Skip to main content
Log in

Identification of a major QTL for Xanthomonas arboricola pv. pruni resistance in apricot

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Xanthomonas arboricola pv. pruni causes bacterial spot of stone fruit resulting in severe yield losses in apricot production systems. Present on all continents, the pathogen is regulated in Europe as a quarantine organism. Host resistance is an important component of integrated pest management; however, little work has been done describing resistance against X. arboricola pv. pruni. In this study, an apricot population derived from the cross “Harostar” × “Rouge de Mauves” was used to construct two parental genetic maps and to perform a quantitative trait locus analysis of resistance to X. arboricola pv. pruni. A population of 101 F1 individuals was inoculated twice for two consecutive years in a quarantine greenhouse with a mixture of bacterial strains, and disease incidence and resistance index data were collected. A major QTL for disease incidence and resistance index accounting respectively for 53 % (LOD score of 15.43) and 46 % (LOD score of 12.26) of the phenotypic variation was identified at the same position on linkage group 5 of “Rouge de Mauves.” Microsatellite marker UDAp-452 co-segregated with the resistance, and two flanking microsatellites, namely BPPCT037 and BPPCT038A, were identified. When dividing the population according to the alleles of UDAp-452, the subgroup with unfavorable allele had a disease incidence of 32.6 % whereas the group with favorable allele had a disease incidence of 21 %, leading to a reduction of 35.6 % in disease incidence. This study is a first step towards the marker-assisted breeding of new apricot varieties with an increased tolerance to X. arboricola pv. pruni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anonymous (2006) EPPO standards PM 7/64. Diagnostics Xanthomonas arboricola pv. pruni. Bull EPPO 36:129–133

    Article  Google Scholar 

  • Aranzana MJ, Garcia-Mas J, Carbó J (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121:87–92

    Article  CAS  Google Scholar 

  • Battilani P, Rossi V, Saccardi A (1999) Development of Xanthomonas arboricola pv. pruni epidemics on peaches. J Plant Pathol 81:161–171

    Google Scholar 

  • Boudon S, Manceau C, Notteghem JL (2005) Structure and origin of Xanthomonas arboricola pv. pruni populations causing bacterial spot of stone fruit trees in Western Europe. Phytopathology 95:1081–1088

    Article  PubMed  Google Scholar 

  • Calenge F, Faure A, Goerre M, Gebhardt C, van de Weg WE, Parisi L, Durel C-E (2004) Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94:370–379

    Article  PubMed  CAS  Google Scholar 

  • Campoy J, Martínez-Gómez P, Ruiz D, Rees J, Celton J (2010) Developing microsatellite multiplex and megaplex PCR systems for high-throughput characterization of breeding progenies and linkage maps spanning the apricot (Prunus armeniaca L.) genome. Plant Mol Biol Rep 28:560–568

    Article  CAS  Google Scholar 

  • Cipriani G, Lot G, Huang WG, Marrazzo M-T, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L.) Batsch]: isolation, characterization and cross-species amplification in Prunus. Theor Appl Genet 99:65–72

    Article  CAS  Google Scholar 

  • Civerolo EL, Hatting MJ (1993) Xanthomonas campestris pv. pruni: cause of Prunus bacterial spot. In: Swings JG, Civerolo EJ (eds) Xanthomonas. Chapman and Hall, London, pp 60–64

    Google Scholar 

  • Claverie M, Bosselut N, Lecouls AC, Voisin R, Poizat C, Dirlewanger E, Kleinhentz M, Lafargue B, Laigret F, Esmenjaud D (2004) Location of independent root-knot nematode resistance genes in plum and peach. Theor Appl Genet 108:765–773

    Article  PubMed  CAS  Google Scholar 

  • Decroocq V, Fave MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106:912–922

    PubMed  CAS  Google Scholar 

  • Decroocq V, Foulongne M, Lambert P, Le Gall O, Mantin C, Pascal T, Schurdi-Levraud V, Kervella J (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Genet Genomics 272:680–689

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Pascal T, Zuger C, Kervella J (1996) Analysis of molecular markers associated with powdery mildew resistance genes in peach (Prunus persica (L.) Batsch) × Prunus davidiana hybrids. Theor Appl Genet 93:909–919

    Article  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arús P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L). Theor Appl Genet 105:127–138

