Skip to main content

Advertisement

Log in

Breeding and genetics of disease resistance in temperate fruit trees: challenges and new opportunities

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Climate change, large monocultures of disease-susceptible cultivars, overuse of pesticides, and the emergence of new pathogens or pathogenic strains causing economic losses are all major threats to our environment, health, food, and nutritional supply. Temperate tree fruit crops belonging to the Rosaceae family are the most economically important and widely grown fruit crops. These long-lived crops are under attack from many different pathogens, incurring major economic losses. Multiple chemical sprays to control various diseases annually is a common practice, resulting in significant input costs, as well as environmental and health concerns. Breeding for disease resistance has been undertaken primarily in pome fruit crops (apples and pears) for a few fungal and bacterial diseases, and to a lesser extent in some stone fruit crops. These breeding efforts have taken multiple decades due to the biological constraints and complex genetics of these tree fruit crops. Over the past couple of decades, major advances have been made in genetic and physical mapping, genomics, biotechnology, genome sequencing, and phenomics, along with accumulation of large germplasm collections in repositories. These valuable resources offer opportunities to make significant advances in greatly reducing the time needed to either develop new cultivars or modify existing economic cultivars for enhanced resistance to multiple diseases. This review will cover current knowledge, challenges, and opportunities in breeding for disease resistance in temperate tree fruit crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe K, Saito T, Terai O, Sato Y, Kotobuki K (2008) Genotypic difference for the susceptibility of Japanese, Chinese and European pears to Venturia nashicola, the cause of scab on Asian pears. Plant Breeding 127(4):407–412

    Article  Google Scholar 

  • Aldwinckle HS, Lamb RC, Gustafson (1977) Nature and inheritance of resistance to Gymnosporangium juniperi-virginianae in apple cultivars. Phytopathology 67:259–266

    Article  Google Scholar 

  • Andersen KL, Sebolt AM, Sundin GW, Iezzoni AF (2017) Assessment of the inheritance of resistance and tolerance in cherry (Prunus sp.) to Blumeriella jaapii, the causal agent of cherry leaf spot. Plant Pathol 67:682–691

    Article  Google Scholar 

  • Aranzana MJ, Decroocq V, Dirlewanger E et al (2019) Prunus genetics and applications after de novo genome sequencing: achievements and prospects. Hortic Res 6:58. https://doi.org/10.1038/s41438-019-0140-8

    Article  Google Scholar 

  • Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19(1):52–61

    Article  CAS  Google Scholar 

  • Barba M, Ilardi V, Pasquini G (2015) Control of pome and stone fruit virus diseases. Adv Virus Res 91:47–83. https://doi.org/10.1016/bs.aivir.2014.11.001

    Article  CAS  Google Scholar 

  • Baró-Montel N, Eduardo I, Usall J, Casals C, Arús P, Teixidó N et al (2019) Exploring sources of resistance to brown rot in an interspecific almond × peach population. J Sci Food Agric 99:4105–4113. https://doi.org/10.1002/jsfa.9640

    Article  CAS  Google Scholar 

  • Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D (2020) Plant pan-genomes are the new reference. Nat Plants 6(8):914–920

    Article  Google Scholar 

  • Beckerman J, Chatfield J, Draper E (2009) A 33-year evaluation of resistance and pathogenicity in the apple scab–crabapples pathosystem. HortScience 44:599–608

    Article  Google Scholar 

  • Bell RL (2019) Genetics, genomics, and breeding for fire blight resistance in pear. In: Korban SS (ed) The pear genome. Springer-Nature Publ, Cham, pp 243–264

    Chapter  Google Scholar 

  • Biscarini F, Nazzicari N, Bink M, Arús P, Aranzana MJ, Verde I et al (2017) Genome-enabled predictions for fruit weight and quality from repeated records in European peach progenies. BMC Genomics 18(1):1–15

    Article  Google Scholar 

  • Bokszczanin K, Dondini L, Przybyla AA (2009) First report on the presence of fire blight resistance in linkage group 11 of Pyrus ussuriensis Maxim. J Appl Genet 50(2):99–104

    Article  CAS  Google Scholar 

  • Bourguiba H, Scotti I, Sauvage C, Zhebentyayeva T, Ledbetter C, Krška B, Remay A, D’Onofrio C, Iketani H, Christen D, Krichen L, Trifi-Farah N, Liu W, Roch G, Audergon J-M (2020) Genetic structure of a worldwide germplasm collection of Prunus armeniaca L. reveals three major diffusion routes for varieties coming from the species’ center of origin. Front Plant Sci 11:638. https://doi.org/10.3389/fpls.2020.00638

    Article  Google Scholar 

  • Bouvier L, Bourcy M, Boulay M, Marie Tellier M, Guérif P, Denancé C, Durel C-E, Lespinasse Y (2012) A new pear scab resistance gene Rvp1 from the European pear cultivar ‘Navara’ maps in a genomic region syntenic to an apple scab resistance gene cluster on linkage group 2. Tree Genet Genomes 8:53–60. https://doi.org/10.1007/s11295-011-0419-x

    Article  Google Scholar 

  • Brewer L, Volz R (2019) Genetics and breeding of pear. In: Korban SS (ed) The pear genome. Springer Nature, Switzerland

    Google Scholar 

  • Bus VGM, Bassett HCM, Bowatte D, Chagné D, Ranatunga CA, Ulluwishewa D, Wiedow C, Gardiner SE (2010) Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated Mildew Immune Selection. Tree Genet Genomes 6:477–487

    Article  Google Scholar 

  • Bus VGM, Rikkerink EH, Caffier V, Durel C-E, Plummer KM (2011) Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Annu Rev Phytopathol 49:391–413

    Article  CAS  Google Scholar 

  • Cappa EP, El-Kassaby YA, Muñoz F et al (2017) Improving accuracy of breeding values by incorporating genomic information in spatial-competition mixed models. Mol Breed 37:125. https://doi.org/10.1007/s11032-017-0725-6

    Article  Google Scholar 

  • Cappai F, Franceschi P, Ciriani A, Collina M, Dondini L (2018) QTLs for susceptibility to Stemphylium vesicarium in pear. Mol Breeding 38(3):1–11

    Article  Google Scholar 

  • Celton J-M, Bianco L, Linsmith G, Balzerque S, Troggio M (2021) The apple genome and epignome. In: Korban SS (ed) The apple genome. Springer-Nature Publ, Cham, pp 169–187

    Chapter  Google Scholar 

  • Charrier A, Vergne E, Dousset N, Richer A, Petiteau A, Chevreau E (2019) Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system. Front Plant Sci 10:40

