland R, Howe A, McCloskey E, O’Neill TW, Torgerson D, Fordham R (2018) The cost-effectiveness of screening in the community to reduce osteoporotic fractures in older women in the UK: economic evaluation of the SCOOP study: cost-effectiveness of community screening for fracture risk. J Bone Miner Res 33(5):845–851. https://doi.org/10.1002/jbmr.3381

    Article  Google Scholar 

  17. Hippisley-Cox J, Coupland C (2009) Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores. BMJ 339:4229–4229. https://doi.org/10.1136/bmj.b4229

    Article  Google Scholar 

  18. Hoff M, Meyer HE, Skurtveit S, Langhammer A, Søgaard AJ, Syversen U, Dhainaut A, Skovlund E, Abrahamsen B, Schei B (2017) Validation of FRAX and the impact of self-reported falls among elderly in a general population: the HUNT study. Norway Osteoporos Int 28(10):2935–2944. https://doi.org/10.1007/s00198-017-4134-9

    Article  CAS  Google Scholar 

  19. Fraser LA, Langsetmo L, Berger C, Ioannidis G, Goltzman D, Adachi JD, Papaioannou A, Josse R, Kovacs CS, Olszynski WP, Towheed T, Hanley DA, Kaiser SM, Prior J, Jamal S, Kreiger N, Brown JP, Johansson H, Oden A, McCloskey E, Kanis JA, Leslie WD (2011) Fracture prediction and calibration of a Canadian FRAX® tool: a population-based report from CaMos. Osteoporos Int 22(3):829–837. https://doi.org/10.1007/s00198-010-1465-1

    Article  Google Scholar 

  20. Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA (2010) Independent clinical validation of a Canadian FRAX tool: fracture prediction and model calibration: validation of Canadian FRAX tool. J Bone Miner Res 25(11):2350–2358. https://doi.org/10.1002/jbmr.123

    Article  Google Scholar 

  21. Jiang X, Gruner M, Trémollieres F, Pluskiewicz W, Sornay-Rendu E, Adamczyk P, Schnatz PF (2017) Diagnostic accuracy of FRAX in predicting the 10-year risk of osteoporotic fractures using the USA treatment thresholds: a systematic review and meta-analysis. Bone 99:20–25. https://doi.org/10.1016/j.bone.2017.02.008

    Article  Google Scholar 

  22. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX™ and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19(4):385–397. https://doi.org/10.1007/s00198-007-0543-5

    Article  CAS  Google Scholar 

  23. Ferrari SL, Abrahamsen B, Napoli N, Akesson K, Chandran M, Eastell R, El-Hajj Fuleihan G, Josse R, Kendler DL, Kraenzlin M, Suzuki A, Pierroz DD, Schwartz AV, Leslie WD, Bone and Diabetes Working Group of IOF (2018) Diagnosis and management of bone fragility in diabetes: an emerging challenge. Osteoporos Int 29(12):2585–2596. https://doi.org/10.1007/s00198-018-4650-2

    Article  CAS  Google Scholar 

  24. Leslie WD, Johansson H, McCloskey EV, Harvey NC, Kanis JA, Hans D (2018) Comparison of methods for improving fracture risk assessment in diabetes: the Manitoba BMD registry. J Bone Miner Res 33(11):1923–1930. https://doi.org/10.1002/jbmr.3538

    Article  Google Scholar 

  25. Baleanu F, Bergmann P, Hambye AS, Dekelver C, Iconaru L, Cappelle SI, Moreau M, Paesmans M, Karmali R (2019) Body J (2019) Assessment of bone quality with trabecular bone score in type 2 diabetes mellitus: a study from the FRISBEE cohort. Int J Clin Pract 73(5):e13347. https://doi.org/10.1111/ijcp.13347

    Article  CAS  Google Scholar 

  26. Kanis JA, Johansson H, Oden A, McCloskey EV (2011) Guidance for the adjustment of FRAX according to the dose of glucocorticoids. Osteoporos Int 22(3):809–816. https://doi.org/10.1007/s00198-010-1524-7

    Article  CAS  Google Scholar 

  27. Kanis JA, Johansson H, Oden A, Johnell O, de Laet C, Melton LJ III, Tenenhouse A, Reeve J, Silman AJ, Pols HA, Eisman JA, McCloskey EV, Mellstrom D (2004) A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res 19(6):893–899. https://doi.org/10.1359/JBMR.040134

    Article  Google Scholar 

  28. van Staa TP, Leufkens HGM, Cooper C (2002) The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int 13(10):777–787. https://doi.org/10.1007/s001980200108

    Article  Google Scholar 

  29. Ross PD (1991) Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 114(11):919. https://doi.org/10.7326/0003-4819-114-11-919

    Article  CAS  Google Scholar 

  30. Camacho PM, Petak SM, Binkley N, Clarke BL, Harris ST, Hurley DL, Kleerekoper M, Lewiecki EM, Miller PD, Narula HS, Pessah-Pollack R, Tangpricha V, Wimalawansa SJ, Watts NB (2016) American association of clinical endocrinologists and American college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis – 2016. Endocr Pract 22(9):1111–1118. https://doi.org/10.4158/EP161435.ESGL

    Article  Google Scholar 

  31. Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, Licata A, Benhamou L, Geusens P, Flowers K, Stracke H, Seeman E (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285(3):320–323. https://doi.org/10.1001/jama.285.3.320

    Article  CAS  Google Scholar 

  32. Gehlbach S, Saag KG, Adachi JD, Hooven FH, Flahive J, Boonen S, Chapurlat RD, Compston JE, Cooper C, Díez-Perez A, Greenspan SL, LaCroix AZ, Netelenbos JC, Pfeilschifter J, Rossini M, Roux C, Sambrook PN, Silverman S, Siris ES, Watts NB, Lindsay R (2012) Previous fractures at multiple sites increase the risk for subsequent fractures: the Global Longitudinal Study of Osteoporosis in Women. J Bone Miner Res 27(3):645–653. https://doi.org/10.1002/jbmr.1476

    Article  Google Scholar 

  33. Edwards BJ, Bunta AD, Simonelli C, Bolander M, Fitzpatrick LA (2007) Prior fractures are common in patients with subsequent hip fractures. Clin Orthop Relat Res 461:226–230. https://doi.org/10.1097/BLO.0b013e3180534269

    Article  Google Scholar 

  34. Gallagher JC, Genant HK, Crans GG, Vargas SJ, Krege JH (2005) Teriparatide reduces the fracture risk associated with increasing number and severity of osteoporotic fractures. J of Clin Endocrinol Metab 90(3):1583–1587. https://doi.org/10.1210/jc.2004-0826

    Article  CAS  Google Scholar 

  35. Marcus R, Wang O, Satterwhite J, Mitlak B (2003) The skeletal response to teriparatide is largely independent of age, initial bone mineral density, and prevalent vertebral fractures in postmenopausal women with osteoporosis. J Bone Miner Res 18(1):18–23. https://doi.org/10.1359/jbmr.2003.18.1.18

    Article  CAS  Google Scholar 

  36. Kanis JA, Barton IP, Johnell O (2005) Risedronate decreases fracture risk in patients selected solely on the basis of prior vertebral fracture. Osteoporos Int 16(5):475–482. https://doi.org/10.1007/s00198-004-1698-y

    Article  CAS  Google Scholar 

  37. Johnell O, Kanis JA, Black DM, Balogh A, Poor G, Sarkar S, Zhou C, Pavo I (2004) Associations between baseline risk factors and vertebral fracture risk in the Multiple Outcomes of Raloxifene Evaluation (MORE) study. J Bone Miner Res 19(5):764–772. https://doi.org/10.1359/JBMR.040211

    Article  CAS  Google Scholar 

  38. Kanis JA, Johansson H, Oden A, McCloskey EV (2011) A meta-analysis of the effect of strontium ranelate on the risk of vertebral and non-vertebral fracture in postmenopausal osteoporosis and the interaction with FRAX(®). Osteoporos Int 22(8):2347–2355. https://doi.org/10.1007/s00198-010-1474-0

    Article  CAS  Google Scholar 

  39. Kanis JA, Johnell O, De Laet C, Johansson H, Oden A, Delmas P, Eisman J, Fujiwara S, Garnero P, Kroger H, McCloskey EV, Mellstrom D, Melton LJ, Pols H, Reeve J, Silman A, Tenenhouse A (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35(2):375–382. https://doi.org/10.1016/j.bone.2004.03.024