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arús P (2004a) Comparative mapping and marker assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselut N, Claverie M, Voisin R, Poizat C, Lafargue B, Baron O, Laigret F, Kleinhentz M, Arús P, Esmenjaud D (2004b) Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid—location of root-knot nematode resistance genes. Theor Appl Genet 109:827–838

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Boudehri K, Renaud C, Capdeville G, Tauzin Y, Laigret F, Moing A (2006) Development of a second generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genet Genomes 3:1–13

    Article  Google Scholar 

  • Dondini L, Lain O, Geuna F, Banfi R, Gaiotti F, Tartarini S, Bassi D, Testolin R (2007) Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus maps. Tree Genet Genomes 3:239–249

    Article  Google Scholar 

  • Dondini L, Lain O, Vendramin V, Rizzo M, Vivoli D, Adami M, Guidarelli M, Gaiotti F, Palmisano F, Bazzoni A, Boscia D, Geuna F, Tartarini S, Negri P, Castellano M, Savino V, Bassi D, Testolin R (2010) Identification of QTL for resistance to plum pox virus strains M and D in Lito and Harcot apricot cultivars. Mol Breed 27:289–299

    Article  Google Scholar 

  • du Plessis HJ (1988) Differential virulence of Xanthomonas campestris pv. pruni to peach, plum, and apricot cultivars. Phytopathology 78:1312–1315

    Article  Google Scholar 

  • Dunegan JC (1932) The bacterial spot disease of the peach and other stone fruits. US Dept Agr Tech Bul 273:53

    Google Scholar 

  • Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Rossini L, Vecchietti A (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7:323–335

    Article  Google Scholar 

  • Esmenjaud D, Voisin R, van Ghelder C, Bosselut N, Lafargue B, Di Vito M, Dirlewanger E, Poessel JL, Kleinhentz M (2009) Genetic dissection of resistance to root-knot nematodes Meloidogyne spp. in plum, peach, almond, and apricot from various segregating interspecific Prunus progenies. Tree Genet Genomes 5:279–289

    Article  Google Scholar 

  • Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003) QTLs for powdery mildew resistance in peach × Prunus davidiana crosses: consistency across generations and environments. Mol Breed 12:33–50

    Article  CAS  Google Scholar 

  • Garcin A, Rouzet J, Notteghem JL (2005) Xanthomonas des arbres fruitiers à noyau. CTIFL, Paris

    Google Scholar 

  • Habera L, Smith N, Donahoo R, Lamour K (2004) Use of a single primer to fluorescently label selective amplified fragment length polymorphism reactions. Biotechniques 37:902–904

    PubMed  CAS  Google Scholar 

  • Hagen LS, Chaib J, Fady B, Decroocq V, Bouchet JP, Lambert P, Audergon JM (2004) Genomic and cDNA microsatellites from apricot (Prunus armeniaca L.). Mol Ecol Notes 4:742–745

    Article  CAS  Google Scholar 

  • Hajri A, Pothier JF, Fischer-Le Saux M, Bonneau S, Poussier S, Boureau T, Duffy B, Manceau C (2012) Type three effector gene distribution and sequence analysis provide new insights into the pathogenicity of plant-pathogenic Xanthomonas arboricola. Appl Environ Microbiol 78:371–384

    Article  PubMed  CAS  Google Scholar 

  • Hayden MJ, Nguyen TM, Waterman A, Chalmers KJ (2008) Multiplex-ready PCR: a new method for multiplexed SSR and SNP genotyping. BMC Genomics 9:80

  • Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arús P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309

    Article  PubMed  CAS  Google Scholar 

  • Hurtado MA, Romero C, Vilanova S, Abbott AG, Llácer G, Badenes ML (2002) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.), and mapping of PPV (sharka) resistance. Theor Appl Genet 105:182–191

    Article  PubMed  CAS  Google Scholar 

  • Illa E, Lambert P, Quilot B, Audergon JM, Dirlewanger E, Howad W, Dondini L, Tartarini S, Lain O, Testolin R, Bassi D, Arús P (2009) Linkage map saturation, construction, and comparison in four populations of Prunus. J Hortic Sci Biotech 84:168–175

    Google Scholar 

  • Illa E, Sargeant DJ, Lopez E, Bushara J, Cestaro A, Pindo M, Cabrera A, Iezzoni A, Gardiner S, Velasco R, Arús P, Chagne D, Troggio M (2011) Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family. BMC Evol Biol 11:9

