Skip to main content

Advertisement

Log in

First Ecuadorian statement consensus for the evaluation and treatment of osteoporosis

  • Consensus Statement
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

Osteoporosis management has become more relevant as the life expectancy increases. In Ecuador, approximately 19% of adults over 65 years of age have been diagnosed with osteoporosis. There is no national consensus for the management and prevention of the disease being this proposal the first Ecuadorian consensus.

Introduction

In Ecuador, it is estimated that around 19% of adults over 65 years of age have osteoporosis. Due to the increase in life expectancy in the world population, the evaluation and management of osteoporosis has become more relevant. Currently, there is no national consensus for the management and prevention of the disease. The Ecuadorian Society of Rheumatology presented the project for the elaboration of the first Ecuadorian consensus for the management and prevention of osteoporosis.

Methods

A panel of experts in multiple areas and extensive experience was invited to participate. The consensus was carried out using the Delphi method. Six working dimensions were created: definition and epidemiology of osteoporosis, fracture risk prediction tools, non-pharmacological treatment, pharmacological treatment, calcium and vitamin D, and glucocorticoid-induced osteoporosis.

Results

The first round was held in December 2021, followed by the second round in February 2022 and the third round in March 2022. The data was shared with the specialists at the end of each round. After three rounds of work, a consensus was reached for the management and prevention of osteoporosis.

Conclusion

This is the first Ecuadorian consensus for the management and treatment of postmenopausal osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Betancourt OS (2014) Densidad mineral Ósea, calcio dietético y factores presuntivos de riesgo de osteoporosis en mujeres ecuatorianas de la tercera edad. Nutr Hosp 30(2):372–384

    Google Scholar 

  2. Linstone HA, Turoff M (1975) The delphi method. Addison-Wesley Reading, MA

  3. Nair R, Aggarwal R, Khanna D (2011) Methods of formal consensus in classification/diagnostic criteria and guideline development. Semin Arthritis Rheum 41(2):95–105

    PubMed  PubMed Central  Google Scholar 

  4. Jackson S (1992) Team composition in organizational settings: issues in managing an increasingly diverse work force. In: Worchel S, Wood W, Simpson J (eds) Group Process and Productivity. UK, Sage, London, pp 138–173

    Google Scholar 

  5. Fink A, Kosecoff J, Chassin M, Brook RH (1984) Consensus methods: characteristics and guidelines for use. Am J Public Health 74(9):979–983

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dalkey NC (2018) Delphi. Routledge

  7. Delbecq AL, Van de Ven AH, Gustafson DH (1975) Group techniques for program planning: a guide to nominal group and Delphi processes. Scott, Foresman

    Google Scholar 

  8. Gattrell WT, Hungin AP, Price A, Winchester CC, Tovey D, Hughes EL et al (2022) ACCORD guideline for reporting consensus-based methods in biomedical research and clinical practice: a study protocol. Res Integr Peer Rev 7(1):1–10

    Google Scholar 

  9. Moher D, Schulz KF, Simera I, Altman DG (2010) Guidance for developers of health research reporting guidelines. PLoS Med. 7(2)

  10. GRADE Working Group (2013) GRADE handbook for grading quality of evidence and strength of recommendations [Internet]. Schünemann H, Brożek J, Guyatt G, Oxman A, editors. 2013. Available from: guidelinedevelopment.org/handbook

  11. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S et al (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25(10):2359–2381

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ministerio de Salud Pública del Ecuador (2017) Registro Estadístico Camas y Egresos Hospitalarios 2017 [Internet]. Quito, Ecuador; 2017. Available from: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_Sociales/Camas_Egresos_Hospitalarios/Cam_Egre_Hos_2017/Presentacion_CEH_2017.pdf. Accessed October 2021

  13. Lopez E, Chedraui P, Franco KG, Blum DM, Riofrío JP, Bajaña AS (2018) Osteoporotic hip fractures in older adults in Ecuador 2016. Rev Osteoporos y Metab Miner 10(2):63–70

    Google Scholar 

  14. Orces CH (2009) Epidemiology of hip fractures in Ecuador. Pan Am J Public Heal 25(5):438–442

    Google Scholar 

  15. Lopez-Gavilanes E, Diaz-Curel M, Orces C, Navarro-Chavez M, Bautista-Litardo N, Hernandez-Bonilla M et al (2018) Trends in mortality rates due to osteoporotic hip fractures in Ecuador from 1997 to 2016. Int J Osteoporos Metab Disord 11(1):23–28

    Google Scholar 

  16. Montala N, Juanola X, Collantes E, Muñoz-Gomariz E, Gonzalez C, Gratacos J et al (2011) Prevalence of vertebral fractures by semiautomated morphometry in patients with ankylosing spondylitis. J Rheumatol [Internet]. 2011 May 1;38(5):893 LP – 897. Available from: http://www.jrheum.org/content/38/5/893.abstract. Accessed October 2021

