Skip to main content
Log in

Current applications, challenges, and perspectives of marker-assisted seedling selection in Rosaceae tree fruit breeding

  • Review
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Most rosaceous tree fruit have long juvenility and large plant sizes, which makes traditional seedling selection (TSS), relying on phenotypic evaluation alone, relatively time-consuming and expensive. Limited predictiveness of phenotypic information also restricts the accuracy of TSS for traits with low heritability. Marker-assisted seedling selection (MASS) uses DNA markers to provide an early DNA-based evaluation of genetic performance potential of seedlings, with the aim of improving cost and/or genetic efficiency of seedling selection. MASS is still not widely adopted in rosaceous tree fruit breeding despite some successful examples. This review assesses reported MASS successes and identifies key elements and remaining challenges. Suggested solutions to widespread MASS adoption in Rosaceae tree fruit breeding are to (1) provide more breeding-program-specific DNA tests for high-impact attributes, (2) develop approaches to readily identify efficient MASS schemes, (3) increase access to service providers specialized in DNA testing for rosaceous tree fruit breeding programs, (4) obtain funds to initially implement MASS, and (5) develop software tools and provide training to apply DNA information. Overcoming current challenges of implementing MASS is likely to facilitate its adoption in scenarios already proven to be effective: where DNA testing is conducted at an early seedling stage for single or multiple traits without significant interactions between them and where trait loci targeted by DNA tests have a major influence on trait levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abalo G, Tongoona P, Derera J, Edema R (2009) A comparative analysis of conventional and marker-assisted selection methods in breeding maize streak virus resistance in maize. Crop Sci 49:509–520

    Article  Google Scholar 

  • Adami M, De Franceschi P, Brandi F, Liverani A, Giovannini D, Rosati C, Dondini L, Tartarini S (2013) Identifying a carotenoid cleavage dioxygenase (ccd4) gene controlling yellow/white fruit flesh color of peach. Plant Mol Biol Rep 31:1166–1175

    Article  CAS  Google Scholar 

  • Asea G, Vivek BS, Lipps PE, Pratt RC (2012) Genetic gain and cost efficiency of marker-assisted selection of maize for improved resistance to multiple foliar pathogens. Mol Breed 29:515–527

    Article  Google Scholar 

  • Asíns MJ (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121:281–291

    Article  Google Scholar 

  • Asins MJ, Bernet GP, Villalta I, Carbonell EA (2010) QTL analysis in plant breeding. In: Jain SM, Brar DS (eds) Molecular techniques in crop improvement. Springer, New York, pp 3–21

    Chapter  Google Scholar 

  • Badenes ML, Byrne DH (2012) Fruit breeding. Springer, New York

    Book  Google Scholar 

  • Bliss FA (2010) Marker-assisted breeding in horticultural crops. Acta Horticult 859:339–350

    Google Scholar 

  • Bošković R, Tobutt KR (1996) Correlation of stylar ribonuclease zymograms with incompatibility alleles in sweet cherry. Euphytica 90:245–250

    Article  Google Scholar 

  • Bus V, Ranatunga C, Gardiner S, Bassett H, Rikkerink E (2000) Marker assisted selection for pest and disease resistance in the New Zealand apple breeding programme. Acta Horticult 538:541–547

    Google Scholar 

  • Bus V, Rikkerink E, Aldwinckle HS, Caffier V, Durel CE, Gardiner S, Gessler C, Groenwold R, Laurens F, Le Cam B, Luby J, Meulenbroek B, Kellerhals M, Parisi L, Patocchi A, Plummer K, Schouten HJ, Tartarini S, van de Weg WE (2009) A proposal for the nomenclature of Venturiainaequalisraces. Acta Horticult 814:739–746

    Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B 363:557–572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci U S A 101:9891–9896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dwivedi SL, Crouch JH, Mackill DJ, Xu Y, Blair MW, Ragot M, Upadhyaya HD, Ortiz R (2007) The molecularization of public sector crop breeding: progress, problems, and prospects. Adv Agron 95:163–318

    Article  CAS  Google Scholar 

  • Edge-Garza DA, Zhu Y, Peace CP (2010) Enabling marker-assisted seedling selection in the Washington apple breeding program. Acta Horticult 859:369–373