    Article  PubMed  Google Scholar 

  • Joobeur T, Viruel MA, de Vicente MC, Jauregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle SM, Quarta R, Dirlewanger E, Arús P (1998) Construction of a saturated linkage map for Prunus using an almond × peach F2 progeny. Theor Appl Genet 97:1034–1041

    Article  CAS  Google Scholar 

  • Keil HL, Fogle HW (1974) Orchard susceptibility of some apricot, peach, and plum cultivars and selections to Xanthomonas pruni. Fruit Var J 28:16–19

    Google Scholar 

  • Kim KH, Kang YJ, Kim DH, Yoon MY, Moon JK, Kim MY, Van K, Lee SH (2011) RNA-seq analysis of a soybean near-isogenic line carrying bacterial leaf pustule-resistant and -susceptible alleles. DNA Res 18:483–497

    Article  PubMed  CAS  Google Scholar 

  • Lalli DA, Decroocq V, Blenda AV, Schurdi-Levraud V, Garay L, Le Gall O, Damsteegt V, Reighard GL, Abbott AG (2005) Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theor Appl Genet 111:1504–1513

    Article  PubMed  CAS  Google Scholar 

  • Lalli DA, Abbott AG, Zhebentyayeva T, Badenes M, Damsteegt V, Polák J, Krska B, Salava J (2008) A genetic linkage map for an apricot (Prunus armeniaca L.) BC1 population mapping plum pox virus resistance. Tree Genet Genomes 4:481–493

    Article  Google Scholar 

  • Lambert P, Hagen LS, Arús P, Audergon JM (2004) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) compared with the almond ‘Texas’ × peach ‘Earlygold’ reference map for Prunus. Theor Appl Genet 108:1120–1130

    Article  PubMed  CAS  Google Scholar 

  • Lambert P, Dicenta F, Rubio M, Audergon JM (2007) QTL analysis of resistance to sharka disease in the apricot (Prunus armeniaca L.) ‘Polonais’ × ‘Stark Early Orange’ F1 progeny. Tree Genet Genomes 3:299–309

    Article  Google Scholar 

  • Layne REC (1991) ‘Harval’ apricot. HortSci 26:424–425

    Google Scholar 

  • Layne REC, Hunter DM (2003) AC ‘Harostar’ apricot. HortSci 38:140–141

    Google Scholar 

  • Le Lézec M, Lecomte P, Laurens F, Michelesi JC (1997) Sensibilité variétale au feu bactérien (1ière partie). L’arboriculture fruitière 503:57–62

    Google Scholar 

  • Lopes MS, Sefc KM, Laimer M, da Câmara MA (2002) Identification of microsatellite loci in apricot. Mol Ecol Notes 2:24–26

    Article  CAS  Google Scholar 

  • Martínez-Gómez P, Crisosto CH, Bonghi C, Rubio M (2011) New approaches to Prunus transcriptome analysis. Genetica 139:755–769

    Article  PubMed  Google Scholar 

  • Mayrose M, Bonshtien A, Sessa G (2004) LeMPK3 is a mitogen-activated protein kinase with dual specificity induced during tomato defense and wounding responses. J Biol Chem 279:14819–14827

    Article  PubMed  CAS  Google Scholar 

  • Messina R, Lain O, Marrazzo MT, Cipriani G, Testolin R (2004) New set of microsatellite loci isolated in apricot. Mol Ecol Notes 4:432–434

    Article  CAS  Google Scholar 

  • Mnejja M, Garcia-Mas J, Howad W, Badenes ML, Arús P (2004) Simple sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond. Mol Ecol Notes 4:163–166

    Article  CAS  Google Scholar 

  • Olmstead JW, Sebolt AM, Cabrera A, Sooriyapathirana SS, Hammar S, Iriarte G, Wang D, Chen CY, van der Knaap E, Iezzoni AF (2008) Construction of an intra-specific sweet cherry (Prunus avium L.) genetic linkage map and synteny analysis with the Prunus reference map. Tree Genet Genomes 4:897–910

    Article  Google Scholar 

  • Patocchi A, Fernández-Fernández F, Evans K, Gobbin D, Rezzonico F, Boudichevskaia A, Dunemann F, Stankiewicz-Kosyl M, Mathis-Jeanneteau F, Durel CE, Gianfranceschi L, Costa F, Toller C, Cova V, Mott D, Komjanc M, Barbaro E, Kodde L, Rikkerink E, Gessler C, van de Weg WE (2008) Development and test of 21 multiplex PCRs composed of SSRs spanning most of the apple genome. Tree Genet Genomes 5:211–223