    Article  Google Scholar 

  • Chen H, Korban SS (1987) Genetic variability and the inheritance of resistance to cedar-apple rust in apple. Plant Pathol 36:168–174

    Article  Google Scholar 

  • Chen YF, Xia Y (2021) Structural profiling of bacterial effectors reveals enrichment of host-interacting domains and motifs. Front Mol Biosci 8:626600. https://doi.org/10.3389/fmolb.2021.626600

    Article  CAS  Google Scholar 

  • Chen F, Pruett-Miller SM, Davis GD (2015) Gene editing using ssODNs with engineered endonucleases. Methods Mol Biol 1239:251–265

    Article  CAS  Google Scholar 

  • Cho KH, Shin IS, Kim KT, Suh EJ, Hong SS, Lee HJ (2009) Development of AFLP and CAPS markers linked to the scab resistance gene, Rvn2, in an inter-specific hybrid pear (Pyrus spp.). J Hortic Sci Biotechnol 84(6):619–24

    Article  CAS  Google Scholar 

  • Cirilli M, Baccichet I, Chiozzotto R et al (2021) Genetic and phenotypic analyses reveal major quantitative loci associated to fruit size and shape traits in a non-flat peach collection (P. persica L. Batsch). Hortic Res 8:232. https://doi.org/10.1038/s41438-021-00661-5

    Article  CAS  Google Scholar 

  • Crassweller R (2018) Apple cultivars: scab resistance selections.https://extension.psu.edu/apple-cultivars-scab-resistance-selections

  • Crosby JA, Janick J, Pecknold PC, Korban SS, O’Connor PA, Ries SM, Goffreda J, Voordeckers A (1992) Breeding apples for scab resistance: 1945–1990. Fruit Var J 46(3):145–166

    Google Scholar 

  • Cusin R, Revers LF, dos Santos MF (2017) New biotechnological tools to accelerate scab-resistance trait transfer. Genet Mol Biol 40(1 Suppl):305–311. https://doi.org/10.1590/1678-4685-GMB-2016-0043

    Article  CAS  Google Scholar 

  • Dabov S (1983) Inheritance of powdery mildew resistance in the peach. IV. Data supporting the hypothesis about the main role of 2 loci controlling the reaction to the pathogen. Genet Sel 16:349–355

    Google Scholar 

  • Dayton DF (1977) Genetic immunity to apple mildew incited by Podosphaera leucotricha. HortSci 12:225–226

    Article  Google Scholar 

  • Dayton D, Williams E (1970) Additional allelic genes in Malus for scab resistance of two reaction types. J Am Soc Hortic Sci 95:735–736

    Article  Google Scholar 

  • Desnoues E, Norelli JL, Aldwinckle HS, Wisniewski ME, Evans KM, Malnoy M, Khan A (2018) Identification of novel strain-specific and environment-dependent minor QTLs linked to fire blight resistance in apples. Plant Mol Biol Report 36(2):247–256

    Article  CAS  Google Scholar 

  • Dickson EE, Arumuganathan K, Kresovich S, Doyle JJ (1992) Nuclear DNA content variation within the Rosaceae. Am J Bot 79:1081–1086. https://doi.org/10.2307/2444917

    Article  Google Scholar 

  • Dirlewanger E, Pascal T, Zuger C, Kervella J (1996) Analysis of molecular markers associated with powdery mildew resistance genes in peach (Prunus persica (L.) Batsch) × Prunus davidiana hybrids. Theor Appl Genet 93:909–919

    Article  CAS  Google Scholar 

  • Dondini L, Pierantoni L, Gaiotti F, Tartarini S, Sassi C, Sansavini S (2005) Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map. Mol Breed 14:407–418

    Article  Google Scholar 

  • Dunemann F, Peil A, Urbanietz A, Garcia-Libreros T (2007) Mapping of the apple powdery mildew resistance gene Pl1 and its genetic association with an NBS-LRR candidate resistance gene. Plant Breed 126:476–481. https://doi.org/10.1111/j.1439-0523.2007.01415.x

    Article  CAS  Google Scholar 

  • Durel C, van de Weg WE, Venisse J, Parisi L (2000) Localisation of a major gene for apple scab resistance on the European genetic map of the Prima × Fiesta cross. IOBC/WPRS Bull 23:245–248

    Google Scholar 

  • Durel CE, Denance C, Brisset MN (2009) Two distinct major QTL for resistance to fire blight co-localize on linkage group 12 in apple genotypes ‘Evereste’ and Malus floribunda clone 821. Genome 52:139–147. https://doi.org/10.1139/G08-111

    Article  CAS  Google Scholar 

  • El-Dien GO, Ratcliffe B, Klápště J, Porth I, Chen C, El-Kassaby YA (2016) Implementation of the realized genomic relationship matrix to open-pollinated white spruce family testing for disentangling additive from nonadditive genetic effects G3: genes, genomes. Genetics 6(3):743–53

    Google Scholar 

  • Emeriewen OF, Richter K, Piazza S, Micheletti D, Broggini GAL, Berner T et al (2018) Towards map-based cloning of FB_Mfu10: identification of a receptor-like kinase candidate gene underlying the Malus fusca fire blight resistance locus on linkage group 10. Mol Breed 38:106. https://doi.org/10.1007/s11032-018-0863-5

    Article  CAS  Google Scholar 

  • Emeriewen OF, Richter K, Berner T, Keilwagen J, Schnable PS, Malnoy M et al (2020) Construction of a dense genetic map of the Malus fusca fire blight resistant accession MAL0045 using tunable genotyping-by-sequencing SNPs and microsatellites. Sci Rep 10:16358. https://doi.org/10.1038/s41598-020-73393-6

    Article  CAS  Google Scholar 

  • Emeriewen OF, Richter K, Flachowsky H, Malnoy M, Peil A (2021) Genetic analysis and fine mapping of the fire blight resistance locus of Malus × arnoldiana on linkage group 12 reveal first candidate genes. Front Plant Sci 12:667133. https://doi.org/10.3389/fpls.2021.667133

    Article  Google Scholar 

  • Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic research 14(5):703–12

    Article  CAS  Google Scholar 

  • Erdin N, Tartarini S, Broggini G, Gennari F, Sansavini S, Gessler C, Patocchi A (2006) Mapping of the apple scab-resistance gene Vb. Genome 49:1238–1245

    Article  CAS  Google Scholar 

  • Fahrentrapp J, Broggini GAL, Kellerhals M, Peil A, Richter K, Zini E et al (2013) A candidate gene for fire blight resistance in Malus × robusta 5 is coding for a CC-NBS-LRR. Tree Genet Genomes 9:237–251. https://doi.org/10.1007/s11295-012-0550-3