    Google Scholar 

  • Edge-Garza DA, Rowland TV, Konishi B, Brutcher L, Evans K, Peace CP (2012) Quality control improves resource savings in routine marker-assisted seedling selection for the Washington apple breeding program. Poster presentation at 6th Rosaceous Genomics Conference, Mezzocorona, Italy

  • Edge-Garza DA, Rowland TV, Haendiges S, Peace C (2014) A high-throughput and cost-efficient DNA extraction protocol for the tree fruit crops of apple, sweet cherry, and peach relying on silica beads during tissue sampling. Mol Breed. doi:10.1007/s11032-014-0160-x

    Google Scholar 

  • Eduardo I, López-Girona E, BatlIe I, Reig G, Iglesias I, Howad W, Arús P, Aranzana MJ (2014) Development of diagnostic markers for selection of the subacid trait in peach. Tree Genet Genomes 10:1695–1709

    Article  Google Scholar 

  • Evans KM, James CM (2003) Identification of SCAR markers linked to Pl-w mildew resistance in apple. Theor Appl Genet 106:1178–1183

    CAS  PubMed  Google Scholar 

  • Evans KM, Hanrahan I, Auvil T (2011) WSU’s apple breeding program’s fruit evaluation system. Good Fruit Grow 62:30–31

    Google Scholar 

  • Evans KM, Konishi B, Brutcher L, Edge-Garza DA, Rowland Jr T, Peace CP (2012) The logistical challenges of marker-assisted seedling selection in an apple breeding program. Poster presentation at 6th Rosaceous Genomics Conference Mezzocorona, Italy

  • Evans KM, Jung S, Lee T, Brutcher L, Cho I, Peace C, Main D (2013) Addition of a breeding database in the Genome Database for Rosaceae. Database 2013:bat078

  • Falchi R, Vendramin E, Zanon L, Scalabrin S, Cipriani G, Verde I, Vizzotto G, Morgante M (2013) Three distinct mutational mechanisms acting on a single gene underpin the origin of yellow flesh in peach. Plant J 76:175–187

    PubMed Central  CAS  PubMed  Google Scholar 

  • Foolad MR, Panthee DR (2012) Marker-assisted selection in tomato breeding. Crit Rev Plant Sci 31:93–123

    Article  Google Scholar 

  • Frey JE, Frey B, Sauer C, Kellerhals M (2004) Efficient low-cost DNA extraction and multiplex fluorescent PCR method for marker-assisted selection in breeding. Plant Breed 123:554–557

    Article  CAS  Google Scholar 

  • Gasic K, Peace CP (2013) First peach SNP mini-arrays developed and tested. RosBREED Q Newsl 4(3):2

    Google Scholar 

  • Haldar S, Haendiges S, Edge-Garza DA, Oraguzie NC, Olmstead J, Peace CP (2010) Applying genetic markers for self-compatibility in the WSU sweet cherry breeding program. Acta Horticult 859:375–380

    Google Scholar 

  • Hospital F (2009) Challenges for effective marker-assisted selection in plants. Genetica 136:303–310

    Article  PubMed  Google Scholar 

  • Hummer KE, Janick J (2009) Rosaceae: taxonomy, economic importance, genomics. In: Folta KM, Gardiner SE (eds) Genetics and Genomics of Rosaceae. Springer, New York, pp 1–17

    Chapter  Google Scholar 

  • Iezzoni A (2010) Jewels in the genome. RosBREED Q Newsl 1(2):10

    Google Scholar 

  • Iezzoni A, Weebadde C, Luby J, Yue C, van de Weg WE, Fazio G, Main D, Peace CP, Bassil NV, McFerson J (2010) RosBREED: Enabling marker-assisted breeding in Rosaceae. Acta Horticult 859:389–394

    Google Scholar 

  • James CM, Clarke JB, Evans KM (2004) Identification of molecular markers linked to the mildew resistance gene Pl-d in apple. Theor Appl Genet 110:175–181

    Article  CAS  PubMed  Google Scholar 

  • Janick J, Moore JN (1975) Advances in fruit breeding. Purdue Univ. Press, Lafayette