    Article  CAS  Google Scholar 

  40. Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA, Berger M (2000) Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res 15(4):721–739. https://doi.org/10.1359/jbmr.2000.15.4.721

    Article  CAS  Google Scholar 

  41. Schousboe JT, Ensrud KE, Nyman JA, Kane RL, Melton LJ (2005) Potential cost-effective use of spine radiographs to detect vertebral deformity and select osteopenic post-menopausal women for amino-bisphosphonate therapy. Osteoporos Int 16(12):1883–1893. https://doi.org/10.1007/s00198-005-1956-7

    Article  Google Scholar 

  42. Kanis JA, Oden A, Johnell O, Jonsson B, de Laet C, Dawson A (2001) The burden of osteoporotic fractures: a method for setting intervention thresholds. Osteoporos Int 12(5):417–427. https://doi.org/10.1007/s001980170112

    Article  CAS  Google Scholar 

  43. Nevitt MC (1998) The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med 128(10):793. https://doi.org/10.7326/0003-4819-128-10-199805150-00001

    Article  CAS  Google Scholar 

  44. Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T (2009) Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. J Bone Miner Res 24(4):702–709. https://doi.org/10.1359/jbmr.081207

    Article  CAS  Google Scholar 

  45. Siminoski K, Jiang G, Adachi JD, Hanley DA, Cline G, Ioannidis G, Hodsman A, Josse RG, Kendler D, Olszynski WP, Ste Marie LG, Eastell R (2005) Accuracy of height loss during prospective monitoring for detection of incident vertebral fractures. Osteoporos Int 16(4):403–410. https://doi.org/10.1007/s00198-004-1709-z

    Article  CAS  Google Scholar 

  46. van Staa TP, Leufkens HGM, Abenhaim L, Zhang B, Cooper C (2000) Oral corticosteroids and fracture risk: relationship to daily and cumulative doses. Rheumatology 39(12):1383–1389. https://doi.org/10.1093/rheumatology/39.12.1383

    Article  Google Scholar 

  47. Genant HK, Wu CY, van Kuijk C, Nevitt MC (2009) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8(9):1137–1148. https://doi.org/10.1002/jbmr.5650080915

    Article  Google Scholar 

  48. Bauer DC, Garnero P, Hochberg MC, Santora A, Delmas P, Ewing SK, Black DM (2005) Pretreatment levels of bone turnover and the antifracture efficacy of alendronate: the fracture intervention trial. J Bone Miner Res 21(2):292–299. https://doi.org/10.1359/JBMR.051018

    Article  CAS  Google Scholar 

  49. Seibel MJ, Naganathan V, Barton I, Grauer A (2003) Relationship between pretreatment bone resorption and vertebral fracture incidence in postmenopausal osteoporotic women treated with risedronate. J Bone Miner Res 19(2):323–329. https://doi.org/10.1359/JBMR.0301231

    Article  CAS  Google Scholar 

  50. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, Lindsay R (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25(10):2359–2381. https://doi.org/10.1007/s00198-014-2794-2

    Article  CAS  Google Scholar 

  51. Kanis JA, McCloskey EV, Johansson H, Strom O, Borgstrom F, Oden A (2008) National Osteoporosis Guideline Group Case finding for the management of osteoporosis with FRAX®—assessment and intervention thresholds for the UK. Osteoporos Int 19(10):1395–1408. https://doi.org/10.1007/s00198-008-0712-1

    Article  CAS  Google Scholar 

  52. Kanis JA, Harvey NC, Cooper C, Johansson H, Odén A, McCloskey EV (2016) A systematic review of intervention thresholds based on FRAX: A report prepared for the National Osteoporosis Guideline Group and the International Osteoporosis Foundation. Arch Osteoporos 11(1):25. https://doi.org/10.1007/s11657-016-0278-z

    Article  Google Scholar 

  53. Merlijn T, Swart KMA, van der Horst HE, Netelenbos JC, Elders PJM (2020) Fracture prevention by screening for high fracture risk: a systematic review and meta-analysis. Osteoporos Int 31(2):251–257. https://doi.org/10.1007/s00198-019-05226-w

    Article  CAS  Google Scholar 

  54. Rubin KH, Rothmann MJ, Holmberg T, Høiberg M, Möller S, Barkmann R, Glüer CC, Hermann AP, Bech M, Gram J, Brixen K (2018) Effectiveness of a two-step population-based osteoporosis screening program using FRAX: the randomized Risk-stratified Osteoporosis Strategy Evaluation (ROSE) study. Osteoporos Int 29(3):567–578. https://doi.org/10.1007/s00198-017-4326-3

    Article  CAS  Google Scholar 

  55. Kanis JA, Johnell O, De Laet C, Jonsson B, Oden A, Ogelsby AK (2002) International variations in hip fracture probabilities: implications for risk assessment. J Bone Miner Res 17(7):1237–1244. https://doi.org/10.1359/jbmr.2002.17.7.1237

    Article  Google Scholar 

  56. De Laet CEDH, Van Hout BA, Burger H, Weel AEAM, Hofman A, Pols HAP (2009) Hip fracture prediction in elderly men and women: validation in the Rotterdam study. J Bone Miner Res 13(10):1587–1593. https://doi.org/10.1359/jbmr.1998.13.10.1587

    Article  Google Scholar 

  57. Kanis JA, Delmas P, Burckhardt P, Cooper C, Torgerson D (1997) Guidelines for diagnosis and management of osteoporosis. Osteoporosis Int 7(4):390–406. https://doi.org/10.1007/BF01623782

    Article  CAS  Google Scholar 

  58. Lekamwasam S, Adachi JD, Agnusdei D, Bilezikian J, Boonen S, Borgström F, Cooper C, Diez Perez A, Eastell R, Hofbauer LC, Kanis JA, Langdahl BL, Lesnyak O, Lorenc R, McCloskey E, Messina OD, Napoli N, Obermayer-Pietsch B, Ralston SH, Sambrook PN, Silverman S, Sosa M, Stepan J, Suppan G, Wahl DA, Compston JE (2012) A framework for the development of guidelines for the management of glucocorticoid-induced osteoporosis. Osteoporos Int 23(9):2257–2276. https://doi.org/10.1007/s00198-012-1958-1

    Article  CAS  Google Scholar 

  59. Johansson H, Oden A, Johnell O, Jonsson B, de Laet C, Oglesby A, McCloskey EV, Kayan K, Jalava T, Kanis JA (2004) Optimization of BMD measurements to identify high risk groups for treatment–a test analysis. J Bone Miner Res 19(6):906–913. https://doi.org/10.1359/jbmr.2004.19.6.906

    Article  Google Scholar 

  60. Leslie WD, Majumdar SR, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA (2012) Manitoba Bone Density Program High fracture probability with FRAX usually indicates densitometric osteoporosis: implications for clinical practice. Osteoporos Int 23(1):391–397. https://doi.org/10.1007/s00198-011-1592-3

    Article  CAS  Google Scholar 

  61. Tosteson ANA, Melton LJ, Dawson-Hughes B, Baim S, Favus MJ, Khosla S, Lindsay RL (2008) Cost-effective osteoporosis treatment thresholds: the United States perspective. Osteoporos Int 19(4):437–447. https://doi.org/10.1007/s00198-007-0550-6

    Article  CAS  Google Scholar 

  62. Leslie WD, Morin S, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA (2012) Fracture risk assessment without bone density measurement in routine clinical practice. Osteoporos Int 23(1):75–85. https://doi.org/10.1007/s00198-011-1747-2

    Article  CAS  Google Scholar 

  63. Kanis JA, Oden A, Johnell O, Johansson H, De Laet C, Brown J, Burckhardt P, Cooper C, Christiansen C, Cummings S, Eisman JA, Fujiwara S, Glüer C, Goltzman D, Hans D, Krieg MA, La Croix A, McCloskey E, Mellstrom D, Melton LJ 3rd, Pols H, Reeve J, Sanders K, Schott AM, Silman A, Torgerson D, van Staa T, Watts NB, Yoshimura N (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18(8):1033–1046. https://doi.org/10.1007/s00198-007-0343-y

    Article  CAS  Google Scholar 

  64. Kyriakos G, Vidal-Casariego A, Fernández-Martínez MN, Blanco-Suárez MD, Ballesteros-Pomar MD, Cano-Rodríguez I (2015) Impact of the NOGG and NOF guidelines on the indication of bone mineral density in routine clinical practice. J Clin Densitom 18(4):533–538. https://doi.org/10.1016/j.jocd.2015.08.001