    Article  Google Scholar 

  • Fazio G (2021) Genetics, breeding and genomics of apple rootstocks. In: Korban SS (ed) The apple genome. Springer-Nature Publ, Cham, pp 105–130

    Chapter  Google Scholar 

  • Fazio G, Aldwinckle HS, Volk GM, Richards CM, Janisiewicz WJ, Forsline PL (2009) Progress in evaluating Malus siversii for disease resistance and horticultural traits. Acta Hort 814:59–66

    Article  Google Scholar 

  • Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus× domestica Borkh.). Plant Breeding 126(2):137–45

    Article  CAS  Google Scholar 

  • Flachowsky H, Le Roux PM, Peil A, Patocchi A, Richter K, Hanke MV (2011) Application of a high-speed breeding technology to apple (Malus× domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytol 192(2):364–377

    Article  CAS  Google Scholar 

  • Flachowsky H, Tränkner C, Szankowski I, Waidmann S, Hanke MV, Treutter D, Fischer TC (2012) RNA-mediated gene silencing signals are not graft transmissible from the rootstock to the scion in greenhouse-grown apple plants Malus sp. Int J Mol Sci 13(8):9992–10009

    Article  CAS  Google Scholar 

  • Flor H (1955) Host-parasite interactions in flax rust-its genetics and other implications. Phytopathology 45:680–685

    Google Scholar 

  • Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003) QTLs for powdery mildew resistance in peach x Prunus davidiana crosses: consistency across generations and environments. Mol Breed 12:33–50

    Article  CAS  Google Scholar 

  • Franceschi DP, Dondini L (2019) Molecular mapping of major genes and QTLs in pear. In: Korban S (ed) The Pear Genome. Springer, Cham, pp 113–131. https://doi.org/10.1007/978-3-030-11048-2_6

    Chapter  Google Scholar 

  • Freiman A, Shlizerman L, Golobovitch S, Yablovitz Z, Korchinsky R, Cohen Y, Samach A, Chevreau E, Le Roux PM, Patocchi A, Flaishman MA (2012) Development of a transgenic early flowering pear (Pyrus communis L.) genotype by RNAi silencing of PcTFL1–1 and PcTFL1–2. Planta 235(6):1239–51

    Article  CAS  Google Scholar 

  • Fu W, da Silva Linge C, Gasic K (2021) Genome-wide association study of brown rot (Monilinia spp.) tolerance in peach. Front Plant Sci 12:635914. https://doi.org/10.3389/fpls.2021.635914

    Article  Google Scholar 

  • Galvis-Sanchez AC, Rocha A (2016) Bioactive compounds of apples and pears as health promoters. In: Silva LR, Silva B (eds) Natural bioactive compounds from fruits and vegetables as health promoters. Bentham Sci Publ, Sharjah, pp 98–109

    Chapter  Google Scholar 

  • Gemenet DC, Khan A (2017) Opportunities and challenges to implementing genomic selection in clonally propagated crops. In: Varshney R, Roorkiwal M, Sorrells M (eds) Genomic selection for crop improvement. Springer, Cham, pp 185–198

    Chapter  Google Scholar 

  • Ghislain M, Abel Byarugaba A, Magembe E, Njoroge A, Rivera C et al (2019) Stacking three late blight resistance genes from wild species directly into African highland potato varieties confers complete field resistance to local blight races. Plant Biotech J 17:1119–1129. https://doi.org/10.1111/pbi.13042

    Article  CAS  Google Scholar 

  • Ghosh S, Watson A, Gonzalez-Navarro OE, Ramirez-Gonzalez RH, Yanes L, Mendoza-Suárez M, Simmonds J, Wells R, Rayner T, Green P, Hafeez A (2018) Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protocols 13(12):2944–2963

    Article  CAS  Google Scholar 

  • Gradziel T (2012) Traditional genetics and breeding. In: Kole C, Abbott A (eds) Genetics, genomics and breeding of stone fruits. CRC Press, Boca Raton, pp 22–55

    Chapter  Google Scholar 

  • Hammerschlag FA (2000) Resistant responses of peach somaclone 122–1 to Xanthomonas campestris pv. pruni and to Pseudomonas syringae pv. syringae. HortScience 35:141–143

    Article  Google Scholar 

  • Han Y, Korban SS (2021) Genetic and physical mapping of the apple genome. In: Korban SS (ed) The apple genome. Springer Nature Publ, Switzerland, pp 131–168

    Chapter  Google Scholar 

  • Haywood V, Yu TS, Huang NC, Lucas WJ (2005) Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. Plant J 42(1):49–68

    Article  CAS  Google Scholar 

  • Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    Article  CAS  Google Scholar 

  • Hsu CY, Liu Y, Luthe DS, Yuceer C (2006) Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell 18(8):1846–1861

    Article  CAS  Google Scholar 

  • Hulin MT, Jackson RW, Harrison RJ, Mansfield JW (2020) Cherry picking by pseudomonads: after a century of research on canker, genomics provides insights into the evolution of pathogenicity towards stone fruits. Plant Pathol 9:962–978

    Article  Google Scholar 

  • Ito A, Saito T, Nishijima T, Moriguchi T (2014) Effect of extending the photoperiod with low-intensity red or far-red light on the timing of shoot elongation and flower-bud formation of 1-year-old Japanese pear (Pyrus pyrifolia). Tree Physiol 34(5):534–554

    Article  CAS  Google Scholar 

  • Iwata H, Hayashi T, Terakami S, Takada N, Sawamura Y, Yamamoto T (2013) Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia. Breed Sci 63(1):125–140

    Article  Google Scholar 

  • Jacobs TB, Martin GB (2016) High-throughput CRISPR vector construction and characterization of DNA modifications by generation of tomato hairy roots. J Visual Exp 110:e53843

    Google Scholar 

  • Jarolmasjed S, Sankaran S, Marzougui A, Kostick S, Si Y, Quirós Vargas JJ, Evans K (2019) High-throughput phenotyping of fire blight disease symptoms using sensing techniques in apple. Front Plant Sci 10:576

    Article  Google Scholar 

  • Kanchiswamy CN, Sargent DJ, Velasco R, Maffei ME, Malnoy M (2015) Looking forward to genetically edited fruit crops. Trends Biotechnol 33(2):62–64

    Article  Google Scholar 

  • Karayiannis I, Thomidis T, Tsaftaris A (2008) Inheritance of resistance to plum pox virus in apricot (Prunus armeniaca L.). Tree Genet Genomes 4:143–148

    Article  Google Scholar 

  • Khajuria YP, Kaul S, Wani AA, Dhar MK (2018) Genetics of resistance in apple against Venturia inaequalis (Wint.) Cke. Tree Genet Genomes 14:16. https://doi.org/10.1007/s11295-018-1226-4