  17. Wang X, Yan S, Liu C, Xu Y, Wan L, Wang Y et al (2016) Fracture risk and bone mineral density levels in patients with systemic lupus erythematosus: a systematic review and meta-analysis. Osteoporos Int 4:1413–1423

    Google Scholar 

  18. Tedeschi SK, Kim SC, Guan H, Grossman JM, Costenbader KH (2019) Comparative fracture risks among United States Medicaid enrollees with and those without systemic lupus erythematosus. Arthritis Rheumatol (Hoboken, NJ) 71(7):1141–1146

    Google Scholar 

  19. Kanis JA, Borgstrom F, De Laet C, Johansson H, Johnell O, Jonsson B et al (2005) Assessment of fracture risk. Osteoporos Int 16(6):581–589

    PubMed  Google Scholar 

  20. Lewiecki EM, Bilezikian JP, Kagan R, Krakow D, McClung MR, Miller PD, et al (2019) Proceedings of the 2019 Santa Fe Bone Symposium: new concepts in the care of osteoporosis and rare bone diseases. J Clin Densitom [Internet]. 2019; Available from: https://doi.org/10.1016/j.jocd.2019.09.006

  21. Morin SN, Lix LM, Leslie WD (2014) The importance of previous fracture site on osteoporosis diagnosis and incident fractures in women. J Bone Miner Res 29(7):1675–1680

    PubMed  Google Scholar 

  22. Siris ES, Adler R, Bilezikian J, Bolognese M, Dawson-Hughes B, Favus MJ et al (2014) The clinical diagnosis of osteoporosis: a position statement from the National Bone Health Alliance Working Group. Osteoporos Int 25(5):1439–1443

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kado DM, Browner WS, Palermo L, Nevitt MC, Genant HK, Cummings SR (1999) Vertebral fractures and mortality in older women: a prospective study Study of Osteoporotic Fractures Research Group. Arch Intern Med. 159(11):1215–20

    CAS  PubMed  Google Scholar 

  24. Robinson WA, Carlson BC, Poppendeck H, Wanderman NR, Bunta AD, Murphy S, et al (2019) Osteoporosis-related vertebral fragility fractures: a review and analysis of the American Orthopaedic Association’s Own the Bone Database. Spine (Phila Pa 1976) [Internet]. 2019; Available from: http://www.ncbi.nlm.nih.gov/pubmed/31770343. Accessed October 2021

  25. Jia H, Lubetkin EI, DeMichele K, Stark DS, Zack MM, Thompson WW (2019) Prevalence, risk factors, and burden of disease for falls and balance or walking problems among older adults in the U.S. Prev Med (Baltim) [Internet]. 126(April):105737. Available from: https://doi.org/10.1016/j.ypmed.2019.05.025

  26. Murray C, Lopez A. Global and regional descriptive epidemiology of disability: incidence, prevalence, health expectations and years lived with disability. Bostton; 1996.

  27. Tinetti M, Speechley M, Ginter S (1988) Risk factors for falls among elderly persons living in the community. N Eng J Med. 1701–7

  28. Blake A, Morgan K, Bendall M, Dallosso H, Ebrahim S, Arie T et al (1988) Falls by elderly people at home: prevalence and associated factors. Age Ageing 17:365–372

    CAS  PubMed  Google Scholar 

  29. Tromp A, Pluijm S, Smitt J (2001) Fall-risk screening test: a prospective study on predictors for falls in community-dwelling elderly. J Clin Epidemiol 54:833–844

    Google Scholar 

  30. Shuhart CR, Yeap SS, Anderson PA, Jankowski LG, Lewiecki EM, Morse LR, et al (2019) Executive summary of the 2019 ISCD position development conference on monitoring treatment, DXA cross-calibration and least significant change, spinal cord injury, periprosthetic and orthopedic bone health, transgender medicine, and pediatrics. J Clin Densitom [Internet]. 22(4):453–71. Available from: https://doi.org/10.1016/j.jocd.2019.07.001

  31. Kanis J, on behalf of the World Health Organization Scientific Group (2007) Assessment of osteoporosis at the primary healthcare level. Technical Report. WHO Collaborating Centre. Sheffield: University of Sheffield

  32. Celi M, Rao C, Scialdoni A, Tempesta V, Gasbarra E, Pistillo P et al (2013) Bone mineral density evaluation in osteoporosis: why yes and why not? Aging Clin Exp Res 25(1 SUPPL.):47–49

    Google Scholar 

  33. Andreoli A, Bazzocchi A, Celi M, Lauro D, Sorge R, Tarantino U, et al (2011) Relationship between body composition, body mass index and bone mineral density in a large population of normal, osteopenic and osteoporotic women. Radiol Med [Internet]. 2011/06/04. 116(7):1115–23. Available from: https://pubmed.ncbi.nlm.nih.gov/21643640. Accessed October 2021

