Skip to main content

Breeding for Disease Resistance in Florists’ Crops

  • Reference work entry
  • First Online:
Handbook of Florists' Crops Diseases

Part of the book series: Handbook of Plant Disease Management ((HPDM))

Abstract

Utilization of disease-resistant cultivars is considered as the most cost-effective and environmentally sound approach to managing plant diseases including diseases of florists’ crops. Improving disease resistance has been a main objective in a number of florists’ crop breeding programs. The commonly used breeding approach has been classic hybridization followed by progeny screening for resistance to targeted diseases. Breeding efforts over the last several decades have resulted in the development and release of numerous cultivars with resistance to major diseases in anthurium, caladium, carnation, chrysanthemum, gerbera, gladiolus, hydrangea, lily, narcissus, rose, tulip, and other florists’ crops. Considerable advances have been made to develop reliable disease resistance screening techniques, identify sources of genetic resistance, and understand the mode of inheritance for at least 24 disease resistance traits in these crops. At least six resistance gene loci in carnation, gerbera, and roses and up to 50 resistance QTL in carnation, gerbera, lily, rose, and tulip have been tagged with molecular markers. One disease-resistant carnation cultivar (“Karen Rouge”) has been developed with the aid of molecular markers. The rose gene Rdr1 conferring complete resistance to black spot disease has been cloned. It is expected that the availability of more molecular markers, the cloning of more resistance genes and QTL, the application of gene editing techniques, and adoption of other new biotechnological tools will increase the efficiency of breeding for disease resistance and allow the development of more cultivars with strong resistance to major diseases in florists’ crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alvarez AM, Toves PJ, Vowell TS (2006) Bacterial blight of anthuriums: Hawaii’s experience with a global disease. Available via APSnet feature story. doi:10.1094/APSnetFeature-2006-0206. Accessed 2 Nov 2015

    Google Scholar 

  • Anaïs G, Darrasse A, Prior P (2000) Breeding anthuriums (Athurium andreanum L.) for resistance to bacterial blight caused by Xanthomonas campestris pv. dieffenbachiae. Acta Hortic 508:135–140

    Article  Google Scholar 

  • Aragaki M, Kamemoto H, Maeda KM (1968) Anthracnose resistance in anthurium. Tech Prog Rpt No. 169 of Hawaii Agric Exp Stn, College of Tropical Agriculture. University of Hawaii, Honolulu

    Google Scholar 

  • Arens P, Shabin A, van Tuyl JM (2014) (Molecular) breeding of lilium. Acta Hortic 1027:113–128

    Article  Google Scholar 

  • Baayen RP, Sparnaaij LD, Jansen J, Niemann GJ (1991) Inheritance of resistance in carnation against Fusarium oxysporum f. sp. dianthi races 1 and 2, in relation to resistance components. Neth J Plant Pathol 97:73–86

    Article  Google Scholar 

  • Bender CL, Coyier DL (1984) Isolation and identification of races of Sphaerotheca pannosa var. rosae. Phytopathology 74:100–103

    Article  Google Scholar 

  • Ben-Yephet Y, Shtenberg D, Reuven M, Mor Y (1993) Response of carnation cultivars to Fusarium oxysporum f. sp. dianthi in the field. Neth J Plant Pathol 99:3–12

    Article  Google Scholar 

  • Ben-Yephet Y, Reuven M, Zviebil A, Shtienberg D (1996) Effects of initial inoculum and cultivar resistance on incidence of Fusarium wilt and population densities of Fusarium oxysporum f. sp. dianthi on carnation and in soil. Phytopathology 86:751–756

    Article  Google Scholar 

  • Ben-Yephet Y, Reuven M, Shtienberg D (1997) Complete resistance by carnation cultivars to Fusarium oxysporum f. sp. dianthi race 2. Plant Dis 81:777–780

    Article  Google Scholar 

  • Biber A, Kaufmann H, Linde M, Spiller M, Terefe D, Debener T (2010) Molecular markers from a BAC contig spanning the Rdr1 locus: a tool for marker-assisted selection in roses. Theor Appl Genet 120:765–773

    Article  CAS  PubMed  Google Scholar 

  • Blanc H (1983) Carnation breeding for resistance to Fusarium oxysporum f. sp. dianthi practical achievement of resistant cultivars. Acta Hortic 141:43–47