    Article  Google Scholar 

  • Khan MA, Korban SS (2012) Association mapping in forest trees and fruit crops. J Exp Bot 63:4045–4060. https://doi.org/10.1093/jxb/ers105

    Article  CAS  Google Scholar 

  • Khan MA, Duffy B, Gessler C, Patocchi A (2006) QTL mapping of fire blight resistance in apple. Mol Breeding 17(4):299–306

    Article  Google Scholar 

  • Khan MA, Zhao Y, Korban SS (2013) Identification of genetic loci associated with fire blight resistance in Malus through combined use of QTL and association mapping. Physiol Plant 148:344–353. https://doi.org/10.1111/ppl.12068

    Article  CAS  Google Scholar 

  • Klocko AL, Ma C, Robertson S, Esfandiari E, Nilsson O, Strauss SH (2016) FT overexpression induces precocious flowering and normal reproductive development in Eucalyptus. Plant Biotechnol J 14(2):808–819

    Article  CAS  Google Scholar 

  • Knight RL, Alston FH (1968) Sources of field immunity to mildew (Podosphaera leucotricha) in apple. Can J Genet Cytol 10:294–298

    Article  Google Scholar 

  • Kotoda N (2021) Flowering and juvenility in apple. In: Korban SS (ed) The apple genome. Springer- Nature Publ, Cham, pp 227–246

    Chapter  Google Scholar 

  • Koutsos A, Riccadonna S, Ulaszewska MM, Franceschi P, Trošt K, Galvin A, Braune T, Fava F, Perenzoni D, Mattivi F, Tuohy KM, Lovegrove JA (2020) Two apples a day lower serum cholesterol and improve cardiometabolic biomarkers in mildly hypercholesterolemic adults: a randomized, controlled, crossover trial. Am J Clin Nutr 111:307–318. https://doi.org/10.1093/ajcn/nqz282

    Article  Google Scholar 

  • Kozma P, Nyéki J, Soltész M, Szabó Z, (2003) Floral biology, pollination and fertilisation in temperate zone fruit species and grape. Akadémiai Kiadò, Budapest, Hungary, pp 383–410

    Google Scholar 

  • Kumar S, Bink MC, Volz RK, Bus VG, Chagné D (2012) Towards genomic selection in apple (Malus× domestica Borkh.) breeding programmes: prospects, challenges and strategies. Tree Genet Genomes 8(1):1–14

    Article  Google Scholar 

  • Kumar S, Chagné D, Bink MC, Volz RK, Whitworth C, Carlisle C (2012) Genomic selection for fruit quality traits in apple (Malus × domestica Borkh.). PloS One 7(5):e36674

    Article  CAS  Google Scholar 

  • Kumar S, Kirk C, Deng CH, Shirtliff A, Wiedow C, Qin M et al (2019) Marker-trait associations and genomic predictions of interspecific pear (Pyrus) fruit characteristics. Sci Rep 9(1):1–10

    Google Scholar 

  • Laloi G, Vergne E, Durel C, Le Cam B, Caffier V (2017) Efficiency of pyramiding of three quantitative resistance loci to apple scab. Plant Pathol 66:412–422

    Article  CAS  Google Scholar 

  • Laurens F, Aranzana MJ, Arus P, Bassi D, Bonany J et al (2012) Review of fruit genetics and breeding programmes and a new European initiative to increase fruit breeding efficiency. Acta Hortic 929:95–102. https://doi.org/10.17660/ActaHortic.2012.929.12

    Article  Google Scholar 

  • Laurens F, Aranzana MJ, Arus P, Bassi D, Bink M, Bonany J et al (2018) An integrated approach for increasing breeding efficiency in apple and peach in Europe. Hortic Res 5(1):1–14

    Article  CAS  Google Scholar 

  • Le Roux PF, Christen D, Duffy B, Tartarini S, Dondini L, Yamamoto T, Nishitani C, Terakami S, Lespinasse Y, Kellerhals M, Patocchi A (2012) Redefinition of the map position and validation of a majorquantitative trait locus for fire blight resistance of the pear cultivar ‘HarrowSweet’ (Pyrus communis L.). Plant Breed 131:656–664

    Article  Google Scholar 

  • Lespinasse Y, Chevalier M, Durel CE, Guérif Ph, Tellier M, Denancé C, Belouin A, Robert P (2008) Pear breeding for scab and Psylla resistance. Acta Hort 800:475–481

    Article  Google Scholar 

  • Li X, Hao J, Yan X, Wang X, Feng J, Suo X (2017) Effects of two different apple dwarf stocks on juvenile phase of Fuji seedlings. Agric Sci Technol 18(12):2517–2519

    Google Scholar 

  • Li H, Huang CH, Ma H (2019) Whole-genome duplications in pear and apple. In: Korban SS (ed) The pear genome. Springer, Cham, pp 279–299

    Chapter  Google Scholar 

  • Li M, Xiao Y, Mount S, Liu Z (2021) An atlas of genomic resources for studying Rosaceae fruits and ornamentals. Front Plant Sci 12:644881. https://doi.org/10.3389/fpls.2021.644881

    Article  Google Scholar 

  • Liang G, Zhang H, Lou D, Yu D (2016) Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. Sci Rep 6(1):1–8

    CAS  Google Scholar 

  • Liang C, Wan T, Wu R, Zhao M, Zhao Y, Cai Y (2020) Resistance analysis of cherry rootstock ‘CDR-1’ (Prunus mahaleb) to crown gall disease. BMC Plant Biol 20:516. https://doi.org/10.1186/s12870-020-02673-0

    Article  CAS  Google Scholar 

  • Lichtenegger L, Neumüller M, Treutter D, Hartmann W (2010) The inheritance of the hypersensitivity resistance of European plum (Prunus domestica L.) against the Plum pox virus. Julius-Kühn-Archiv 427:327–329

    Google Scholar 

  • Luo F, Evans K, Norelli JL, Zhang Z (2020a) Peace C (2020a) Prospects for achieving durable disease resistance with elite fruit quality in apple breeding. Tree Genet Genomes 16:21. https://doi.org/10.1007/s11295-020-1414-x

    Article  Google Scholar 

  • Luo F, Norelli JL, Howard NP, Wisniewski M, Flachowsky H, Hanke MV, Peace C (2020b) Introgressing blue mold resistance into elite apple germplasm by rapid cycle breeding and foreground and background DNA-informed selection. Tree Genet Genomes 16(2):1–15