    Article  Google Scholar 

  65. National Osteoporosis Foundation (NOF) and International Society for Clinical Densitometry (ISCD) (2013) Recommendations to DXA manufacturers for FRAX® implementation. Available http://www.nof.org/files/nof/public/content/resource/862/files/392.pdf. Accessed 28 Jan 2013

  66. Leib ES, Lewiecki EM, Binkley N, Hamdy RC (2004) International Society for Clinical Densitometry Official positions of the International Society for Clinical Densitometry. J Clin Densitom 7(1):1–6. https://doi.org/10.1385/jcd:7:1:1

    Article  Google Scholar 

  67. The Writing Group for the International Society for Clinical Densitometry (ISCD) Position Development Conference (2004) Position statement: executive summary. J Clin Densitom 7(1):7–12. https://doi.org/10.1385/jcd:7:1:7

    Article  Google Scholar 

  68. Shepherd JA, Blake GM (2007) T-scores and Z-scores. J Clin Densitom 10(4):349–350. https://doi.org/10.1016/j.jocd.2007.08.006

    Article  Google Scholar 

  69. Watts NB, Leslie WD, Foldes AJ, Miller PD (2013) International Society for Clinical Densitometry Position Development Conference: task force on normative databases. J Clin Densitom 16(4):472–481. https://doi.org/10.1016/j.jocd.2013.08.001

    Article  Google Scholar 

  70. Kelly TL (1990) Bone mineral density reference databases for American men and women. J Bone Miner Res 5(2):249

    Google Scholar 

  71. Hanson J (1997) Standardization of femur BMD. J Bone Miner Res 12(8):1316–1317. https://doi.org/10.1359/jbmr.1997.12.8.1316

    Article  CAS  Google Scholar 

  72. Kanis JA, McCloskey EV, Johansson H, Oden A, Melton LJ, Khaltaev N (2008) A reference standard for the description of osteoporosis. Bone 42(3):467–475. https://doi.org/10.1016/j.bone.2007.11.001

    Article  CAS  Google Scholar 

  73. Nelson HD, Haney EM, Dana T, Bougatsos C, Chou R (2010) Screening for osteoporosis: an update for the U.S. Preventive Services Task Force. Ann Intern Med 153(2):99–111. https://doi.org/10.7326/0003-4819-153-2-201007200-00262

  74. McCloskey EV, Odén A, Harvey NC, Leslie WD, Hans D, Johansson H, Barkmann R, Boutroy S, Brown J, Chapurlat R, Elders PJM, Fujita Y, Glüer CC, Goltzman D, Iki M, Karlsson M, Kindmark A, Kotowicz M, Kurumatani N, Kwok T, Lamy O, Leung J, Lippuner K, Ljunggren Ö, Lorentzon M, Mellström D, Merlijn T, Oei L, Ohlsson C, Pasco JA, Rivadeneira F, Rosengren B, Sornay-Rendu E, Szulc P, Tamaki J, Kanis JA (2016) A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX: TBS in fracture risk prediction and relationship to FRAX. J Bone Miner Res 31(5):940–948. https://doi.org/10.1002/jbmr.2734

    Article  Google Scholar 

  75. Tannenbaum C, Clark J, Schwartzman K, Wallenstein S, Lapinski R, Meier D, Luckey M (2002) Yield of laboratory testing to identify secondary contributors to osteoporosis in otherwise healthy women. J Clin Endocrinol Metab 87(10):4431–4437. https://doi.org/10.1210/jc.2002-020275

    Article  CAS  Google Scholar 

  76. Cerdá GD, Peris P, Monegal A, Albaladejo C, Martínez MA, Muxí A, Martínez de Osaba MJ, Surís X, Guañabens N (2010) Search for hidden secondary causes in postmenopausal women with osteoporosis. Menopause 17(1):135–139. https://doi.org/10.1097/gme.0b013e3181ade8e5

    Article  Google Scholar 

  77. Priemel M, von Domarus C, Klatte TO, Kessler S, Schlie J, Meier S, Proksch N, Pastor F, Netter C, Streichert T, Püschel K, Amling M (2010) Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J Bone Miner Res 25(2):305–312. https://doi.org/10.1359/jbmr.090728

    Article  CAS  Google Scholar 

  78. Gallagher JC, Sai AJ (2010) Bone: Is screening for secondary causes of osteoporosis worthwhile? Nat Rev Endocrinol 6(7):360–362. https://doi.org/10.1038/nrendo.2010.86

    Article  Google Scholar 

  79. Barzel US (2003) Recommended testing in patients with low bone density. J Clin Endocrinol Metab 88(3):1404–1405. https://doi.org/10.1210/jc.2002-021951

    Article  CAS  Google Scholar 

  80. Deutschmann HA, Weger M, Weger W, Kotanko P, Deutschmann MJ, Skrabal F (2002) Search for occult secondary osteoporosis: impact of identified possible risk factors on bone mineral density. J Intern Med 252(5):389–397. https://doi.org/10.1046/j.1365-2796.2002.01040.x

    Article  CAS  Google Scholar 

  81. Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC, Bauer DC, Genant HK, Haskell WL, Marcus R, Ott SM, Torner JC, Quandt SA, Reiss TF, Ensrud KE (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet 348(9041):1535–1541. https://doi.org/10.1016/s0140-6736(96)07088-2

    Article  CAS  Google Scholar 

  82. Cummings SR (1998) Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA 280(24):2077. https://doi.org/10.1001/jama.280.24.2077

    Article  CAS  Google Scholar 

  83. Orwoll E, Ettinger M, Weiss S, Miller P, Kendler D, Graham J, Adami S, Weber K, Lorenc R, Pietschmann P, Vandormael K, Lombardi A (2000) Alendronate for the treatment of osteoporosis in men. N Engl J Med 343(9):604–610. https://doi.org/10.1056/NEJM200008313430902

    Article  CAS  Google Scholar 

  84. Saag KG, Emkey R, Schnitzer TJ, Brown JP, Hawkins F, Goemaere S, Thamsborg G, Liberman UA, Delmas PD, Malice MP, Czachur M, Daifotis AG (1998) Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. N Engl J Med 339(5):292–299. https://doi.org/10.1056/NEJM199807303390502

    Article  CAS  Google Scholar 

  85. Chesnut CH, Skag A, Christiansen C, Recker R, Stakkestad JA, Hoiseth A, Felsenberg D, Huss H, Gilbride J, Schimmer RC, Delmas PD (2004) Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res 19(8):1241–1249. https://doi.org/10.1359/JBMR.040325

    Article  CAS  Google Scholar 

  86. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356(18):1809–1822. https://doi.org/10.1056/NEJMoa067312

    Article  CAS  Google Scholar 

  87. Boonen S, Reginster JY, Kaufman JM, Lippuner K, Zanchetta J, Langdahl B, Rizzoli R, Lipschitz S, Dimai HP, Witvrouw R, Eriksen E, Brixen K, Russo L, Claessens F, Papanastasiou P, Antunez O, Su G, Bucci-Rechtweg C, Hruska J, Incera E, Vanderschueren D, Orwoll E (2012) Fracture risk and zoledronic acid therapy in men with osteoporosis. N Engl J Med 367(18):1714–1723. https://doi.org/10.1056/NEJMoa1204061

    Article  CAS  Google Scholar 

  88. Reid DM, Devogelaer JP, Saag K, Roux C, Lau CS, Reginster JY, Papanastasiou P, Ferreira A, Hartl F, Fashola T, Mesenbrink P, Sambrook PN (2009) Zoledronic acid and risedronate in the prevention and treatment of glucocorticoid-induced osteoporosis (HORIZON): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 373(9671):1253–1263. https://doi.org/10.1016/S0140-6736(09)60250-6

    Article  CAS  Google Scholar 

  89. McClung MR, Geusens P, Miller PD, Zippel H, Bensen WG, Roux C, Adami S, Fogelman I, Diamond T, Eastell R, Meunier PJ, Reginster JY, Hip Intervention Program Study Group (2001) Effect of risedronate on the risk of hip fracture in elderly women. N Engl J Med 344(5):333–340. https://doi.org/10.1056/NEJM200102013440503

    Article  CAS  Google Scholar 

  90. Boonen S, Orwoll ES, Wenderoth D, Stoner KJ, Eusebio R, Delmas PD (2009) Once-weekly risedronate in men with osteoporosis: results of a 2-year, placebo-controlled, double-blind, multicenter study. J Bone Miner Res 24(4):719–725. https://doi.org/10.1359/jbmr.081214