  34. Hamdy RC, Petak SM, Lenchik L, Committee IS for CDPDP and SA (2002) Which central dual X-ray absorptiometry skeletal sites and regions of interest should be used to determine the diagnosis of osteoporosis? J Clin Densitom [Internet]. 5 Suppl:S11–8. Available from: https://pubmed.ncbi.nlm.nih.gov/12464707. Accessed October 2021

  35. Ferrar L, Jiang G, Adams J, Eastell R (2005) Identification of vertebral fractures: an update. Osteoporos Int 16(7):717–728

    CAS  PubMed  Google Scholar 

  36. Lewiecki EM, Laster AJ (2006) Clinical review: Clinical applications of vertebral fracture assessment by dual-energy x-ray absorptiometry. J Clin Endocrinol Metab 91(11):4215–4222

    CAS  PubMed  Google Scholar 

  37. Schousboe JT, Debold CR (2006) Reliability and accuracy of vertebral fracture assessment with densitometry compared to radiography in clinical practice. Osteoporos Int 17(2):281–289

    PubMed  Google Scholar 

  38. Ross PD (1997) Clinical consequences of vertebral fractures. Am J Med. 1Aug;103(2A):30S-42S; discussion 42S-43S

  39. Melton LJ 3rd, Atkinson EJ, Cooper C, O’Fallon WM, Riggs BL (1999) Vertebral fractures predict subsequent fractures. Osteoporos Int 10(3):214–221

    PubMed  Google Scholar 

  40. Camacho PM, Petak SM, Binkley N, Diab DL, Eldeiry LS, Farooki A, et al (2020) American association of clinical endocrinologists/American college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis-2020 update. Endocr Pract [Internet]. 26(s1):1–46. Available from: https://doi.org/10.4158/GL-2020-0524SUPPL

  41. Kaptoge S, Armbrecht G, Felsenberg D, Lunt M, O’Neill TW, Silman AJ, et al (2004) When should the doctor order a spine X-ray? Identifying vertebral fractures for osteoporosis care: results from the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res [Internet]. 2004/09/07. 19(12):1982–93. Available from: https://pubmed.ncbi.nlm.nih.gov/15537441. Accessed October 2021

  42. Uetani M, Hashmi R, Hayashi K (2004) Malignant and benign compression fractures: differentiation and diagnostic pitfalls on MRI. Clin Radiol 59(2):124–131

    CAS  PubMed  Google Scholar 

  43. Griffith JF, Guglielmi G (2010) Vertebral fracture. Radiol Clin North Am 48(3):519–529

    PubMed  Google Scholar 

  44. Hlaing TT, Compston JE (2014) Biochemical markers of bone turnover - uses and limitations. Ann Clin Biochem 51(Pt 2):189–202

    PubMed  Google Scholar 

  45. Guiducci L, Maffei S, Sabatino L, Zyw L, Battaglia D, Vannucci A, et al (2017) Significance of the ionized calcium measurement to assess calcium status in osteopenic/osteoporosis postmenopausal outpatients. Gynecol Endocrinol [Internet]. 33(5):383–8. Available from: https://doi.org/10.1080/09513590.2016.1270932

  46. Maldonado G, Paredes C, Guerrero R, Ríos C (2017) Determination of Vitamin D status in a population of Ecuadorian subjects. Sci World J 3831275:1–6

    Google Scholar 

  47. Orces CH (2015) Vitamin D status among older adults residing in the Littoral and Andes mountains in Ecuador. Sci World J 545297:8

    Google Scholar 

  48. Maldonado G, Guerrero R, Ríos C (2017) Prevalencia de vitamina D en pacientes con enfermedades autoinmunes en Ecuador: estudio restrospectivo. Rev Colomb Reumatol [Internet]. 24(4):205–10. Available from: https://doi.org/10.1016/j.rcreu.2017.08.001

  49. Henriksen K, Leeming DJ, Christiansen C, Karsdal MA (2011) Use of bone turnover markers in clinical osteoporosis assessment in women: current issues and future options. Womens Health (Lond Engl) 7(6):689–98. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22040210. Accessed October 2021

  50. Leeming DJ, Alexandersen P, Karsdal MA, Qvist P, Schaller S, Tankó LB (2006) An update on biomarkers of bone turnover and their utility in biomedical research and clinical practice. Eur J Clin Pharmacol 62(10):781–92. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16912870. Accessed October 2021

  51. Stumpf U, Hesse E, Böcker W, Kammerlander C, Neuerburg C, Schmidmaier R (2019) Differential diagnoses of osteoporosis TT - Differenzialdiagnosen der Osteoporose. Z Gerontol Geriatr 52(5):414–20. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31297588. Accessed October 2021

  52. WHO Fracture Risk Assessment Tool (FRAX) (2020) [Internet]. [cited 2020 Jan 13]. Available from: http://www.shef.ac.uk/FRAX. Accessed October 2021