    Article  Google Scholar 

  • Malmberg MM, Spangenberg GC, Daetwyler HD, Cogan NOI (2019) Assessment of low-coverage nanopore long read sequencing for SNP genotyping in doubled haploid canola (Brassica napus L.). Sci Rep 9(1):1–12

    Article  CAS  Google Scholar 

  • Malnoy M, Martens S, Norelli JL, Barny MA, Sundin GW, Smits TH, Duffy B (2012) Fire blight: applied genomic insights of the pathogen and host. Annu Rev Phytopathol 50:475–494

    Article  CAS  Google Scholar 

  • Malnoy M, Viola R, Jung MH, Koo OJ, Kim S, Kim JS, Velasco R, Nagamangala Kanchiswamy C (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904

    Article  Google Scholar 

  • Marimon N, Luque J, Arús P, Eduardo I (2020) Fine mapping and identification of candidate genes for the peach powdery mildew resistance gene Vr3. Hortic Res 7:175. https://doi.org/10.1038/s41438-020-00396-9

    Article  CAS  Google Scholar 

  • Martínez-García PJ, Parfitt DE, Bostock RM, Fresnedo-Ramírez J, Vazquez-Lobo A, Ogundiwin EA et al (2013) Application of genomic and quantitative genetic tools to identify candidate resistance genes for brown rot resistance in peach. PLoS ONE 8:e78634. https://doi.org/10.1371/journal.pone.0078634

    Article  CAS  Google Scholar 

  • Meuwissen T, Goddard M (2010) The use of family relationships and linkage disequilibrium to impute phase and missing genotypes in up to whole-genome sequence density genotypic data. Genetics 185(4):1441–1449

    Article  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard M (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829

    Article  CAS  Google Scholar 

  • Michael TP, VanBuren R (2020) Building near-complete plant genomes. Current Opin Plant Biol 54:26–33

    Article  CAS  Google Scholar 

  • Minamikawa MF, Takada N, Terakami S, Saito T, Onogi A, Kajiya-Kanegae H et al (2018) Genome-wide association study and genomic prediction using parental and breeding populations of Japanese pear (Pyrus pyrifolia Nakai). Sci Rep 8(1):1–12

    Article  Google Scholar 

  • Montanari S, Perchepied L, Renault D, Frijters L, Velasco R, Horner M, Gardiner SE, Chagné D, Bus VGM, Durel C, Malnoy M (2016) A QTL detected in an interspecific pear population confers stable fireblight resistance across different environments and genetic backgrounds. Mol Breed 36:47

    Article  Google Scholar 

  • Muranty H, Troggio M, Sadok IB, Al Rifaï M, Auwerkerken A, Banchi E et al (2015) Accuracy and responses of genomic selection on key traits in apple breeding. Hortic Res 2(1):1–12

    Article  Google Scholar 

  • Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P (2018) Navigating complexity to breed disease-resistant crops. Nat Rev Genet 19:21–33

    Article  CAS  Google Scholar 

  • Nishitani C, Hirai N, Komori S, Wada M, Okada K, Osakabe K, Yamamoto T, Osakabe Y (2016) Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep 6:31481. https://doi.org/10.1038/srep31481

    Article  CAS  Google Scholar 

  • Nishitani C, Osakabe K, Osakabe Y (2021) Genome editing in apple. In: Korban SS (ed) The apple genome. Springer-Nature Publ, Cham, Switzerland, pp 213–226

    Chapter  Google Scholar 

  • Norelli JL, Jones AL, Aldwinckle HS (2003) Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple. Plant Dis 87(7):756–765

    Article  Google Scholar 

  • Okie WR, Bacon T, Bassi D (2008) Fresh market cultivar development. In: Layne DR, Bassi D (eds) The peach: botany, production and uses. CABI Publ, Cambridge, pp 139–174

    Chapter  Google Scholar 

  • Osakabe Y, Liang Z, Ren C, Nishitani C, Osakabe K, Wada M et al (2018) CRISPR–Cas9-mediated genome editing in apple and grapevine. Nat Protoc 13(12):2844–2863

    Article  CAS  Google Scholar 

  • Pacheco I, Bassi D, Eduardo I, Ciacciulli A, Pirona R, Rossini L, Vecchietti A (2014) QTL mapping for brown rot (Monilinia fructigena) resistance in an intraspecific peach (Prunus persica L. Batsch) F1 progeny. Tree Genet Genomes 10(5):1223–1242

    Article  Google Scholar 

  • Papp D, Singh J, Gadoury D, Khan A (2020a) New North American isolates of Venturia inaequalis can overcome apple scab resistance of Malus floribunda 821. Plant Dis 104(3):649–655

    Article  CAS  Google Scholar 

  • Papp D, Gao L, Thapa R, Olmstead D, Khan A (2020b) Field apple scab susceptibility of a diverse Malus germplasm collection identifies potential sources of resistance for apple breeding. CABI Agric Biosci 1:16. https://doi.org/10.1186/s43170-020-00017-4

    Article  Google Scholar 

  • Parisi L, Lespinasse Y, Guillaumes J, Krüger J (1993) A new race of Venturia inaequalis virulent to apples with resistance due to the Vf gene. Phytopathology 83:533–537

    Article  Google Scholar 

  • Parravicini G, Gessler C, Denance C, Lasserre-Zuber P, Vergne E, Brisset M-N, Patocchi A et al (2011) Identification of serine/threonine kinase and nucleotide-binding site–leucine-rich repeat (NBS-LRR) genes in the fire blight resistance quantitative trait locus of apple cultivar ‘Evereste.’ Mol Plant Pathol 12:493–505

    Article  CAS  Google Scholar 

  • Pascal T, Aberlenc R, Confolent C, Hoerter M, Lecerf E, Tuéro C, Lambert P (2017) Mapping of new resistance (Vr2, Rm1) and ornamental (Di2, pl) Mendelian trait loci in peach. Euphytica 213:132. https://doi.org/10.1007/s10681-017-1921-5

    Article  CAS  Google Scholar 

  • Patocchi A, Frei A, Frey JE, Kellerhals M (2009) Towards improvement of marker assisted selection of apple scab resistant cultivars: Venturia inaequalis virulence surveys and standardization of molecular marker alleles associated with resistance genes. Mol Breed 24(4):337

    Article  CAS  Google Scholar 

  • Patocchi A, Wehrli A, Dubuis P-H, Auwerkerken A, Leida C, Cipriani G, Passey T, Staples M, Didelot F, Philion V, Peil A, Laszakovits H, Rühmer T, Boeck K, Baniulis D, Strasser K, Vávra R, Guerra W, Masny S, Ruess F, Le Berre F, Nybom H, Tartarini S, Spornberger A, Pikunova A, Bus V (2020) Ten years of VINQUEST: first insight for breeding new apple cultivars with durable apple scab resistance. Plant Dis 104(8):2074–2081