    Article  CAS  Google Scholar 

  91. Eastell R, Devogelaer J-P, Peel NFA, Chines AA, Bax DE, Sacco-Gibson N, Nagant de Deuxchaisnes C, Russell RGG (2000) Prevention of bone loss with risedronate in glucocorticoid-treated rheumatoid arthritis patients. Osteoporos Int 11(4):331–337. https://doi.org/10.1007/s001980070122

    Article  CAS  Google Scholar 

  92. Miller PD, McClung MR, Macovei L, Stakkestad JA, Luckey M, Bonvoisin B, Reginster JY, Recker RR, Hughes C, Lewiecki EM, Felsenberg D, Delmas PD, Kendler DL, Bolognese MA, Mairon N, Cooper C (2005) Monthly oral ibandronate therapy in postmenopausal osteoporosis: 1-year results from the MOBILE study. J Bone Miner Res 20(8):1315–1322. https://doi.org/10.1359/JBMR.050313

    Article  CAS  Google Scholar 

  93. Recker RR, Ste-Marie L-G, Langdahl B, Czerwinski E, Bonvoisin B, Masanauskaite D, Rowell L, Felsenberg D (2010) Effects of intermittent intravenous ibandronate injections on bone quality and micro-architecture in women with postmenopausal osteoporosis: The DIVA study. Bone 46(3):660–665. https://doi.org/10.1016/j.bone.2009.11.004

    Article  CAS  Google Scholar 

  94. Harris ST, Blumentals WA, Miller PD (2008) Ibandronate and the risk of non-vertebral and clinical fractures in women with postmenopausal osteoporosis: results of a meta-analysis of phase III studies. Curr Med Res Opin 24(1):237–245. https://doi.org/10.1185/030079908X253717

    Article  CAS  Google Scholar 

  95. Hakala M, Kröger H, Valleala H, Hienonen-Kempas T, Lehtonen-Veromaa M, Heikkinen J, Tuomiranta T, Hannonen P, Paimela L (2012) Once-monthly oral ibandronate provides significant improvement in bone mineral density in postmenopausal women treated with glucocorticoids for inflammatory rheumatic diseases: a 12-month, randomized, double-blind, placebo-controlled trial. Scand J Rheumatol 41(4):260–266. https://doi.org/10.3109/03009742.2012.664647

    Article  CAS  Google Scholar 

  96. Ringe JD, Dorst A, Faber H, Ibach K, Sorenson F (2003) Intermittent intravenous ibandronate injections reduce vertebral fracture risk in corticosteroid-induced osteoporosis: results from a long-term comparative study. Osteoporos Int 14(10):801–807. https://doi.org/10.1007/s00198-003-1425-0

    Article  CAS  Google Scholar 

  97. Orwoll ES, Binkley NC, Lewiecki EM, Gruntmanis U, Fries MA, Dasic G (2010) Efficacy and safety of monthly ibandronate in men with low bone density. Bone 46(4):970–976. https://doi.org/10.1016/j.bone.2009.12.034

    Article  CAS  Google Scholar 

  98. Lyles KW, Colón-Emeric CS, Magaziner JS, Adachi JD, Pieper CF, Mautalen C, Hyldstrup L, Recknor C, Nordsletten L, Moore KA, Lavecchia C, Zhang J, Mesenbrink P, Hodgson PK, Abrams K, Orloff JJ, Horowitz Z, Eriksen EF, Boonen S (2007) Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med 357(18):1799–1809. https://doi.org/10.1056/NEJMoa074941

    Article  CAS  Google Scholar 

  99. Eriksen EF, Lyles KW, Colón-Emeric CS, Pieper CF, Magaziner JS, Adachi JD, Hyldstrup L, Recknor C, Nordsletten L, Lavecchia C, Hu H, Boonen S, Mesenbrink P (2009) Antifracture efficacy and reduction of mortality in relation to timing of the first dose of zoledronic acid after hip fracture. J Bone Miner Res 24(7):1308–1313. https://doi.org/10.1359/jbmr.090209

    Article  CAS  Google Scholar 

  100. Avdeeva VA, Suplotova LA, Pigarova EA, Rozhinskaya LY, Troshina EA (2021) Vitamin D deficiency in Russia: the first results of a registered, non-interventional study of the frequency of vitamin D deficiency and insufficiency in various geographic regions of the country. Probl Endokrinol (Mosk) 67(2):84–92. https://doi.org/10.14341/probl12736

    Article  CAS  Google Scholar 

  101. Dedov II, Mel’nichenko GA, Mokrysheva NG, Pigarova EA, Povaliaeva AA, Rozhinskaya LYa, Belaya ZhE, Dzeranova LK, Karonova TL, Suplotova LA, Troshina EA (2022) Draft federal clinical practice guidelines for the diagnosis, treatment, and prevention of vitamin D deficiency. Osteopor Bone Dis 24(4):4–26

    Article  Google Scholar 

  102. Pludowski P, Takacs I, Boyanov M, Belaya Z, Diaconu CC, Mokhort T, Zherdova N, Rasa I, Payer J, Pilz S (2022) Clinical Practice in the Prevention, Diagnosis and Treatment of Vitamin D Deficiency: A Central and Eastern European Expert Consensus Statement. Nutrients 14(7):1483. https://doi.org/10.3390/nu14071483

    Article  CAS  Google Scholar 

  103. McClung M, Miller P, Recknor C, Mesenbrink P, Bucci-Rechtweg C, Benhamou C-L (2009) Zoledronic acid for the prevention of bone loss in postmenopausal women with low bone mass: a randomized controlled trial. Obstet Gynecol 114(5):999–1007. https://doi.org/10.1097/AOG.0b013e3181bdce0a

    Article  CAS  Google Scholar 

  104. Reid IR, Horne AM, Mihov B, Stewart A, Garratt E, Wong S, Wiessing KR, Bolland MJ, Bastin S (2018) Gamble GD (2018) Fracture prevention with zoledronate in older women with osteopenia. N Engl J Med 379(25):2407–2416. https://doi.org/10.1056/NEJMoa1808082

    Article  CAS  Google Scholar 

  105. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, Kutilek S, Adami S, Zanchetta J, Libanati C, Siddhanti S, Christiansen C (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361(8):756–765. https://doi.org/10.1056/NEJMoa0809493

    Article  CAS  Google Scholar 

  106. Langdahl BL, Teglbjærg CS, Ho PR, Chapurlat R, Czerwinski E, Kendler DL, Reginster JY, Kivitz A, Lewiecki EM, Miller PD, Bolognese MA, McClung MR, Bone HG, Ljunggren Ö, Abrahamsen B, Gruntmanis U, Yang YC, Wagman RB, Mirza F, Siddhanti S, Orwoll E (2015) A 24-month study evaluating the efficacy and safety of denosumab for the treatment of men with low bone mineral density: results from the ADAMO trial. J Clin Endocrinol Metab 100(4):1335–1342. https://doi.org/10.1210/jc.2014-4079

    Article  CAS  Google Scholar 

  107. Orwoll E, Teglbjærg CS, Langdahl BL, Chapurlat R, Czerwinski E, Kendler DL, Reginster JY, Kivitz A, Lewiecki EM, Miller PD, Bolognese MA, McClung MR, Bone HG, Ljunggren Ö, Abrahamsen B, Gruntmanis U, Yang YC, Wagman RB, Siddhanti S, Grauer A, Hall JW, Boonen S (2012) A randomized, placebo-controlled study of the effects of denosumab for the treatment of men with low bone mineral density. J Clin Endocrinol Metab 97(9):3161–3169. https://doi.org/10.1210/jc.2012-1569

    Article  CAS  Google Scholar 

  108. Saag KG, Pannacciulli N, Geusens P, Adachi JD, Messina OD, Morales-Torres J, Emkey R, Butler PW, Yin X, Lems WF (2019) Denosumab versus risedronate in glucocorticoid-induced osteoporosis: final results of a twenty-four–month randomized, double-blind, double-dummy trial. Arthritis Rheumatol 71(7):1174–1184. https://doi.org/10.1002/art.40874