  53. Gavilanez EL, Johansson H, Mccloskey E, Harvey NC, Bajana AS, Blum DM et al (2019) Assessing the risk of osteoporotic fractures: the Ecuadorian FRAX model. Arch Osteoporos 14(1):93. https://doi.org/10.1007/s11657-019-0644-8

  54. Kanis J (2008) Assessment of osteoporosis at the primary healthcare level. World Health Organization Collaborating Centre University of Sheffield. Sheffield, UK

    Google Scholar 

  55. Kanis JA, Harvey NC, Mccloskey E, Bruyere O, Veronese N, Lorentzon M et al (2020) Algorithm for the management of patients at low, high, and very high risk of osteoporotic fractures. Osteoporos Int 31:1–12

    CAS  PubMed  Google Scholar 

  56. Curtis EM, Reginster JY, Al-Daghri N, Biver E, Brandi ML, Cavalier E et al (2022) Management of patients at very high risk of osteoporotic fractures through sequential treatments. Aging Clin Exp Res 34(4):695–714

    PubMed  PubMed Central  Google Scholar 

  57. Maldonado G, Intriago M, Larroude M, Aguilar G, Moreno M, Gonzalez J et al (2020) Common errors in dual-energy X-ray absorptiometry scans in imaging centers in Ecuador. Arch Osteoporos 15(1):6. https://doi.org/10.1007/s11657-019-0673-3

  58. Martineau P, Leslie WD (2018) The utility and limitations of using trabecular bone score with FRAX. Curr Opin Rheumatol [Internet]. 30(4):412–9. Available from: https://pubmed.ncbi.nlm.nih.gov/29528866. Accessed October 2021

  59. Compston J (2015) FRAX--Where are we now? Maturitas [Internet]. 2015/07/31. 82(3):284–7. Available from: https://pubmed.ncbi.nlm.nih.gov/26277257. Accessed October 2021

  60. Deer RR, Volpi E (2015) Protein intake and muscle function in older adults. Curr Opin Clin Nutr Metab Care 18(3):248–253

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wengreen HJ, Munger RG, West NA, Cutler DR, Corcoran CD, Zhang J et al (2004) Dietary protein intake and risk of osteoporotic hip fracture in elderly residents of Utah. J Bone Miner Res 19(4):537–545

    PubMed  Google Scholar 

  62. Rizzoli R, Bonjour J-P (2004) Dietary protein and bone health. Vol. 19, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. United States; p. 527–31.

  63. Dufour AB, Hannan MT, Murabito JM, Kiel DP, McLean RR (2013) Sarcopenia definitions considering body size and fat mass are associated with mobility limitations: the Framingham study. J Gerontol - Ser A Biol Sci Med Sci 68(2):168–174

    Google Scholar 

  64. Kim J, Kim B, Lee H, Choi H, Won C (2013) The relationship between prevalence of osteoporosis and proportion of daily protein intake. Korean J Fam Med 34(1):43–48

    PubMed  PubMed Central  Google Scholar 

  65. Schurch MA, Rizzoli R, Slosman D, Vadas L, Vergnaud P, Bonjour JP (1998) Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fracture A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 128(10):801–9

    CAS  PubMed  Google Scholar 

  66. Cadore EL, Rodríguez-Mañas L, Sinclair A, Izquierdo M (2013) Effects of different exercise interventions on risk of falls, gait ability, and balance in physically frail older adults: a systematic review. Rejuvenation Res 16(2):105–114

    PubMed  PubMed Central  Google Scholar 

  67. Kemmler W, Teschler M, Goisser S, Bebenek M, Stengel S Von, Bollheimer LC, et al (2015) Prevalence of sarcopenia in Germany and the corresponding effect of osteoarthritis in females 70 years and older living in the community : results of the FORMoSA study. 1565–73

  68. Zhang Y, Chai Y, Pan X, Shen H, Wei X, Xie Y (2019) Tai chi for treating osteopenia and primary osteoporosis: a meta-analysis and trial sequential analysis. Clin Interv Aging 14:91–104

    PubMed  PubMed Central  Google Scholar 

  69. Luo Z, Liu Y, Liu Y, Chen H, Shi S, Liu Y (2017) Cellular and molecular mechanisms of alcohol-induced osteopenia. Cell Mol Life Sci 74(24):4443–4453

    CAS  PubMed  Google Scholar 

  70. Wyshak G (2000) Teenaged girls, carbonated beverage consumption, and bone fractures. Arch Pediatr Adolesc Med [Internet]. 154(6):610–3. Available from: https://www.ncbi.nlm.nih.gov/pubmed/10850510. Accessed October 2021

  71. McGartland C, Robson PJ, Murray L, Cran G, Savage MJ, Watkins D, et al (2003) Carbonated soft drink consumption and bone mineral density in adolescence: the Northern Ireland Young Hearts project. J Bone Miner Res 18(9):1563–9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/12968664. Accessed October 2021