    Article  Google Scholar 

  • Patzak J, Paprštein F, Henychová A (2011) Identification of apple scab and powdery mildew resistance genes in Czech apple (Malus × domestica) genetic resources by PCR molecular markers. Czech J Genet Plant Breed 47(4):156–165

    Article  CAS  Google Scholar 

  • Peace C (2017) DNA-informed breeding of rosaceous crops: promises, progress and prospects. Hortic Res 4:17006. https://doi.org/10.1038/hortres.2017.6

    Article  Google Scholar 

  • Peace CP, Bianco L, Troggio M, Van de Weg E, Howard NP, Cornille A, Durel CE, Myles S, Migicovsky Z, Schaffer RJ, Costes E (2019) Apple whole genome sequences: recent advances and new prospects. Hortic Res 6(1):1–2

    Article  Google Scholar 

  • Peil A, Hanke M, Flachowsky H, Garcia-Libreros T, Horner M, Bus V, Richter K, Celton J, Gardiner S (2008) Confirmation of the fire blight QTL of Malus × robusta 5 on linkage group 3. Acta Hortic 793:297–303

    Article  CAS  Google Scholar 

  • Peil A, Emeriewen OF, Khan A, Kostick S, Malnoy M (2021) Status of fire blight resistance breeding in Malus. J Plant Pathol 103(1):3–12

    Article  Google Scholar 

  • Peña L, Martín-Trillo M, Juárez J, Pina JA, Navarro L, Martínez-Zapater JM (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotechnol 19(3):263–267

    Article  Google Scholar 

  • Perchepied L, Leforestier D, Ravon E, Guérif P, Denancé C, Tellier M, Terakami S, Yamamoto T, Chevalier M, Lespinasse Y, Durel CE (2015) Genetic mapping and pyramiding of two new pear scab resistance QTLs. Mol Breeding 35(10):1–4

    Article  Google Scholar 

  • Pierantoni L, Dondini L, Cho KH, Shin IS, Gennari F, Chiodini R, Tartarini S, Kang SJ, Sansavini S (2007) Pear scab resistance QTLs via a European pear (Pyrus communis) linkage map. Tree Genet Genomes 3(4):311–317

    Article  Google Scholar 

  • Pieruschka R, Schurr U (2019) Plant phenotyping: past present and future. Plant Phenom. https://doi.org/10.34133/2019/7507131

    Article  Google Scholar 

  • Podwyszyńska M, Marasek-Ciołakowska A (2021) Ploidy, genome size, and cytogenetics of apple. In: Korban SS (ed) The apple genome. Springer, Cham, pp 47–71

    Chapter  Google Scholar 

  • Pompili V, Dalla Costa L, Piazza S, Pindo M, Malnoy M (2020) Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system. Plant Biotech J 18(3):845–858

    Article  CAS  Google Scholar 

  • Putterill J, Varkonyi-Gasic E (2016) FT and florigen long-distance flowering control in plants. Curr Opin Plant Biol 33:77–82

    Article  CAS  Google Scholar 

  • Putterill J, Laurie R, Macknight R (2004) It’s time to flower: the genetic control of flowering time. BioEssays 26(4):363–373

    Article  CAS  Google Scholar 

  • Qiao Q, Edgerb PP, Xuec L, Qiong L, Lu J et al (2021) Evolutionary history and pan-genome dynamics of strawberry (Fragaria spp.). Proc Natl Acad Sci USA 118(45):e21054311. https://doi.org/10.1073/pnas.21054311

    Article  Google Scholar 

  • Ratcliffe B, El-Dien OG, Cappa EP, Porth I, Klápště J, Chen C, El-Kassaby YA (2017) Single-step BLUP with varying genotyping effort in open-pollinated Picea glauca. G3: Genes. Genomes. Genetics 7(3):935–42

    Google Scholar 

  • Raymond O, Gouzy J, Just J et al (2018) The Rosa genome provides new insights into the domestication of modern roses. Nat Genet 50:772–777. https://doi.org/10.1038/s41588-018-0110-3

    Article  CAS  Google Scholar 

  • Roberts A, Crute I (1994) Apple scab resistance from Malus floribunda 821 (Vf) is rendered ineffective by isolates of Venturia inaequalis from Malus floribunda. Norweg J Agric Sci Suppl 17:403–406

    Google Scholar 

  • Rodamilans B, San León D, Mühlberger L, Candresse T, Neumüller M, Oliveros JC et al (2014) Transcriptomic analysis of Prunus domestica undergoing hypersensitive response to Plum Pox Virus infection. PLoS ONE 9(6):e100477. https://doi.org/10.1371/journal.pone.0100477

    Article  Google Scholar 

  • Roux F, Touzet P, Cuguen J, Le Corre V (2006) How to be early flowering: an evolutionary perspective. Trends Plant Sci 11(8):375–381

    Article  CAS  Google Scholar 

  • Ru S, Main D, Evans K, Peace C (2015) Current applications, challenges, and perspectives of marker-assisted seedling selection in Rosaceae tree fruit breeding. Tree Genet Genomes 11:8. https://doi.org/10.1007/s11295-015-0834-5

    Article  Google Scholar 

  • Russo NL, Burr TJ, Breth DI, Aldwinckle HS (2008) Isolation of streptomycin-resistant isolates of Erwinia amylovora in New York. Plant Dis 92(5):714–718

    Article  CAS  Google Scholar 

  • Sakurai K, Brown SK, Weeden N (2000) Self-incompatibility alleles of apple cultivars and advanced selections. HortSci 35(1):116–119

    Article  CAS  Google Scholar 

  • Schlathölter I, Jänsch M, Flachowsky H, Broggini GAL, Hanke MV, Patocchi A (2018) Generation of advanced fire blight-resistant apple (Malus × domestica) selections of the fifth generation within 7 years of applying the early flowering approach. Planta 247(6):1475–1488. https://doi.org/10.1007/s00425-018-2876-z

    Article  CAS  Google Scholar 

  • Schoofs H, Delalieux S, Deckers T, Bylemans D (2020) Fire Blight monitoring in pear orchards by unmanned airborne vehicles (UAV) systems carrying spectral sensors. Agronomy 10(5):615

    Article  Google Scholar 

  • Scorza R, Callahan A, Dardick C, Ravelnonandro M, Polak J et al (2013) Genetic engineering of Plum pox virus resistance: ‘HoneySweet’ plum—from concept to product. Plant Cell Tiss Organ Cult 115:1–12. https://doi.org/10.1007/s11240-013-0339-6