    Article  Google Scholar 

  • Blechert O, Debener T (2005) Morphological characterization of the interaction between Diplocarpon rosae and various rose species. Plant Pathol 54:82–90

    Article  Google Scholar 

  • Bowes SA (1992) Breeding for basal rot resistance in narcissus. Acta Hortic 325:597–604

    Article  Google Scholar 

  • Bowes SA, Edmondson RN, Linfield CA, Langton FA (1992) Screening immature bulbs of daffodil (Narcissus L.) crosses for resistance to basal rot disease caused by Fusarium oxysporum f. sp. narcissi. Euphytica 63:199–206

    Google Scholar 

  • Byrne DH (2015) Advances in rose breeding and genetics in North America. Acta Hortic 1064:89–98

    Article  Google Scholar 

  • Byrne DH, Anderson NO, Orwat M, Soules V (2010) Field assessment of black spot resistance in roses in a hot humid climate. Acta Hortic 870:115–119

    Article  Google Scholar 

  • Cadic A, Widehem C (2001) Breeding goals for new ornamentals. Acta Hortic 552:75–86

    Article  Google Scholar 

  • Carder JH, Grant CL (2002) Breeding for resistance to basal rot in Narcissus. Acta Hortic 570:255–262

    Article  Google Scholar 

  • Daughtrey ML, Benson DM (2005) Principles of plant health management for ornamental plants. Annu Rev Phytopathol 43:141–169

    Article  CAS  PubMed  Google Scholar 

  • De Jong J, Rademaker W (1986) The reaction of Chrysanthemum cultivars to Puccinia horiana and the inheritance of resistance. Euphytica 35:945–952

    Article  Google Scholar 

  • Debener T (2002) Molecular markers as a tool for analysis of genetic relatedness and selection in ornamentals. In: Vainstein A (ed) Breeding for ornamentals: classical and molecular approaches. Kluwer, Dordrecht, pp 329–345

    Chapter  Google Scholar 

  • Debener T (2009) Current strategies and future prospects of resistance breeding in ornamentals. Acta Hortic 863:125–130

    Article  Google Scholar 

  • Debener T, Byrne DH (2014) Disease resistance breeding in rose: current status and potential of biotechnological tools. Plant Sci 228:107–117

    Article  CAS  PubMed  Google Scholar 

  • Demmink JF, Sparnaaij LD, Baayen RP (1987) Interactions between races of Fusarium oxysporum f. sp. dianthi and cultivars of carnation. Acta Hortic 216:125–129

    Article  Google Scholar 

  • Demmink JF, Baayen RP, Sparnaaij LD (1989) Evaluation of the virulence of races 1, 2 and 4 of Fusarium oxysporum f. sp. dianthi in carnation. Euphytica 42:55–63

    Article  Google Scholar 

  • Deng Z, Harbaugh BK (2010) UFGE 4141, UFGE 7014, UFGE 7015, UFGE 7023, UFGE 7032, and UFGE 7034: six new gerbera cultivars for marketing flower plants in large containers. HortScience 45:971–974

    Google Scholar 

  • Deng Z, Harbaugh BK (2013) UFGE 7031 and UFGE 7080 gerbera cultivars. HortScience 48:659–663

    Google Scholar 

  • Deng Z, Harbaugh BK, Kelly RO, Seijo TE, McGovern RJ (2005a) Pythium root rot resistance in commercial caladium cultivars. HortScience 40:549–552

    Google Scholar 

  • Deng Z, Harbaugh BK, Kelly RO, Seijo TE, McGovern RJ (2005b) Screening for resistance to pythium root rot among twenty-three caladium cultivars. HortTechnology 15:631–634

    Google Scholar 

  • Dover KD, McSorley R, Wang K-H (2005) Resistance and tolerance of caladium cultivars to Meloidogyne incognita. Soil Crop Sci Soc Fla Proc 64:98–102

    Google Scholar 

  • Dugo ML, Satovic Z, Millán T, Cubero JI, Rubiales D, Cabrera A, Torres AM (2005) Genetic mapping of QTLs controlling horticultural traits in diploid roses. Theor Appl Genet 111:511–520

    Article  CAS  PubMed  Google Scholar 

  • Eikelboom W, van Eijk JP, Peters D, van Tuyl JM (1992) Resistance to tulip breaking virus (TBV) in tulip. Acta Hortic 325:631–636