    Google Scholar 

  • Jänsch M, Broggini GAL, WegerJuliane, Bus VGM, Gardiner SE,Bassett H, Patocchi A (2015) Identification of SNPs linked to eight apple disease resistance loci. Mol Breeding. In press

  • Jones N, Ougham H, Thomas H (1997) Markers and mapping: we are all geneticists now. New Phytol 137:165–177

    Article  Google Scholar 

  • Jung S, Lee T, Ru S, Main D, Iezzoni A, Peace CP, Fazio G (2013) The RosBREED Pedigree-Based Breeding Information Management System. Plant & Animal Genome XXI, San Diego, CA

  • Kellerhals M, Franck L, Baumgartner IO, Patocchi A, Frey JE (2011) Breeding for fire blight resistance in apple. Acta Horticult 896:385–389

    Google Scholar 

  • Kuchel H, Ye G, Fox R, Jefferies S (2005) Genetic and economic analysis of a targeted marker-assisted wheat breeding strategy. Mol Breed 16:67–78

    Article  Google Scholar 

  • Kumar LS (1999) DNA markers in plant improvement: An overview. Biotechnol Adv 17:143–182

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Garrick DJ (2001) Genetic response to within-family selection using molecular markers in some radiata pine breeding schemes. Can J For Res 31:779–785

    Article  Google Scholar 

  • Kumar S, Chagné D, Bink MCAM, Volz RK, Whitworth C, Carlisle C (2012) Genomic selection for fruit quality traits in apple (Malus × domestica Borkh.). PLoS ONE 7:e36674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    PubMed Central  CAS  PubMed  Google Scholar 

  • Luby JJ, Shaw DV (2001) Does marker-assisted selection make dollars and sense in a fruit breeding program? HortSci 36:872–879

    Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Inc, Sunderland

    Google Scholar 

  • Moreau L, Charcosset A, Hospital F, Gallais A (1998) Marker-assisted selection efficiency in populations of finite size. Genetics 148:1353–1365

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moreau L, Lemarié S, Charcosset A, Gallais A (2000) Economic efficiency of one cycle of marker-assisted selection. Crop Sci 40:329–337

    Article  Google Scholar 

  • Peace CP (2013a) RosBREED by the numbers. RosBREED Q Newsl 4(2):4

    Google Scholar 

  • Peace CP (2013b) Deliverables of the RosBREED project for U.S Rosaceae breeders: Part two. RosBREED Q Newsl 4(2):8–10

  • Peace CP, Jung S (2012) MAB in action: integrating DNA information into your breeding program. RosBREED Q Newsl 3(2):6–10

  • Peace CP, Norelli JL (2009) Genomics approaches to crop improvement in the Rosaceae. In: Folta KM, Gardiner SE (eds) Genetics and Genomics of Rosaceae. Springer, New York, pp 19–53

    Chapter  Google Scholar 

  • Peace CP, Bassil N, Coe M, Fazio G, Gallardo RK, Gasic K, Luby JJ, Main D, McFerson J, Weebadde C, van de Weg WE, Yue C, Iezzoni A (2013) Marker-assisted breeding in apple, peach, and cherry targets valuable functional alleles. Plant & Animal Genome XXI, San Diego, CA

  • Picañol R, Eduardo I, Aranzana MJ, Howad W, Batlle I, Iglesias I, Alonso JM, Arús P (2013) Combining linkage and association mapping to search for markers linked to the flat fruit character in peach. Euphytica 190:279–288

    Article  Google Scholar 

  • Pirona R, Eduardo I, Pacheco I, Da Silva Linge C, Miculan M, Verde I, Tartarini S, Dondini L, Pea G, Bassi D, Rossini L (2013) Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biol 13:166

    Article  PubMed Central  PubMed  Google Scholar 

  • Rowland T Jr, Edge-Garza D, Oraguzie N, Peace CP (2012) Routine marker-assisted seedling selection in the Pacific Northwest sweet cherry breeding program provides resource savings. Poster presentation at 6th Rosaceous Genomics Conference, Mezzocorona, Italy