    Article  CAS  Google Scholar 

  • Shakoor N, Lee S, Mockler TC (2017) High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr Opin Plant Biol 38:184–192

    Article  Google Scholar 

  • Shulaev V, Korban SS, Sosinski B, Abbott AG, Aldwinckle H, Folta KM, Iezzoni A, Main D, Arus P, Dandekar A, Lewers K, Brown SK, Davis TM, Gardiner SE, Veilleux RE (2008) Multiple models for Rosaceae genomics. Plant Physiol 147:985–1003

    Article  CAS  Google Scholar 

  • Silva KJP, Singh J, Bednarek R, Fei Z (2019) Khan A (2019) Differential gene regulatory pathways and co-expression networks associated with fire blight infection in apple (Malus × domestica). Hortic Res 6:35. https://doi.org/10.1038/s41438-019-0120-z

    Article  CAS  Google Scholar 

  • Singh D, Wang X, Kumar U, Gao L, Noor M, Imtiaz M, Singh RP, Poland J (2019) High-throughput phenotyping enabled genetic dissection of crop lodging in wheat. Front Plant Sci 10:394

    Article  Google Scholar 

  • Singh J, Sun M, Cannon SB, Wu J, Khan A (2021) An accumulation of genetic variation and selection across the disease-related genes during apple domestication. Tree Genet Genomes 17(3):1–11

    Article  Google Scholar 

  • Socquet-Juglard D, Patocchi A, Pothier JF, Christen D, Duffy B (2012) Evaluation of Xanthomonas arboricola pv pruni inoculation techniques to screen for bacterial spot resistance in peach and apricot. J Plant Pathol 94(1, Supplement):S1.91-S1.96

    Google Scholar 

  • Socquet-Juglard D, Duffy B, Pothier JF, Christen D, Gessler C, Patocchi A (2013) Identification of a major QTL for Xanthomonas arboricola pv.pruni resistance in apricot. Tree Genet Genomes 9:409–421

    Article  Google Scholar 

  • Soriano J, Joshi S, Van Kaauwen M, Noordijk Y, Groenwold R, Henken B, van de Weg WE, Schouten H (2009) Identification and mapping of the novel apple scab resistance gene Vd3. Tree Genet Genomes 5:475–482

    Article  Google Scholar 

  • Soriano JM, Domingo ML, Zuriaga E, Romero C, Zhebentyayeva T et al (2012) Identification of simple sequence repeat markers tightly linked to plum pox virus resistance in apricot. Mol Breed 30:1017–1026. https://doi.org/10.1007/s11032-011-9685-4

    Article  CAS  Google Scholar 

  • Spotts RA, Wallis KM, Serdani M, Azarenko AN (2010) Bacterial canker of sweet cherry in Oregon -Infection of horticultural and natural wounds, and resistance of cultivar and rootstock combinations. Plant Dis 94:345–350

    Article  Google Scholar 

  • Srinivasan C, Dardick C, Callahan A, Scorza R (2012) Plum (Prunus domestica) trees transformed with poplar FT1 result in altered architecture, dormancy requirement, and continuous flowering. PLoS One 7:e40715

    Article  CAS  Google Scholar 

  • Stegmeir T, Schuster M, Sebolt A, Rosyara U, Sundin GW, Iezzoni A (2014) Cherry leaf spot resistance in cherry (Prunus) is associated with a quantitative trait locus on linkage group 4 inherited from P. canescens. Mol Breed 34:927–935

    Article  CAS  Google Scholar 

  • Sun X, Jiao C, Schwaninger H, Chao CT, Ma Y, Duan N, Khan A, Ban S, Xu K, Cheng L, Zhong GY (2020) Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat Genet 52(12):1423–1432

    Article  CAS  Google Scholar 

  • Teh SL, Kostick SA, Evans KM (2021) Genetics and breeding of apple scions. In: Korban SS (ed) The apple genome. Springer-Nature Publ, Cham, pp 73–104

    Chapter  Google Scholar 

  • Terakami S, Shoda M, Adachi Y, Gonai T, Kasumi M, Sawamura Y et al (2006) Genetic mapping of the pear scab resistance gene Vnk of Japanese pear cultivar Kinchaku. Theor Appl Genet 113(4):743–752

    Article  CAS  Google Scholar 

  • Terakami S, Adachi Y, Iketani H, Sato Y, Sawamura Y, Takada N et al (2007) Genetic mapping of genes for susceptibility to black spot disease in Japanese pears. Genome 50(8):735–741

    Article  CAS  Google Scholar 

  • Terakami S, Moriya S, Adachi Y, Kunihisa M, Nishitani C, Saito T, Abe K, Yamamoto T (2016) Fine mapping of the gene for susceptibility to black spot disease in Japanese pear (Pyrus pyrifolia Nakai). Breed Sci 66(2):271–280

    Article  CAS  Google Scholar 

  • Thapa R, Singh J, Gutierrez B, Arro J, Khan A (2021) Genome-wide association mapping identifies novel loci underlying fire blight resistance in apple. Plant Genome 14(2):e20087

    Article  CAS  Google Scholar 

  • Thieme CJ, Rojas-Triana M, Stecyk E, Schudoma C, Zhang W, Yang L, Miñambres M, Walther D, Schulze WX, Paz-Ares J, Scheible WR (2015) Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nature Plants 1(4):1–9

    Article  Google Scholar 

  • Topp BL, Sherman WB, Huber DL, Linda SB (1993) Combining abilities of five Japanese plum cultivars for resistance to Xanthomonas stem canker. HortSci 28:727–729

    Article  Google Scholar 

  • Tromp J (1993) Lateral shoot formation and flower-bud formation in apple in the first year after budding as affected by air temperature and exposure to red light. J Hortic Sci 68(2):255–260

    Article  Google Scholar 

  • Ubbens JR, Stavness I (2017) Deep Plant Phenomics: a deep learning platform for complex plant phenotyping tasks. Front Plant Sci 8:1190. https://doi.org/10.3389/fpls.2017.01190

    Article  Google Scholar 

  • Ulaszewska M, Vázquez-Manjarrez N, Garcia-Aloy M, Llorach R, Mattivi F, Dragsted LO, Praticò G, Manach C (2018) Food intake biomarkers for apple, pear, and stone fruit. Genes Nutr 13:29. https://doi.org/10.1186/s12263-018-0620-8

    Article  Google Scholar 

  • van der Hoorn RA, Kamoun S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–2017

    Article  Google Scholar 

  • van Nocker S, Gardiner S (2014) Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic Res 1:14022. https://doi.org/10.1038/hortres.2014.22