  72. Whiting SJ, Healey A, Psiuk S, Mirwald R, Kowalski K, Bailey DA (2001) Relationship between carbonated and other low nutrient dense beverages and bone mineral content of adolescents. Nutr Res 21(8):1107–15. Available from: http://www.sciencedirect.com/science/article/pii/S0271531701003244. Accessed October 2021

  73. Fitzpatrick L, Heaney RP (2003) Got soda? J Bone Miner Res 18(9):1570–2. Available from: https://www.ncbi.nlm.nih.gov/pubmed/12968665. Accessed October 2021

  74. Sámano R, Rodríguez Ventura AL, Godínez Martínez EY, Rivera B, Medina Flores M, Sánchez B, et al 2013 Association of consumption of carbonated beverages and decalcification in woman on reproductive and non-reproductive age of Mexico City TT - Asociación del consumo de bebidas carbonatadas y descalcificación en mujeres en edad reproductiva y no reproducti. Nutr Hosp 28(5):1750–6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24160242. Accessed October 2021

  75. Tucker KL, Morita K, Qiao N, Hannan MT, Cupples LA, Kiel DP (2006) Colas, but not other carbonated beverages, are associated with low bone mineral density in older women: the Framingham osteoporosis study. Am J Clin Nutr 84(4):936–942

    CAS  PubMed  Google Scholar 

  76. Amato D, Maravilla A, Montoya C, Gaja O, Revilla C, Guerra R, et al (1998) Acute effects of soft drink intake on calcium and phosphate metabolism in immature and adult rats. Rev Invest Clin [Internet]. 50(3):185–9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/9763881. Accessed October 2021

  77. Heckman MA, Weil J, Gonzalez de Mejia E (2010) Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci 75(3):R77–87

  78. Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J (2017) Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ 359:j5024

    PubMed  PubMed Central  Google Scholar 

  79. Harris SS, Dawson-Hughes B (1994) Caffeine and bone loss in healthy postmenopausal women. Am J Clin Nutr 60(4):573–578

    CAS  PubMed  Google Scholar 

  80. Rapuri PB, Gallagher JC, Kinyamu HK, Ryschon KL (2001) Caffeine intake increases the rate of bone loss in elderly women and interacts with vitamin D receptor genotypes. Am J Clin Nutr 74(5):694–700

    CAS  PubMed  Google Scholar 

  81. Kanis JA, Johnell O, Oden A, Johansson H, De Laet C, Eisman JA et al (2005) Smoking and fracture risk: a meta-analysis. Osteoporos Int 16(2):155–162

    CAS  PubMed  Google Scholar 

  82. Marques EA, Elbejjani M, Gudnason V, Sigurdsson G, Lang T, Sigurdsson S et al (2018) Cigarette smoking and hip volumetric bone mineral density and cortical volume loss in older adults: the AGES-Reykjavik study. Bone 108:186–192

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Rom O, Reznick AZ, Keidar Z, Karkabi K, Aizenbud D (2015) Smoking cessation-related weight gain–beneficial effects on muscle mass, strength and bone health. Addiction 110(2):326–335

    PubMed  Google Scholar 

  84. Thorin MH, Wihlborg A, Akesson K, Gerdhem P (2016) Smoking, smoking cessation, and fracture risk in elderly women followed for 10 years. Osteoporos Int 27(1):249–255

    CAS  PubMed  Google Scholar 

  85. Marinucci L, Balloni S, Fettucciari K, Bodo M, Talesa VN, Antognelli C (2018) Nicotine induces apoptosis in human osteoblasts via a novel mechanism driven by H 2 O 2 and entailing Glyoxalase 1-dependent MG-H1 accumulation leading to TG2-mediated NF-kB desensitization: Implication for smokers-related osteoporosis. Free Radic Biol Med 117(May 2017):6–17. Available from: https://doi.org/10.1016/j.freeradbiomed.2018.01.017

  86. Goodwin VA, Hall AJ, Rogers E, Bethel A (2016) Orthotics and taping in the management of vertebral fractures in people with osteoporosis: a systematic review. BMJ Open 6(5):1–7

    Google Scholar 

  87. Chang V, Holly LT (2014) Bracing for thoracolumbar fractures. Neurosurg Focus 37(1):E3

    PubMed  Google Scholar 

  88. Jin YZ, Lee JH (2016) Effect of brace to osteoporotic vertebral fracture: a meta-analysis. J Korean Med Sci 31(10):1641–1649

    PubMed  PubMed Central  Google Scholar 

  89. Prost S, Pesenti S, Fuentes S, Tropiano P, Blondel B (2021) Treatment of osteoporotic vertebral fractures. Orthop Traumatol Surg Res 107(1S):102779

    PubMed  Google Scholar 

  90. Watts NB, Adler RA, Bilezikian JP, Drake MT, Eastell R, Orwoll ES et al (2012) Osteoporosis in men: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 97(6):1802–22. Available from: https://pubmed.ncbi.nlm.nih.gov/22675062. Accessed October 2021