    Article  CAS  Google Scholar 

  109. Gnant M, Pfeiler G, Dubsky PC, Hubalek M, Greil R, Jakesz R, Wette V, Balic M, Haslbauer F, Melbinger E, Bjelic-Radisic V, Artner-Matuschek S, Fitzal F, Marth C, Sevelda P, Mlineritsch B, Steger GG, Manfreda D, Exner R, Egle D, Bergh J, Kainberger F, Talbot S, Warner D, Fesl C, Singer CF (2015) Adjuvant denosumab in breast cancer (ABCSG-18): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 386(9992):433–443. https://doi.org/10.1016/S0140-6736(15)60995-3

    Article  CAS  Google Scholar 

  110. Smith MR, Egerdie B, Hernández Toriz N, Feldman R, Tammela TL, Saad F, Heracek J, Szwedowski M, Ke C, Kupic A, Leder BZ, Goessl C (2009) Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med 361(8):745–755. https://doi.org/10.1056/NEJMoa0809003

    Article  CAS  Google Scholar 

  111. Amiche MA, Albaum JM, Tadrous M, Pechlivanoglou P, Lévesque LE, Adachi JD, Cadarette SM (2016) Efficacy of osteoporosis pharmacotherapies in preventing fracture among oral glucocorticoid users: a network meta-analysis. Osteoporos Int 27(6):1989–1998. https://doi.org/10.1007/s00198-015-3476-4

    Article  CAS  Google Scholar 

  112. Coskun Benlidayi I (2018) Denosumab in the treatment of glucocorticoid-induced osteoporosis. Rheumatol Int 38(11):1975–1984. https://doi.org/10.1007/s00296-018-4106-1

    Article  CAS  Google Scholar 

  113. Yanbeiy ZA, Hansen KE (2019) Denosumab in the treatment of glucocorticoid-induced osteoporosis: a systematic review and meta-analysis. DDDT 13:2843–2852. https://doi.org/10.2147/DDDT.S148654

    Article  CAS  Google Scholar 

  114. Yamaguchi Y, Morita T, Kumanogoh A (2020) The therapeutic efficacy of denosumab for the loss of bone mineral density in glucocorticoid-induced osteoporosis: a meta-analysis. Rheumatol Adv Pract 4(1):rkaa008. https://doi.org/10.1093/rap/rkaa008

    Article  Google Scholar 

  115. Brown JP, Prince RL, Deal C, Recker RR, Kiel DP, de Gregorio LH, Hadji P, Hofbauer LC, Alvaro-Gracia JM, Wang H, Austin M, Wagman RB, Newmark R, Libanati C, San Martin J, Bone HG (2009) Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. J Bone Miner Res 24(1):153–161. https://doi.org/10.1359/jbmr.0809010

    Article  CAS  Google Scholar 

  116. Choi N-K, Solomon DH, Tsacogianis TN, Landon JE, Song HJ, Kim SC (2017) Comparative safety and effectiveness of denosumab versus zoledronic acid in patients with osteoporosis: a cohort study: safety and effectiveness of denosumab versus zoledronic acid. J Bone Miner Res 32(3):611–617. https://doi.org/10.1002/jbmr.3019

    Article  CAS  Google Scholar 

  117. Tsai JN, Uihlein AV, Burnett-Bowie S-AM, Neer RM, Zhu Y, Derrico N, Lee H, Bouxsein ML, Leder BZ (2015) Comparative effects of teriparatide, denosumab, and combination therapy on peripheral compartmental bone density, microarchitecture, and estimated strength: the DATA-HRpQCT study: effects of combined teriparatide/denosumab on bone quality. J Bone Miner Res 30(1):39–45. https://doi.org/10.1002/jbmr.2315

    Article  CAS  Google Scholar 

  118. Broadwell A, Chines A, Ebeling PR, Franek E, Huang S, Smith S, Kendler D, Messina O, Miller PD (2021) Denosumab safety and efficacy among participants in the FREEDOM extension study with mild to moderate chronic kidney disease. J Clin Endocrinol Metab 106(2):397–409. https://doi.org/10.1210/clinem/dgaa851

    Article  Google Scholar 

  119. Kendler DL, Roux C, Benhamou CL, Brown JP, Lillestol M, Siddhanti S, Man H-S, Martin JS, Bone HG (2010) Effects of denosumab on bone mineral density and bone turnover in postmenopausal women transitioning from alendronate therapy. J Bone Miner Res 25(1):72–81. https://doi.org/10.1359/jbmr.090716

    Article  CAS  Google Scholar 

  120. Meier C, Uebelhart B, Aubry-Rozier B, Birkhäuser M, Bischoff-Ferrari HA, Frey D, Kressig RW, Lamy O, Lippuner K, Stute P, Suhm N, Ferrari S (2017) Osteoporosis drug treatment: duration and management after discontinuation. A position statement from the SVGO/ASCO. Swiss Med Wkly 16(147):w14484. https://doi.org/10.4414/smw.2017.14484

  121. Miller PD, Pannacciulli N, Brown JP, Czerwinski E, Nedergaard BS, Bolognese MA, Malouf J, Bone HG, Reginster JY, Singer A, Wang C, Wagman RB, Cummings SR (2016) Denosumab or zoledronic acid in postmenopausal women with osteoporosis previously treated with oral bisphosphonates. J Clin Endocrinol Metab 101(8):3163–3170. https://doi.org/10.1210/jc.2016-1801

    Article  CAS  Google Scholar 

  122. Miller PD, Bolognese MA, Lewiecki EM, McClung MR, Ding B, Austin M, Liu Y, San Martin J (2008) Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone 43(2):222–229. https://doi.org/10.1016/j.bone.2008.04.007

    Article  CAS  Google Scholar 

  123. Baron R, Ferrari S, Russell RGG (2011) Denosumab and bisphosphonates: different mechanisms of action and effects. Bone 48(4):677–692. https://doi.org/10.1016/j.bone.2010.11.020

    Article  CAS  Google Scholar 

  124. Masarachia P, Weinreb M, Balena R, Rodan GA (1996) Comparison of the distribution of 3H-alendronate and 3H-Etidronate in rat and mouse bones. Bone 19(3):281–290. https://doi.org/10.1016/8756-3282(96)00182-2

    Article  CAS  Google Scholar 

  125. Mandema JW, Zheng J, Libanati C, Perez Ruixo JJ (2014) Time course of bone mineral density changes with denosumab compared with other drugs in postmenopausal osteoporosis: a dose-response–based meta-analysis. J Clin Endocrinol Metab 99(10):3746–3755. https://doi.org/10.1210/jc.2013-3795

    Article  CAS  Google Scholar 

  126. Jalleh R, Basu G, Le Leu R, Jesudason S (2018) Denosumab-induced severe hypocalcaemia in chronic kidney disease. Case Rep Nephrol 2018:1–7. https://doi.org/10.1155/2018/7384763

    Article  Google Scholar 

  127. Orwoll E, Scheele W, Paul S, Adami S, Syversen U, Diez-Perez A, Kaufman J-M, Clancy A, Gaich G (2003) The effect of teriparatide [human parathyroid hormone (1–34)] therapy on bone density in men with osteoporosis. J Bone Miner Res 18(1):9–17. https://doi.org/10.1359/jbmr.2003.18.1.9

    Article  CAS  Google Scholar 

  128. Saag KG, Shane E, Boonen S, Marín F, Donley DW, Taylor KA, Dalsky GP, Marcus R (2007) Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med 357(20):2028–2039. https://doi.org/10.1056/NEJMoa071408

    Article  CAS  Google Scholar 

  129. Saag KG, Zanchetta JR, Devogelaer J-P, Adler RA, Eastell R, See K, Krege JH, Krohn K, Warner MR (2009) Effects of teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: thirty-six-month results of a randomized, double-blind, controlled trial. Arthritis Rheum 60(11):3346–3355. https://doi.org/10.1002/art.24879

    Article  CAS  Google Scholar 

  130. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344(19):1434–1441. https://doi.org/10.1056/NEJM200105103441904

    Article  CAS  Google Scholar 

  131. Kendler DL, Marin F, Zerbini CAF, Russo LA, Greenspan SL, Zikan V, Bagur A, Malouf-Sierra J, Lakatos P, Fahrleitner-Pammer A, Lespessailles E, Minisola S, Body JJ, Geusens P, Möricke R, López-Romero P (2018) Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 391(10117):230–240. https://doi.org/10.1016/S0140-6736(17)32137-2

    Article  CAS  Google Scholar 

  132. Body JJ, Gaich GA, Scheele WH, Kulkarni PM, Miller PD, Peretz A, Dore RK, Correa-Rotter R, Papaioannou A, Cumming DC, Hodsman AB (2002) A randomized double-blind trial to compare the efficacy of teriparatide [recombinant human parathyroid hormone (1–34)] with alendronate in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 87(10):4528–4535. https://doi.org/10.1210/jc.2002-020334