    Article  Google Scholar 

  • Vanderplank JE (1968) Disease resistance in plants. Academic Press, New York

    Google Scholar 

  • Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Selected writings of NI Vavilov, translated from Russian by K. Starr Chester Chron Bot 13:1–366

    Google Scholar 

  • Vinholes J, Gelain DP, Vizsotto M (2016) Stone fruits as a source of bioactive compounds. In: Silva LR, Silva B (eds) Natural bioactive compounds from fruits and vegetables as health promoters. Bentham Sci Publ, Sharjah, pp 110–142

    Chapter  Google Scholar 

  • Visser T (1964) Juvenile phase and growth of apple and pear seedlings. Euphytica 13(2):119–129

    Article  Google Scholar 

  • Volk GM, Richards CM, Reilley AA, Henk AD, Reeves PA, Forsline PL, Aldwinckle HS (2008) Genetic diversity and disease resistance of wild Malus orientalis from Turkey and Southern Russia. J Am Soc Hort Sci 133(3):383–389

    Article  Google Scholar 

  • Waltz E (2016) Gene-edited CRISPR mushroom escapes US regulation. Nature 532:293

    Article  CAS  Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, Hatta MAM, Hinchliffe A, Steed A, Reynolds D, Adamski NM (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4(1):23–29

    Article  Google Scholar 

  • Westwood MN (2009) temperate zone pomology: physiology and culture, 3rd edn. Timber Press, Portland, p 536

    Google Scholar 

  • Whalen A, Ros-Freixedes R, Wilson DL, Gorjanc G, Hickey JM (2018) Hybrid peeling for fast and accurate calling, phasing, and imputation with sequence data of any coverage in pedigrees. Genet Sel Evol 50(1):1–5

    Article  Google Scholar 

  • Williams EB, Kuc JO (1969) esistance in Malus to Venturia inaequalis. Annu Rev Phytopathol 7(1):223–246

    Article  CAS  Google Scholar 

  • Williams B, Ahsan MU, Frank MH (2021) Getting to the root of grafting-induced traits. Curr Opin Plant Biol 59:101988

    Article  Google Scholar 

  • Won K, Bastiaanse H, Kim YK, Song JH, Kang SS, Lee HC, Cho KH, Brewer L, Singla G, Gardiner SE, Chagné D (2014) Genetic mapping of polygenic scab (Venturia pirina) resistance in an interspecific pear family. Mol Breeding 34(4):2179–2189

    Article  Google Scholar 

  • Xia W, Liu R, Zhang J, Mason AS, Li Z, Gong S, Zhong Y, Dou Y, Sun X, Fan H, Xiao Y (2020) Alternative splicing of flowering time gene FT is associated with halving of time to flowering in coconut. Sci Rep 10:11640. https://doi.org/10.1038/s41598-020-68431-2

    Article  CAS  Google Scholar 

  • Xu H, Zhang W, Li M, Harada T, Han Z, Li T (2010) Gibberellic acid insensitive mRNA transport in both directions between stock and scion in Malus. Tree Genet Genomes 6(6):1013–1019

    Article  Google Scholar 

  • Yamagishi N, Kishigami R, Yoshikawa N (2014) Reduced generation time of apple seedlings to within a year by means of a plant virus vector: a new plant-breeding technique with no transmission of genetic modification to the next generation. Plant Biotechnol J 12(1):60–68

    Article  CAS  Google Scholar 

  • Yamagishi N, Li C, Yoshikawa N (2016) Promotion of flowering by apple latent spherical virus vector and virus elimination at high temperature allow accelerated breeding of apple and pear. Front Plant Sci 7:171

    Article  Google Scholar 

  • Yamamoto M, Terakami S, Takada N, Yamamoto T (2016) Physical mapping of black spot disease resistance/susceptibility-related genome regions in Japanese pear (Pyrus pyrifolia) by BAC-FISH. Breed Sci 66:444–449

    Article  CAS  Google Scholar 

  • Yang N, Reighard G, Ritchie D, Okie W, Gasic K (2013) Mapping quantitative trait loci associated with resistance to bacterial spot (Xanthomonas arboricola pv. pruni) in peach. Tree Genet Genomes 9:573–586

    Article  Google Scholar 

  • Yang X, Hu H, Yu D, Sun Z, He X, Zhang J et al (2015) Candidate resistant genes of sand pear (Pyrus pyrifolia Nakai) to Alternaria alternata revealed by transcriptome sequencing. PLoS ONE 10(8):e0135046. https://doi.org/10.1371/journal.pone.0135046

    Article  CAS  Google Scholar 

  • Yoshimi K, Kunihiro Y, Kaneko T, Nagahora H, Voigt B, Mashimo T (2016) ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun 7:10431

    Article  CAS  Google Scholar 

  • Yu K, Wang Z, Li Q, Wacholder S, Hunter DJ, Hoover RN, Chanock S, Thomas G (2008) Population substructure and control selection in genome-wide association studies. PloS one 3(7):e2551

    Article  Google Scholar 

  • Zaidi SSEA, Mukhtar MS, Mansoor S (2018) Genome editing: targeting susceptibility genes for plant disease resistance. Trends Biotechnol 36(9):898–906

    Article  CAS  Google Scholar 

  • Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu J-L, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617

    Article  CAS  Google Scholar 

  • Zhao D, Song GQ (2014) Rootstock-to-scion transfer of transgene-derived small interfering RNA s and their effect on virus resistance in nontransgenic sweet cherry. Plant Biotechnol J 12(9):1319–1328

    Article  CAS  Google Scholar 

  • Zhou C, Olukolu B, Gemenet DC et al (2020) Assembly of whole-chromosome pseudomolecules for polyploid plant genomes using outbred mapping populations. Nat Genet 52:1256–1264. https://doi.org/10.1038/s41588-020-00717-7

    Article  CAS  Google Scholar 

  • Zurn JD, Norelli JL, Montanari S, Bell R, Bassil NV (2020) Dissecting genetic resistance to fire blight in three pear populations. Phytopathology 110:1305–1311. https://doi.org/10.1094/PHYTO-02-20-0051-R

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded in part by the USDA-NIFA-SCRI Grant No. 2020-51181-32158 and the New York Apple Research and Development Program (ARDP). Any opinions, or conclusions expressed in this publication are those of the authors and do not necessarily reflect the view of USDA, NIFA, and ARDP.

Author information

Authors and Affiliations

Authors

Contributions

AK conceived and outlined the review article; AK, and SSK wrote the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Awais Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Rajeev K. Varshney.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Korban, S.S. Breeding and genetics of disease resistance in temperate fruit trees: challenges and new opportunities. Theor Appl Genet 135, 3961–3985 (2022). https://doi.org/10.1007/s00122-022-04093-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-022-04093-0

Navigation