    Article  Google Scholar 

  • Perez-Quintero AL, Quintero A, Urrego O, Vanegas P, Lopez C (2012) Bioinformatic identification of cassava miRNAs differentially expressed in response to infection by Xanthomonas axonopodis pv. manihotis. BMC Plant Biology 12:29

    Article  PubMed  CAS  Google Scholar 

  • Pilet ML, Delourme R, Foisset N, Renard M (1998) Identification of loci contributing to quantitative field resistance to blackleg disease, causal agent Leptosphaeria maculans (Desm) Ces. et de Not., in winter rapeseed (Brassica napus L). Theor Appl Genet 96:23–30

    Article  Google Scholar 

  • Pothier JF, Pelludat C, Bünter M, Genini M, Vogelsanger J, Holliger E, Duffy B (2010) First report of the quarantine pathogen Xanthomonas arboricola pv. pruni on apricot and plum in Switzerland. Plant Pathol 59:404

    Article  Google Scholar 

  • Pothier JF, Vorhölter F-J, Blom J, Goesmann A, Pühler A, Smits THM, Duffy B (2011a) The ubiquitous plasmid pXap41 in the invasive phytopathogen Xanthomonas arboricola pv. pruni: complete sequence and comparative genomic analysis. FEMS Microbiol Lett 323:52–60

    Article  PubMed  CAS  Google Scholar 

  • Pothier JF, Pagani MC, Pelludat C, Ritchie DF, Duffy B (2011b) A duplex-PCR method for species- and pathovar-level detection and identification of the quarantine plant pathogen Xanthomonas arboricola pv. pruni. J Microbiol Methods 86:16–24

    Article  PubMed  CAS  Google Scholar 

  • Pothier JF, Smits THM, Blom J, Vorhölter F-J, Goesmann A, Pühler A, Duffy B (2011c) Complete genome sequence of the stone fruit pathogen Xanthomonas arboricola pv. pruni. Phytopathology 101:S144–S14

    Google Scholar 

  • Ritchie DF (1995) Bacterial spot. In: Ed Ogawa JM, Zehr EI, Bird GW, Ritchie DF, Uriu K, Uyemoto JK (eds) Compendium of stone fruit diseases. APS, St. Paul

    Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Sicard O, Marandel G, Soriano JM, Lalli DA, Lambert P, Salava J, Badenes ML, Abbott AG, Decroocq V (2008) Flanking the major Plum pox virus resistance locus in apricot with co-dominant markers (SSRs) derived from candidate resistance genes. Tree Genet Genomes 4:359–365

    Article  Google Scholar 

  • Smith EF (1903) Observation on a hitherto unreported bacterial disease, the cause of which enters the plant through ordinary stomata. Science 17:456–457

    Article  Google Scholar 

  • Socquet-Juglard D, Patocchi A, Pothier JF, Christen D, Duffy B (2012) Evaluation of Xanthomonas arboricola pv. pruni inoculation techniques to screen for bacterial spot resistance in apricot. J Plant Pathol 94:S1.91–S1.96

    Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  PubMed  CAS  Google Scholar 

  • Soriano JM, Vera-Ruiz EM, Vilanova S, Martínez-Calvo J, Llácer G, Badenes ML, Romero C (2008) Identification and mapping of a locus conferring Plum pox virus resistance in two apricot-improved linkage maps. Tree Genet Genomes 4:391–402

    Article  Google Scholar 

  • Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach (Prunus persica L. Batsch). Theor Appl Genet 101:421–428

    Article  CAS  Google Scholar 

  • Testolin R, Marrazzo MT, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520

    PubMed  CAS  Google Scholar 

  • Topp BL, Sherman WB (1990) Sources of bacterial spot resistance in Japanese-type plum cultivars. Fruit Var J 44:32–35

    Google Scholar 

  • Topp BL, Sherman WB (1995) Spot resistance in leaves and stems measured by a selection index. Acta Hort 403:47–50

    Google Scholar 

  • van Ghelder C, Lafargue B, Dirlewanger E, Ouassa A, Voisin R, Polidori J, Kleinhentz M, Esmenjaud D (2010) Characterization of the RMja gene for resistance to root-knot nematodes in almond: spectrum, location, and interest for Prunus breeding. Tree Genet Genomes 6:503–511

    Article  Google Scholar 

  • van Ooijen JW (2004) MapQTL® 5.0, software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen, The Netherlands