    Article  CAS  Google Scholar 

  133. Liu C-L, Lee H-C, Chen C-C, Cho D-Y (2017) Head-to-head comparisons of bisphosphonates and teriparatide in osteoporosis: a meta-analysis. CIM 40(3):146–157. https://doi.org/10.25011/cim.v40i3.28394

    Article  Google Scholar 

  134. Wang Y-K, Qin S-Q, Ma T, Song W, Jiang R-Q, Guo J-B, Li K, Zhang Y-M (2017) Effects of teriparatide versus alendronate for treatment of postmenopausal osteoporosis: a meta-analysis of randomized controlled trials. Medicine 96(21):e6970. https://doi.org/10.1097/MD.0000000000006970

    Article  CAS  Google Scholar 

  135. Hadji P, Zanchetta JR, Russo L, Recknor CP, Saag KG, McKiernan FE, Silverman SL, Alam J, Burge RT, Krege JH, Lakshmanan MC, Masica DN, Mitlak BH, Stock JL (2011) Effect of teriparatide compared with risedronate on back pain and incident vertebral fractures in postmenopausal women with osteoporotic vertebral fractures. Bone 48:S82-83. https://doi.org/10.1016/j.bone.2011.03.108

    Article  Google Scholar 

  136. Miller PD, Shergy WJ, Body J-J, Chen P, Rohe ME, Krege JH (2005) Long-term reduction of back pain risk in women with osteoporosis treated with teriparatide compared with alendronate. J Rheumatol 32(8):1556–1562

    CAS  Google Scholar 

  137. Bone HG, Hosking D, Devogelaer JP, Tucci JR, Emkey RD, Tonino RP, Rodriguez-Portales JA, Downs RW, Gupta J, Santora AC, Liberman UA (2004) Ten years’ experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med 350(12):1189–1199. https://doi.org/10.1056/NEJMoa030897

    Article  CAS  Google Scholar 

  138. Vasikaran S, Eastell R, Bruyère O, Foldes AJ, Garnero P, Griesmacher A, McClung M, Morris HA, Silverman S, Trenti T, Wahl DA, Cooper C, Kanis JA (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22(2):391–420. https://doi.org/10.1007/s00198-010-1501-1

    Article  CAS  Google Scholar 

  139. Johansson H, Odén A, Kanis JA, McCloskey EV, Morris HA, Cooper C (2014) Vasikaran S (2014) A meta-analysis of reference markers of bone turnover for prediction of fracture. Calcif Tissue Int 94(5):560–567. https://doi.org/10.1007/s00223-014-9842-y

    Article  CAS  Google Scholar 

  140. Eastell R, Barton I, Hannon RA, Chines A, Garnero P, Delmas PD (2003) Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate. J Bone Miner Res 18(6):1051–1056. https://doi.org/10.1359/jbmr.2003.18.6.1051

    Article  CAS  Google Scholar 

  141. Hochberg MC, Greenspan S, Wasnich RD, Miller P, Thompson DE, Ross PD (2002) Changes in bone density and turnover explain the reductions in incidence of nonvertebral fractures that occur during treatment with antiresorptive agents. J Clin Endocrinol Metab 87(4):1586–1592. https://doi.org/10.1210/jcem.87.4.8415

    Article  CAS  Google Scholar 

  142. Black DM, Schwartz AV, Ensrud KE, Cauley JA, Levis S, Quandt SA, Satterfield S, Wallace RB, Bauer DC, Palermo L, Wehren LE, Lombardi A, Santora AC, Cummings SR (2006) Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. JAMA 296(24):2927. https://doi.org/10.1001/jama.296.24.2927

    Article  CAS  Google Scholar 

  143. Delmas PD, Eastell R, Garnero P, Seibel MJ, Stepan J (2000) The use of biochemical markers of bone turnover in osteoporosis Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos Int 11(Suppl 6):2–17. https://doi.org/10.1007/s001980070002

    Article  CAS  Google Scholar 

  144. Bauer DC, Black DM, Bouxsein ML, Lui LY, Cauley JA, de Papp AE, Grauer A, Khosla S, McCulloch CE, Eastell R (2018) Treatment-related changes in bone turnover and fracture risk reduction in clinical trials of anti-resorptive drugs: a meta-regression: bone turnover & fracture risk in clinical trials of antiresorptive drugs. J Bone Miner Res 33(4):634–642. https://doi.org/10.1002/jbmr.3355

    Article  CAS  Google Scholar 

  145. Imaz I, Zegarra P, González-Enríquez J, Rubio B, Alcazar R, Amate JM (2010) Poor bisphosphonate adherence for treatment of osteoporosis increases fracture risk: systematic review and meta-analysis. Osteoporos Int 21(11):1943–1951. https://doi.org/10.1007/s00198-009-1134-4

    Article  CAS  Google Scholar 

  146. Bergmann P, Body J-J, Boonen S, Boutsen Y, Devogelaer J-P, Goemaere S, Kaufman J-M, Reginster J-Y, Gangji V (2009) Evidence-based guidelines for the use of biochemical markers of bone turnover in the selection and monitoring of bisphosphonate treatment in osteoporosis: a consensus document of the Belgian Bone Club. Int J Clin Pract 63(1):19–26. https://doi.org/10.1111/j.1742-1241.2008.01911.x

    Article  CAS  Google Scholar 

  147. Hwang JS, Lee S, Gong HS (2022) The impact of acute fracture on interpretation of bone turnover marker measurements for patients starting anti-resorptive therapies. Bone 154:116199. https://doi.org/10.1016/j.bone.2021.116199

    Article  CAS  Google Scholar 

  148. Yamamoto T, Tsujimoto M, Hamaya E, Sowa H (2013) Assessing the effect of baseline status of serum bone turnover markers and vitamin D levels on efficacy of teriparatide 20 μg/day administered subcutaneously in Japanese patients with osteoporosis. J Bone Miner Metab 31(2):199–205. https://doi.org/10.1007/s00774-012-0403-z

    Article  CAS  Google Scholar 

  149. Cummings SR, Karpf DB, Harris F, Genant HK, Ensrud K, LaCroix AZ, Black DM (2002) Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med 112(4):281–289. https://doi.org/10.1016/s0002-9343(01)01124-x

    Article  CAS  Google Scholar 

  150. Chen P, Miller PD, Delmas PD, Misurski DA, Krege JH (2006) Change in lumbar spine BMD and vertebral fracture risk reduction in teriparatide-treated postmenopausal women with osteoporosis. J Bone Miner Res 21(11):1785–1790. https://doi.org/10.1359/jbmr.060802

    Article  CAS  Google Scholar 

  151. Adler RA, El-Hajj Fuleihan G, Bauer DC, Camacho PM, Clarke BL, Clines GA, Compston JE, Drake MT, Edwards BJ, Favus MJ, Greenspan SL, McKinney R Jr, Pignolo RJ, Sellmeyer DE (2016) Managing osteoporosis in patients on long-term bisphosphonate treatment: report of a task force of the American Society for bone and mineral research: managing osteoporosis patients on long term BPs. J Bone Miner Res 31(1):16–35. https://doi.org/10.1002/jbmr.2708

    Article  CAS  Google Scholar 

  152. Black DM, Reid IR, Boonen S, Bucci-Rechtweg C, Cauley JA, Cosman F, Cummings SR, Hue TF, Lippuner K, Lakatos P, Leung PC, Man Z, Martinez RL, Tan M, Ruzycky ME, Su G, Eastell R (2012) The effect of 3 versus 6 years of zoledronic acid treatment of osteoporosis: a randomized extension to the HORIZON-Pivotal Fracture Trial (PFT). J Bone Miner Res 27(2):243–254. https://doi.org/10.1002/jbmr.1494

    Article  CAS  Google Scholar 

  153. Black DM, Reid IR, Cauley JA, Cosman F, Leung PC, Lakatos P, Lippuner K, Cummings SR, Hue TF, Mukhopadhyay A, Tan M, Aftring RP, Eastell R (2015) The effect of 6 versus 9 years of zoledronic acid treatment in osteoporosis: a randomized second extension to the HORIZON-Pivotal Fracture Trial (PFT). J Bone Miner Res 30(5):934–944. https://doi.org/10.1002/jbmr.2442