  • Ru S, Lee T, Edge-Garza D, Harshman J, Evans KM, Jung S, Main D, Peace CP (2014) Seedling Select: A web-based software tool to facilitate cost modeling of marker-assisted seedling selection (MASS) in Rosaceae tree fruit. Poster presentation at 7th International Rosaceae Genomics Conference, June 24–26, Seattle, WA

  • Salazar JA, Ruiz D, Campoy JA, Sánchez-Pérez R, Crisosto CH, Martínez-García PJ, Blenda A, Jung S, Main D, Martínez-Gómez P, Rubio M (2013) Quantitative trait loci (QTL) and Mendelian trait loci (MTL) analysis in Prunus: a breeding perspective and beyond. Plant Mol Biol Rep 32:1–18

    Article  Google Scholar 

  • Sandefur P, Frett T, Salgado A, Thurow L, Gasic K, Clark J, Peace CP (2014) Harnessing the power of RosBREED: development, validation, and application of DNA tests for predicting peach fruit quality, disease resistance, and other valuable traits for Rosaceae tree fruit. Oral presentation at ASHS-2014 Annual Conference, Orlando, FL

  • Sebolt A (2013) Breeder profile: Kate Evans. RosBREED Q Newsl 4(2):6–7

    Google Scholar 

  • Smith C (1967) Improvement of metric traits through specific genetic loci. Anim Sci 9:349–358

    Google Scholar 

  • Stromberg LD, Dudley JW, Rufener GK (1994) Comparing conventional early generation selection with molecular marker assisted selection in maize. Crop Sci 34:1221–1225

    Article  Google Scholar 

  • Tartarini S, Sansavini S (2003) The use of molecular markers in pome fruit breeding. Acta Horticult 622:129–141

    CAS  Google Scholar 

  • Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (1999) Development of reliable PCR markers for the selection of the Vf gene conferring scab resistance in apple. Plant Breed 118:183–186

    Article  Google Scholar 

  • Tartarini S, Sansavini S, Vinatzer B, Gennari F, Domizi C (2000) Efficiency of marker assisted selection (MAS) for the Vf scab resistance gene. Acta Horticult 538:549–552

    Google Scholar 

  • Tehrani G, Brown SK (1992) Pollen-incompatibility and self-fertility in sweet cherry. Plant Breed Rev 9:313–338

    Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Testolin R (2003) Marker-assisted selection in stone fruits. Acta Horticult 622:163–176

    CAS  Google Scholar 

  • Vendramin E, Pea G, Dondini L, Pacheco I, Dettori MT, Gazza L, Scalabrin S, Strozzi F, Tartarini S, Bassi D, Verde I, Rossini L (2014) A unique mutation in a MYB gene cosegregates with the nectarine phenotype in peach. PLoS ONE 9:e90574

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Yousef GG, Juvik JA (2001) Comparison of phenotypic and marker-assisted selection for quantitative traits in sweet corn. Crop Sci 41:645–655

    Article  Google Scholar 

  • Zhang G, Sebolt A, Sooriyapathirana S, Wang D, Bink M, Olmstead J, Iezzoni A (2009) Fruit size QTL analysis of an F1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genet Genomes 6:25–36

    Article  Google Scholar 

Download references

Acknowledgements

We thank RosBREED demonstration breeders for their responses to the MASS questionnaire and contributing their ideas. This work was funded by USDA’s National Institute of Food and Agriculture–Specialty Crop Research Initiative project, “RosBREED: Enabling Marker-Assisted Breeding in Rosaceae” (2009-51181-05808), “Tree Fruit GDR: Translating Genomics into Advances in Horticulture” (2009-51181-06036), and USDA Hatch funds provided to the Department of Horticulture, Washington State University.

Data Archiving Statement

There is no data in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushan Ru.

Additional information

Communicated by A. G. Abbott

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ru, S., Main, D., Evans, K. et al. Current applications, challenges, and perspectives of marker-assisted seedling selection in Rosaceae tree fruit breeding. Tree Genetics & Genomes 11, 8 (2015). https://doi.org/10.1007/s11295-015-0834-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-015-0834-5

Keywords

Navigation