  • van Ooijen JW (2006) JoinMap® 4.0, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, The Netherlands

  • Vera Ruiz EM, Soriano JM, Romero C, Zhebentyayeva T, Terol J, Zuriaga E, Llácer G, Abbott AG, Badenes ML (2011) Narrowing down the apricot Plum pox virus resistance locus and comparative analysis with the peach genome syntenic region. Mol Plant Pathol 12:535–547

    Article  PubMed  Google Scholar 

  • Vilanova S, Romero C, Abbott AG, Llácer G, Badenes ML (2003) An apricot (Prunus armeniaca L.) F2 progeny linkage map based on SSR and AFLP markers, mapping plum pox virus resistance and self-incompatibility traits. Theor Appl Genet 107:239–347

    Article  PubMed  CAS  Google Scholar 

  • Vilanova S, Soriano JM, Lalli DA, Romero C, Abbott AG, Llácer G, Badenes ML (2006) Development of SSR markers located in the G1 linkage group of apricot (Prunus armeniaca L.) using a bacterial artificial chromosome library. Mol Ecol Notes 6:789–791

    Article  CAS  Google Scholar 

  • Viruel MA, Madur D, Dirlewanger E, Pascal T, Kervella J (1998) Mapping quantitative trait loci controlling peach leaf curl resistance. Acta Hort 365:79–87

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijians M, Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zaneau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang JF, Olivier J, Thoquet P, Mangin B, Sauviac L, Grimsley NH (2000) Resistance of tomato line Hawaii 7996 to Ralstonia solanacearum Pss4 in Taiwan is controlled mainly by a major strain-specific locus. Mol Plant Microbe Interact 13:6–13

    Article  PubMed  CAS  Google Scholar 

  • Werner DJ, Ritchie DF, Cain DW, Zehr EI (1986) Susceptibility of peaches and nectarines, plant introductions, and other Prunus species to bacterial spot. HortSci 21:127–130

    Google Scholar 

  • Xiang Y, Cao Y, Xu C, Li X, Wang S (2006) Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theor Appl Genet 113:1347–1355

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Mochida K, Imai T, Shi Z, Ogiwara I, Hayashi T (2002) Microsatellite markers in peach [Prunus persica (L.) Batsch] derived from an enriched genomic and cDNA libraries. Mol Ecol Notes 2:298–301

    Article  CAS  Google Scholar 

  • Zaccardelli M, Malaguti S, Bazzi C (1998) Biological and epidemiological aspects of Xanthomonas arboricola pv. pruni on peach in Italy. J Plant Pathol 80:125–132

    Google Scholar 

  • Zhebentyayeva TN, Swire-Clark G, Georgi LL, Garay L, Jung S, Forrest S, Blenda AV, Blackmon B, Mook J, Horn R, Howad W, Arús P, Main D, Tomkins JP, Sosinski B, Baird WV, Reighard GL, Abbott AG (2008) A framework physical map for peach, a model Rosaceae species. Tree Genet Genomes 4:745–756

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by the Swiss Secretariat for Education and Research (SBF COST C08.0124) and was conducted within the European Science Foundation funded research network COST Action 873. We thank Dr. Jürg Frey for support in the laboratory, Rolf Blapp for the grafting of the material; Dr. Fabio Rezzonico for his help with AFLPs; and Jürgen Krauss, Carmela Total, Perrine Ferrié and Verena Knorst for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Patocchi.

Additional information

Communicated by E. Dirlewanger

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Linkage map of “Harostar.” Microsatellite markers are indicated in bold. Markers showing segregation distortion are indicated by significant distortion at *P < 0.05, **P < 0.01, ***P < 0.005, and ****P < 0.001. Loci of multilocus markers are indicated with letters(JPEG 321 kb)

High resolution image (TIFF 270 kb)

Fig. S2

Linkage map of “Rouge de Mauves.” Microsatellite markers are indicated in bold. Markers showing segregation distortion are indicated by significant distortion at *P < 0.05, **P < 0.01, and *** P < 0.005. Loci of multilocus markers are indicated with letters (PNG 134 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Socquet-Juglard, D., Duffy, B., Pothier, J.F. et al. Identification of a major QTL for Xanthomonas arboricola pv. pruni resistance in apricot. Tree Genetics & Genomes 9, 409–421 (2013). https://doi.org/10.1007/s11295-012-0562-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-012-0562-z

Keywords

Navigation