  91. Stoch SA, Saag KG, Greenwald M, Sebba AI, Cohen S, Verbruggen N et al (2009) Once-weekly oral alendronate 70 mg in patients with glucocorticoid-induced bone loss: a 12-month randomized, placebo-controlled clinical trial. J Rheumatol 36(8):1705–1714

    CAS  PubMed  Google Scholar 

  92. Eastell R, Rosen CJ, Black DM, Cheung AM, Murad MH, Shoback D (2019) Pharmacological management of osteoporosis in postmenopausal women: an Endocrine Society* clinical practice guideline. J Clin Endocrinol Metab 104(5):1595–622. Available from: https://pubmed.ncbi.nlm.nih.gov/30907953. Accessed October 2021

  93. Adler R, El-Hajj Fuleihan G, Bauer DC, Camacho PM, Clarke BL, Clines GA, Compston JE, Drake MT, Edwards BJ, Favus MJ, Greespan SL, McKinney R Jr, DE Pignolo RJS (2016) Managing osteoporosis patients after long-term bisphosphonate treatment. J Bone Min Res 31(1):16–35

    CAS  Google Scholar 

  94. Rodan GA, Fleisch HA (1996) Bisphosphonates: mechanisms of action. J Clin Invest 97(12):2692–2696

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Sato M, Grasser W, Endo N, Akins R, Simmons H, Thompson DD et al (1991) Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest 88(6):2095–105

  96. Yeap S, Fauzi A, Kong N, Halim A, Soehardy Z, Rahimah I (2008) A comparison of calcium, calcitriol, and alendronate in corticosteroid-treated premenopausal patients with systemic lupus erythematosus. J Rheumatol 35(12):2344–2347

    CAS  PubMed  Google Scholar 

  97. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA et al (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356(18):1809–22. Available from: https://pubmed.ncbi.nlm.nih.gov/17476007. Accessed October 2021

  98. Anastasilakis AD, Polyzos SA, Makras P, Aubry-Rozier B, Kaouri S, Lamy O (2017) Clinical features of 24 patients with rebound-associated vertebral fractures after denosumab discontinuation: systematic review and additional cases. J Bone Miner Res 32(6):1291–1296

    CAS  PubMed  Google Scholar 

  99. Symonds C, Kline G (2018) Warning of an increased risk of vertebral fracture after stopping denosumab. CMAJ 190(16):E485–E486

    PubMed  PubMed Central  Google Scholar 

  100. Bone HG, Bolognese MA, Yuen CK, Kendler DL, Wang H, Liu Y et al (2008) Effects of denosumab on bone mineral density and bone turnover in postmenopausal women. J Clin Endocrinol Metab 93(6):2149–2157

    CAS  PubMed  Google Scholar 

  101. Costa AG, Bilezikian JP (2015) How long to treat with denosumab. Curr Osteoporos Rep 13(6):415–420

    PubMed  Google Scholar 

  102. Dempster DW, Brown JP, Fahrleitner-Pammer A, Kendler D, Rizzo S, Valter I et al (2018) Effects of long-term denosumab on bone histomorphometry and mineralization in women with postmenopausal osteoporosis. J Clin Endocrinol Metab 103(7):2498–2509

    PubMed  PubMed Central  Google Scholar 

  103. Lamy O, Gonzalez-Rodriguez E, Stoll D, Hans D, Aubry-Rozier B (2017) Severe rebound-associated vertebral fractures after denosumab discontinuation: 9 clinical cases report. J Clin Endocrinol Metab 102(2):354–358

    PubMed  Google Scholar 

  104. Cummins S, Ferrari S, Eastell R, Gilchrist N, Beck Jensen J-E, McClung M et al (2018) Vertebral fractures after discontinuation of denosumab: a post hoc analysis of the randomized placebo-controlled FREEDOM trial and its extension. J Bone Miner Res 33(2):188–189

    Google Scholar 

  105. Tsourdi E, Langdahl B, Cohen-Solal M, Aubry-Rozier B, Eriksen EF, Guañabens N et al (2017) Discontinuation of Denosumab therapy for osteoporosis: a systematic review and position statement by ECTS. Bone 105:11–17

    PubMed  Google Scholar 

  106. Lukert BP (2020) Which drug next? Sequential therapy for osteoporosis. J Clin Endocrinol Metab 105(3):879–881

    Google Scholar 

  107. Freemantle N, Satram-Hoang S, Tang ET, Kaur P, MacArios D, Siddhanti S et al (2012) Final results of the DAPS (denosumab adherence preference satisfaction) study: a 24-month, randomized, crossover comparison with alendronate in postmenopausal women. Osteoporos Int 23(1):317–326