    Article  Google Scholar 

  • Elibox W, Umaharan P (2007) Genetic basis of resistance to systemic infection by Xanthomonas axonopodis pv. dieffenbachiae in anthurium. Phytopathology 98:421–426

    Article  Google Scholar 

  • Elibox W, Umaharan P (2008) A quantitative screening method for the detection of foliar resistance to Xanthomonas axonopodis pv. dieffenbachiae in anthurium. Eur J Plant Pathol 121:35–42

    Article  Google Scholar 

  • Elibox W, Umaharan P (2010) Inheritance of resistance to foliar infection by Xanthomonas axonopodis pv. dieffenbachiae in anthurium. Plant Dis 94:1243–1247

    Article  Google Scholar 

  • Foucher F, Hibrand-Saint Oyant L, Baudino S, Caissard JP, Smulder JMS, Debener T, De Riek J, Torres A, Millan T, Amaya I, Zamir D, Sargent D, Nybom H, Hokanson SC, Byrne DM, Desnyé B, Bruneau A, Matsumoto S, Yamada K, Wincker P, Gouzy J, Bendahmane M, Raymond O, Vergne P, Dubois A, Just J (2015) Towards the rose genome sequence and its use in research and breeding. Acta Hortic 1064:167–175

    Article  Google Scholar 

  • Fu Y, Chen M, van Tuyl J, Visser RGF, Arens P (2015) The use of candidate gene approach to arrive at Botrytis resistance in gerbera. Acta Hortic 1087:461–466

    Google Scholar 

  • Garibaldi A, Gullino ML (1987) Fusarium wilt of carnation: present situation, problems and perspectives. Acta Hortic 216:45–54

    Article  Google Scholar 

  • Goktepe F, Seijo TE, Deng Z, Harbaugh BK, Peres NA (2007) Toward breeding for resistance to Fusarium tuber rot in caladium: inoculation technique and sources of resistance. HortScience 42:1135–1139

    Google Scholar 

  • Granke LL, Crawford LE, Hausbeck MK (2012) Factors affecting airborne concentrations of Podosphaera xanthii conidia and severity of gerbera powdery mildew. HortScience 47:1068–1072

    Google Scholar 

  • Hammond J (2006) Current status of genetically modified ornamentals. Acta Hortic 722:117–128

    Article  CAS  Google Scholar 

  • Hausbeck MK (2004) Take a long-range approach to powdery mildew resistance. GMPro 24:68–69

    Google Scholar 

  • Hosseini Moghaddam H, Leus L, Van Huylenbroeck J, Van Bockstaele E, de Riek E (2010) Pathotype dependent resistance mapping for powdery mildew in a diploid rose population. Acta Hortic 870:103–107

    Article  Google Scholar 

  • Hosseini Moghaddam H, Leus L, de Riek J, Van Huylenbroeck J, Van Bockstaele E (2012) Construction of a genetic map with SSR, AFLP and morphological markers to locate QTLs controlling pathotype-specific powdery mildew resistance in diploid roses. Euphytica 184:413–427

    Article  CAS  Google Scholar 

  • Hosseini Moghaddam H, Dewitte A, Van Bockstaele E, Van Huylenbroeck J, Leus L (2014) Roses exhibit pathotype-specific resistance responses to powdery mildew. J Phytopathol 162:107–115

    Article  CAS  Google Scholar 

  • Jones RK, Jenkins JM (1975) Evaluation of resistance in Gladiolus sp. to Fusarium oxysporum f. sp. gladioli. Phytopathology 65:481–484

    Article  Google Scholar 

  • Kamemoto H, Kuehnle AR (1996) Breeding anthuriums in Hawaii. University of Hawaii Press, Honolulu

    Google Scholar 

  • Kaufmann H, Mattiesch L, Lörz H, Debener T (2003) Construction of a BAC library of Rosa rugosa Thunb. and assembly of a contig spanning Rdr1, a gene conferring resistance to black spot. Mol Genet Genomics 268:666–674

    CAS  PubMed  Google Scholar 

  • Kloos WE, George CG, Sorge LK (2005) Inheritance of powdery mildew resistance and leaf macrohair density in Gerbera hybrida. HortScience 40:1246–1251

    Google Scholar 

  • Koskela S, Söderholm PP, Ainasoja M, Wennberg T, Klika KD, Ovcharenko VV, Kylänlahti I, Auerma T, Yli-Kauhaluoma J, Pihlaja K, Vuorela PM, Teeri TH (2011) Polyketide derivatives active against Botrytis cinerea in Gerbera hybrida. Planta 233:37–48