    Article  CAS  Google Scholar 

  154. Dennison EM, Cooper C, Kanis JA, Bruyère O, Silverman S, McCloskey E, Abrahamsen B, Prieto-Alhambra D, Ferrari S, IOF Epidemiology/Quality of Life Working Group (2019) Fracture risk following intermission of osteoporosis therapy. Osteoporos Int 30(9):1733–1743. https://doi.org/10.1007/s00198-019-05002-w

    Article  CAS  Google Scholar 

  155. Bone HG, Wagman RB, Brandi ML, Brown JP, Chapurlat R, Cummings SR, Czerwiński E, Fahrleitner-Pammer A, Kendler DL, Lippuner K, Reginster JY, Roux C, Malouf J, Bradley MN, Daizadeh NS, Wang A, Dakin P, Pannacciulli N, Dempster DW, Papapoulos S (2017) 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol 5(7):513–523. https://doi.org/10.1016/S2213-8587(17)30138-9

    Article  CAS  Google Scholar 

  156. Bone HG, Bolognese MA, Yuen CK, Kendler DL, Miller PD, Yang Y-C, Grazette L, San Martin J, Gallagher JC (2011) Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass. J Clin Endocrinol Metab 96(4):972–980. https://doi.org/10.1210/jc.2010-1502

    Article  CAS  Google Scholar 

  157. Bone HG, Chapurlat R, Brandi ML, Brown JP, Czerwinski E, Krieg MA, Mellström D, Radominski SC, Reginster JY, Resch H, Ivorra JA, Roux C, Vittinghoff E, Daizadeh NS, Wang A, Bradley MN, Franchimont N, Geller ML, Wagman RB, Cummings SR, Papapoulos S (2013) The effect of three or six years of denosumab exposure in women with postmenopausal osteoporosis: results from the FREEDOM extension. J Clin Endocrinol Metab 98(11):4483–4492. https://doi.org/10.1210/jc.2013-1597

    Article  CAS  Google Scholar 

  158. Anagnostis P, Paschou SA, Mintziori G, Ceausu I, Depypere H, Lambrinoudaki I, Mueck A, Pérez-López FR, Rees M, Senturk LM, Simoncini T, Stevenson JC, Stute P, Trémollieres FA, Goulis DG (2017) Drug holidays from bisphosphonates and denosumab in postmenopausal osteoporosis: EMAS position statement. Maturitas 101:23–30. https://doi.org/10.1016/j.maturitas.2017.04.008

    Article  CAS  Google Scholar 

  159. Belaya ZE, Bilezikian JP, Ershova OB, Lesnyak OM, Marchenkova LA, Rodionova SS, Rozhinskaya LY, Toroptsova NV, Yureneva SV (2018) Long-term treatment options for postmenopausal osteoporosis: results of recent clinical studies of denosumab. Osteopor Bone Dis 21(1):17–22. https://doi.org/10.14341/osteo9760

    Article  Google Scholar 

  160. Brown JP, Roux C, Törring O, Ho PR, Beck Jensen JE, Gilchrist N, Recknor C, Austin M, Wang A, Grauer A, Wagman RB (2013) Discontinuation of denosumab and associated fracture incidence: analysis from the Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Months (FREEDOM) trial. J Bone Miner Res 28(4):746–752. https://doi.org/10.1002/jbmr.1808

    Article  CAS  Google Scholar 

  161. Tsourdi E, Zillikens MC, Meier C, Body JJ, Gonzalez Rodriguez E, Anastasilakis AD, Abrahamsen B, McCloskey E, Hofbauer LC, Guañabens N, Obermayer-Pietsch B, Ralston SH, Eastell R, Pepe J, Palermo A, Langdahl B (2021) Fracture risk and management of discontinuation of denosumab therapy: a systematic review and position statement by ECTS. J Clin Endocrinol Metab 106(1):264–281. https://doi.org/10.1210/clinem/dgaa756

    Article  Google Scholar 

  162. McClung MR (2006) Inhibition of RANKL as a treatment for osteoporosis: Preclinical and early clinical studies. Curr Osteoporos Rep 4(1):28–33. https://doi.org/10.1007/s11914-006-0012-7

    Article  Google Scholar 

  163. Popp AW, Zysset PK, Lippuner K (2016) Rebound-associated vertebral fractures after discontinuation of denosumab – from clinic and biomechanics. Osteoporos Int 27(5):1917–1921. https://doi.org/10.1007/s00198-015-3458-6

    Article  CAS  Google Scholar 

  164. Tsourdi E, Langdahl B, Cohen-Solal M, Aubry-Rozier B, Eriksen EF, Guañabens N, Obermayer-Pietsch B, Ralston SH, Eastell R, Zillikens MC (2017) Discontinuation of Denosumab therapy for osteoporosis: a systematic review and position statement by ECTS. Bone 105:11–17. https://doi.org/10.1016/j.bone.2017.08.003

    Article  Google Scholar 

  165. Anastasilakis AD, Polyzos SA, Makras P, Aubry-Rozier B, Kaouri S, Lamy O (2017) Clinical Features of 24 patients with rebound-associated vertebral fractures after denosumab discontinuation: systematic review and additional cases: denosumab discountinuation and vertebral fractures. J Bone Miner Res 32(6):1291–1296. https://doi.org/10.1002/jbmr.3110

    Article  CAS  Google Scholar 

  166. Kendler D, Chines A, Clark P, Ebeling PR, McClung M, Rhee Y, Huang S, Stad RK (2020) Bone mineral density after transitioning from denosumab to alendronate. J Clin Endocrinol Metab 105(3):255–264. https://doi.org/10.1210/clinem/dgz095

    Article  Google Scholar 

  167. Palacios S, Agodoa I, Bonnick S, Van den Bergh JP, Ferreira I, Ho P-R, Brown JP (2015) Treatment satisfaction in postmenopausal women suboptimally adherent to bisphosphonates who transitioned to denosumab compared with risedronate or ibandronate. J Clin Endocrinol Metab 100(3):487–492. https://doi.org/10.1210/jc.2014-3594

    Article  CAS  Google Scholar 

  168. Freemantle N, Satram-Hoang S, Tang E-T, Kaur P, Macarios D, Siddhanti S, Borenstein J, Kendler DL (2012) Final results of the DAPS (Denosumab Adherence Preference Satisfaction) study: a 24-month, randomized, crossover comparison with alendronate in postmenopausal women. Osteoporos Int 23(1):317–326. https://doi.org/10.1007/s00198-011-1780-1

    Article  CAS  Google Scholar 

  169. Kadaru T, Shibli-Rahhal A (2021) Zoledronic acid after treatment with denosumab is associated with bone loss within 1 year. J Bone Metab 28(1):51–58. https://doi.org/10.11005/jbm.2021.28.1.51

    Article  Google Scholar 

  170. Sølling AS, Harsløf T, Langdahl B (2021) Treatment with zoledronate subsequent to denosumab in osteoporosis: a 2-year randomized study. J Bone Miner Res 36(7):1245–1254. https://doi.org/10.1002/jbmr.4305

    Article  CAS  Google Scholar 

  171. Cummings SR, Cosman F, Lewiecki EM, Schousboe JT, Bauer DC, Black DM, Brown TD, Cheung AM, Cody K, Cooper C, Diez-Perez A, Eastell R, Hadji P, Hosoi T, Jan De Beur S, Kagan R, Kiel DP, Reid IR, Solomon DH, Randall S (2017) Goal-directed treatment for osteoporosis: a progress report from the ASBMR-NOF Working Group on goal-directed treatment for osteoporosis. J Bone Miner Res 32(1):3–10. https://doi.org/10.1002/jbmr.3039

    Article  CAS  Google Scholar 

  172. Everts-Graber J, Reichenbach S, Ziswiler HR, Studer U, Lehmann T (2020) A single infusion of zoledronate in postmenopausal women following denosumab discontinuation results in partial conservation of bone mass gains. J Bone Miner Res 35(7):1207–1215. https://doi.org/10.1002/jbmr.3962

    Article  CAS  Google Scholar 

  173. Ramchand SK, David NL, Lee H, Eastell R, Tsai JN, Leder BZ (2021) Efficacy of zoledronic acid in maintaining areal and volumetric bone density after combined denosumab and teriparatide administration: DATA-HD study extension. J Bone Miner Res 36(5):921–930. https://doi.org/10.1002/jbmr.4259

    Article  CAS  Google Scholar 

  174. Horne AM, Mihov B, Reid IR (2018) Bone loss after romosozumab/denosumab: effects of bisphosphonates. Calcif Tissue Int 103(1):55–61. https://doi.org/10.1007/s00223-018-0404-6