    CAS  PubMed  Google Scholar 

  108. Anastasilakis AD, Polyzos SA, Yavropoulou MP, Makras P (2020) Combination and sequential treatment in women with postmenopausal osteoporosis. Expert Opin Pharmacother [Internet]. 21(4):477–90. Available from: https://doi.org/10.1080/14656566.2020.1717468

  109. Santen RJ, Allred DC, Ardoin SP, Archer DF, Boyd N, Braunstein GD et al (2010) Postmenopausal hormone therapy: an endocrine society scientific statement. J Clin Endocrinol Metab 95(7):s1-66

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Shoback D, Rosen CJ, Black DM, Cheung AM, Murad MH, Eastell R (2020) Pharmacological management of osteoporosis in postmenopausal women: an Endocrine Society guideline update. J Clin Endocrinol Metab. 105(3)

  111. Miller PD, Chines AA, Christiansen C, Hoeck HC, Kendler DL, Lewiecki EM et al (2008) Effects of bazedoxifene on BMD and bone turnover in postmenopausal women: 2-yr results of a randomized, double-blind, placebo-, and active-controlled study. J Bone Miner Res 23(4):525–535

    CAS  PubMed  Google Scholar 

  112. Silverman SL, Chines AA, Kendler DL, Kung AWC, Teglbjaerg CS, Felsenberg D et al (2012) Sustained efficacy and safety of bazedoxifene in preventing fractures in postmenopausal women with osteoporosis: results of a 5-year, randomized, placebo-controlled study. Osteoporos Int 23(1):351–363

    CAS  PubMed  Google Scholar 

  113. Guañabens N, Moro-Álvarez MJ, Casado E, Blanch-Rubió J, Gómez-Alonso C, Díaz-Guerra GM et al (2019) The next step after anti-osteoporotic drug discontinuation: an up-to-date review of sequential treatment. Endocrine [Internet]. 64(3):441–55. Available from: https://doi.org/10.1007/s12020-019-01919-8

  114. Writing Group for the Women’s Health Initiative Investigators (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 288(3):321–33. Available from: https://doi.org/10.1001/jama.288.3.321

  115. Formoso G, Perrone E, Maltoni S, Balduzzi S, Wilkinson J, Basevi V et al (2016) Short-term and long-term effects of tibolone in postmenopausal women. Cochrane database Syst Rev. 10:CD008536

    PubMed  Google Scholar 

  116. Modelska K, Cummings S (2002) Tibolone for postmenopausal women: systematic review of randomized trials. J Clin Endocrinol Metab 87(1):16–23

    CAS  PubMed  Google Scholar 

  117. Cummings SR, Ettinger B, Delmas PD, Kenemans P, Stathopoulos V, Verweij P et al (2008) The effects of tibolone in older postmenopausal women. New Eng J Med 359(7):697–708

    CAS  PubMed  Google Scholar 

  118. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY et al (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344(19):1434–1441

    CAS  PubMed  Google Scholar 

  119. Pepe J, Body J-J, Hadji P, McCloskey E, Meier C, Obermayer-Pietsch B, et al (2020) Osteoporosis in premenopausal women: a clinical narrative review by the ECTS and the IOF. J Clin Endocrinol Metab [Internet]. 105(8):2487–506. Available from: https://doi.org/10.1210/clinem/dgaa306

  120. Buckley L, Guyatt G, Fink HA, Cannon M, Grossman J, Hansen KE et al (2017) 2017 American College of Rheumatology guideline for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Rheumatol (Hoboken, NJ) 69(8):1521–1537

    Google Scholar 

  121. Gilsenan A, Midkiff K, Harris D, Kellier-Steele N, McSorley D, Andrews EB (2021) Teriparatide did not increase adult osteosarcoma incidence in a 15-year US postmarketing surveillance study. J Bone Miner Res 36(2):244–251

    PubMed  Google Scholar 

  122. Licata AA (2005) Osteoporosis, teriparatide, and dosing of calcium and vitamin D. Vol. 352, The New England journal of medicine. United States; p. 1930–1.

  123. Geusens P, Marin F, Kendler DL, Russo LA, Zerbini CA, Minisola S et al (2018) Effects of teriparatide compared with risedronate on the risk of fractures in subgroups of postmenopausal women with severe osteoporosis: the VERO trial. J Bone Miner Res 33(5):783–794

    CAS  PubMed  Google Scholar 

  124. Cosman F, Nieves JW, Dempster DW (2017) Treatment sequence matters: anabolic and antiresorptive therapy for osteoporosis. J Bone Miner Res 32(2):198–202. Available from: https://pubmed.ncbi.nlm.nih.gov/27925287. Accessed October 2021

  125. Harslof T, Langdahl BL (2016) New horizons in osteoporosis therapies. Curr Opin Pharmacol 28:38–42

    PubMed  Google Scholar 

  126. Leder BZ (2017) Parathyroid hormone and parathyroid hormone-related protein analogs in osteoporosis therapy. Curr Osteoporos Rep 15(2):110–119