    Article  CAS  Google Scholar 

  175. Leder BZ, Tsai JN, Uihlein AV, Wallace PM, Lee H, Neer RM, Burnett-Bowie S-AM (2015) Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-Switch study): extension of a randomised controlled trial. Lancet 386(9999):1147–1155. https://doi.org/10.1016/S0140-6736(15)61120-5

    Article  CAS  Google Scholar 

  176. Ebina K, Hashimoto J, Kashii M, Hirao M, Kaneshiro S, Noguchi T, Tsukamoto Y, Yoshikawa H (2017) The effects of switching daily teriparatide to oral bisphosphonates or denosumab in patients with primary osteoporosis. J Bone Miner Metab 35(1):91–98. https://doi.org/10.1007/s00774-015-0731-x

    Article  CAS  Google Scholar 

  177. Rittmaster RS, Bolognese M, Ettinger MP, Hanley DA, Hodsman AB, Kendler DL, Rosen CJ (2000) Enhancement of bone mass in osteoporotic women with parathyroid hormone followed by alendronate. J Clin Endocrinol Metab 85(6):2129–2134. https://doi.org/10.1210/jcem.85.6.6614

    Article  CAS  Google Scholar 

  178. Burkard D, Beckett T, Kourtjian E, Messingschlager C, Sipahi R, Padley M, Stubbart J (2018) Effects of bone remodeling agents following teriparatide treatment. Osteoporos Int 29(6):1351–1357. https://doi.org/10.1007/s00198-018-4434-8

    Article  CAS  Google Scholar 

  179. Diez-Perez A, Adachi JD, Agnusdei D, Bilezikian JP, Compston JE, Cummings SR, Eastell R, Eriksen EF, Gonzalez-Macias J, Liberman UA, Wahl DA, Seeman E, Kanis JA, Cooper C (2012) Treatment failure in osteoporosis. Osteoporos Int 23(12):2769–2774. https://doi.org/10.1007/s00198-012-2093-8

    Article  CAS  Google Scholar 

  180. Baber RJ, Panay N, Fenton A (2016) 2016 IMS Recommendations on women’s midlife health and menopause hormone therapy. Climacteric 19(2):109–150. https://doi.org/10.3109/13697137.2015.1129166

    Article  CAS  Google Scholar 

  181. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA 288(3):321–333. https://doi.org/10.1001/jama.288.3.321

    Article  CAS  Google Scholar 

  182. Ettinger B, Ensrud KE, Wallace R, Johnson KC, Cummings SR, Yankov V, Vittinghoff E, Grady D (2004) Effects of ultralow-dose transdermal estradiol on bone mineral density: a randomized clinical trial. Obstet Gynecol 104(3):443–451. https://doi.org/10.1097/01.AOG.0000137833.43248.79

    Article  CAS  Google Scholar 

  183. de Villiers TJ, Hall JE, Pinkerton JV, Pérez SC, Rees M, Yang C, Pierroz DD (2016) Revised global consensus statement on menopausal hormone therapy. Maturitas 91:153–155. https://doi.org/10.1016/j.maturitas.2016.06.001

    Article  Google Scholar 

  184. McLellan AR, Reid DM, Forbes K, Reid R, Campbell C, Gregori A, Raby N, Simpson A (2004) Effectiveness of strategies for the secondary prevention of osteoporotic fractures in Scotland, an audit funded by NHS Quality Improvement Scotland (Project CEPS 99/03). Available at http://www.healthcareimprovementscotland.org/previous_resources/audit_report/osteoporotic_fractures_audit.aspx

  185. Åkesson K, Marsh D, Mitchell PJ, McLellan AR, Stenmark J, Pierroz DD, Kyer C, Cooper C (2013) Capture the fracture: a best practice framework and global campaign to break the fragility fracture cycle. Osteoporos Int 24(8):2135–2152. https://doi.org/10.1007/s00198-013-2348-z

    Article  Google Scholar 

  186. Hagino H, Sawaguchi T, Endo N, Ito Y, Nakano T, Watanabe Y (2012) The risk of a second hip fracture in patients after their first hip fracture. Calcif Tissue Int 90(1):14–21. https://doi.org/10.1007/s00223-011-9545-6

    Article  CAS  Google Scholar 

  187. Dell R (2011) Fracture prevention in Kaiser Permanente Southern California. Osteoporos Int 22(S3):457–460. https://doi.org/10.1007/s00198-011-1712-0

    Article  Google Scholar 

  188. Nakayama A, Major G, Holliday E, Attia J, Bogduk N (2016) Evidence of effectiveness of a fracture liaison service to reduce the re-fracture rate. Osteoporos Int 27(3):873–879. https://doi.org/10.1007/s00198-015-3443-0

    Article  CAS  Google Scholar 

  189. Marsh D, Akesson K, Beaton DE, Bogoch ER, Boonen S, Brandi ML, McLellan AR, Mitchell PJ, Sale JE, Wahl DA (2011) Coordinator-based systems for secondary prevention in fragility fracture patients. Osteoporos Int 22(7):2051–2065. https://doi.org/10.1007/s00198-011-1642-x

    Article  CAS  Google Scholar 

  190. Ganda K, Mitchell PJ, Seibel MJ (2019) Models of secondary fracture prevention: systematic review and metaanalysis of outcomes. Academic Press, London. https://doi.org/10.1016/B978-0-12-813136-7.01001-2

    Article  Google Scholar 

  191. Ganda K, Puech M, Chen JS, Speerin R, Bleasel J, Center JR, Eisman JA, March L, Seibel MJ (2013) Models of care for the secondary prevention of osteoporotic fractures: a systematic review and meta-analysis. Osteoporos Int 24(2):393–406. https://doi.org/10.1007/s00198-012-2090-y

    Article  CAS  Google Scholar 

  192. Huntjens KMB, van Geel TACM, van den Bergh JPW, van Helden S, Willems P, Winkens B, Eisman JA, Geusens PP, Brink PRG (2014) Fracture Liaison Service: impact on subsequent nonvertebral fracture incidence and mortality. J Bone Joint Surg Am 96(4):e29. https://doi.org/10.2106/JBJS.L.00223

    Article  Google Scholar 

  193. Hawley S, Javaid MK, Prieto-Alhambra D, Lippett J, Sheard S, Arden NK, Cooper C, Judge A (2016) Clinical effectiveness of orthogeriatric and fracture liaison service models of care for hip fracture patients: population-based longitudinal study. Age Ageing 45(2):236–242. https://doi.org/10.1093/ageing/afv204

    Article  Google Scholar 

  194. Majumdar SR, Lier DA, Rowe BH, Russell AS, McAlister FA, Maksymowych WP, Hanley DA, Morrish DW, Johnson JA (2011) Cost-effectiveness of a multifaceted intervention to improve quality of osteoporosis care after wrist fracture. Osteoporos Int 22(6):1799–1808. https://doi.org/10.1007/s00198-010-1412-1

    Article  CAS  Google Scholar 

  195. McLellan AR, Wolowacz SE, Zimovetz EA, Beard SM, Lock S, McCrink L, Adekunle F, Roberts D (2011) Fracture liaison services for the evaluation and management of patients with osteoporotic fracture: a cost-effectiveness evaluation based on data collected over 8 years of service provision. Osteoporos Int 22(7):2083–2098. https://doi.org/10.1007/s00198-011-1534-0

    Article  CAS  Google Scholar 

  196. Gregson CL, Armstrong DJ, Bowden J, Cooper C, Edwards J, Gittoes NJL, Harvey NC, Kanis J, Leyland S, Low R, McCloskey E, Moss K, Parker J, Paskins Z, Poole KES, Reid DM, Stone M, Tomson J, Compston VN, J, (2022) UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos 17:58. https://doi.org/10.1007/s11657-022-01061-5

    Article  Google Scholar 

Download references

Funding

Zhanna Belaya, Liudmila Rozhinskaya, Ivan Dedov, Elizaveta Mamedova, and Galina Melnichenko received state research funding AAAA-A20-120011690202–4 which compensated their work on a regular salary basis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanna Belaya.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belaya, Z., Rozhinskaya, L., Dedov, I. et al. A summary of the Russian clinical guidelines on the diagnosis and treatment of osteoporosis. Osteoporos Int 34, 429–447 (2023). https://doi.org/10.1007/s00198-022-06667-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-022-06667-6

Keywords

Navigation