    PubMed  PubMed Central  Google Scholar 

  127. Bone HG, Cosman F, Miller PD, Williams GC, Hattersley G, Hu MY et al (2018) ACTIVExtend: 24 months of alendronate after 18 months of abaloparatide or placebo for postmenopausal osteoporosis. J Clin Endocrinol Metab 103(8):2949–2957

    PubMed  PubMed Central  Google Scholar 

  128. Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375(16):1532–1543

    CAS  PubMed  Google Scholar 

  129. U.S. Food and Drug Administration (2019) Romosozumab FDA label [Internet]. 2019. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761062s000lbl.pdf. Accessed October 2021

  130. McClung M, Grauer A, Boonen S, Bolognese M, Brown J, Diez-Perez A et al (2014) Romosozumab in postmenopausal women with low bone mineral density. New Eng J Med 370(5):412–420

    CAS  PubMed  Google Scholar 

  131. Confavreux CB, Paccou J, David C, Mehsen N, Leboime A, Thomas T (2010) Defining treatment failure in severe osteoporosis. JT Bone Spine 77(Suppl 2):S128–32. Available from: https://pubmed.ncbi.nlm.nih.gov/21211750. Accessed October 2021

  132. Fleet JC, Schoch RD (2010) Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors. Crit Rev Clin Lab Sci 47(4):181–95. Available from: https://pubmed.ncbi.nlm.nih.gov/21182397. Accessed October 2021

  133. Compston J, Cooper A, Cooper C, Gittoes N, Gregson C, Harvey N, et al (2017) UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos. 12(1)

  134. Kanis J, McCloskey E, Johansson H, Cooper C, Rizzoli R, Reginster J (2013) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 24(1):23–57

    CAS  PubMed  Google Scholar 

  135. Pilz S, Zittermann A, Trummer C, Theiler-Schwetz V, Lerchbaum E, Keppel MH, et al (2019) Vitamin D testing and treatment: a narrative review of current evidence. Endocr Connect. R27–43

  136. Narvaez J, Maldonado G, Guerrero R, Messina OD, Rios C (2020) Vitamin D megadose: definition, efficacy in bone metabolism, risk of falls and fractures. Open access Rheumatol Res Rev 12:105–115

    CAS  Google Scholar 

  137. Bischoff-Ferrari HA, Dawson-Hughes B, John Orav E, Staehelin HB, Meyer OW, Theiler R et al (2016) Monthly high-dose Vitamin D treatment for the prevention of functional decline a randomized clinical trial. JAMA Intern Med 176(2):175–183

    PubMed  Google Scholar 

  138. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP et al (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96(7):1911–1930

    CAS  PubMed  Google Scholar 

  139. Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D et al (2010) Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA - J Am Med Assoc 303(18):1815–1822

    CAS  Google Scholar 

  140. Liao EY, Zhang ZL, Xia WB, Lin H, Cheng Q, Wang L et al (2018) Calcifediol (25-hydroxyvitamin D) improvement and calcium-phosphate metabolism of alendronate sodium/vitamin D 3 combination in Chinese women with postmenopausal osteoporosis: a post hoc efficacy analysis and safety reappraisal. BMC Musculoskelet Disord 19(1):1–8

    Google Scholar 

  141. Bilezikian JP, Morishima A, Bell J, Grumbach MM (1998) Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N Engl J Med 339(9):599–603

    CAS  PubMed  Google Scholar 

  142. Carani C, Qin K, Simoni M, Faustini-Fustini M, Serpente S, Boyd J et al (1997) Effect of testosterone and estradiol in a man with aromatase deficiency. N Engl J Med 337(2):91–95

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: Carlos Rios, Genessis Maldonado, Mario Moreno

Acquisition of data: Genessis Maldonado, Carlos Rios, and Mario Moreno

Analysis and interpretation of data: Carlos Rios, Genessis Maldonado, Mario Moreno, Daniel Osvaldo Messina, Jose Lsuis Neyro, and Daniel Fernández

Drafting of manuscript: Genessis Maldonado, Carlos Rios, Mario Moreno, Roberto Guerrero

Critical revision: Carlos Rios, Mario Moreno, Daniel Osvaldo Messina, Jose Luis Neyro

Experts’ opinion: Carlos Ríos, Sara Vargas, José González, Claudia Vera, Andrés Zuñiga, José Martínez, Mayra Castillo, Raúl Jervis, Rosa Ventura, Sergio Guevara, Gabriela Torres, Franklín Uguña, Mario Moreno

Corresponding author

Correspondence to Genessis Maldonado.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rios, C., Maldonado, G., Vargas, S. et al. First Ecuadorian statement consensus for the evaluation and treatment of osteoporosis. Arch Osteoporos 18, 81 (2023). https://doi.org/10.1007/s11657-023-01263-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-023-01263-5

Keywords

Navigation