    Article  CAS  PubMed  Google Scholar 

  • Leus L, van Huylenbroeck J, Rys F, Dewitte A, Van Bockstaele E, Höfte M (2007) Applied powdery mildew resistance breeding in roses. Acta Hortic 751:275–284

    Article  Google Scholar 

  • Leus L, Hosseini Moghaddam H, van Huylenbroeck J, De Rieck J (2015) QTLs associated with powdery mildew resistance responses in roses. Acta Hortic 1064:287–294

    Article  Google Scholar 

  • Li Y, Windham M, Trigiano R, Reed S, Rinehart T, Spiers J (2009) Assessment of resistance components of bigleaf hydrangea (Hydrangea macrophylla) to Erysiphe polygoni in vitro. Can J Plant Pathol 31:348–355

    Article  Google Scholar 

  • Lim JH, Shin HK, Park SK, Cho HR, Rhee HK, Kim MS, Joung HY (2009) A new pray chrysanthemum, ‘Pure Angel’ with resistant to white rust, single flower type and pure white petals for cut flower. Korean J Breed Sci 41:173–176

    Google Scholar 

  • Linde M, Debener T (2003) Isolation and identification of eight races of powdery mildew of roses (Podosphaera pannosa) (Wallr.: Fr.) de Bary and the genetic analysis of the resistance gene Rpp1. Theor Appl Genet 107:256–262

    Article  CAS  PubMed  Google Scholar 

  • Linde M, Hattendorf A, Kaufmann H, Debener T (2006) Powdery mildew resistance in roses: QTL mapping in different environments using selective genotyping. Theor Appl Genet 113:1081–1092

    Article  CAS  PubMed  Google Scholar 

  • Linfield CA (1986) The susceptibility of Narcissus species to infection by Fusarium oxysporum f. sp. narcissi. Acta Hortic 177:67–70

    Article  Google Scholar 

  • Linfield CA (1992) Wild Narcissus species as a source of resistance to Fusarium oxysporum f. sp. narcissi. Ann Appl Biol 121:175–181

    Article  Google Scholar 

  • Linfield CA (1997) Variation in pathogenicity, morphology and conidial agglutination of Fusarium oxysporum f. sp. narcissi and resistance to basal rot in Narcissus. Acta Hortic 430:597–604

    Article  Google Scholar 

  • Linfield CA, Price D (1986) Screening bulbils, chips, twin scales and seedlings of several cultivars for resistance to Fusarium oxysporum f. sp. narcissi. Acta Hortic 177:71–75

    Article  Google Scholar 

  • Lipp RL, Alvarez AM, Benedict AA, Berestecky J (1992) Use of monoclonal and pathogenicity tests to characterize strains of Xanthomonas campestris pv. dieffenbachiae from aroids. Phytopathology 82:677–682

    Article  Google Scholar 

  • Löffler HJM, Straathof ThP, Mouris JR, Baayen RP (1995) Durability of resistance in lily to basal rot: evaluation of virulence and aggressiveness among isolates of Fusarium oxysporum f. sp. narcissi. Eur J Plant Pathol 101:261–271

    Google Scholar 

  • Löffler HJM, Straathof ThP, van Rijbroeck PCL, Roebroeck EJA (1997) Fusarium resistance in Gladiolus: the development of a screening assay. J Phytopathol 145:465–468

    Google Scholar 

  • Lühmann AK, Linde M, Debener T (2010) Genetic diversity of Diplocarpon rosae: implications on practical breeding. Acta Hortic 870:157–162

    Article  Google Scholar 

  • Matsushita Y, Aoki K, Sumitomo K (2012) Selection and inheritance of resistance to Chrysanthemum stunt viroid. Crop Prot 35:1–4

    Article  CAS  Google Scholar 

  • McSorley R, Wang K-H, Frederick JJ (2004) Host suitability of caladium varieties to Meloidogyne incognita. Nematropica 34:97–101

    Google Scholar 

  • Mitteau Y (1987) Breeding of new carnations resistant to Fusarium oxysporum. Acta Hortic 216:359

    Article  Google Scholar 

  • Morikawa T, Taga Y, Morii T (2005) Resistance of tulip cultivars to mild mottle mosaic disease. Acta Hortic 673:549–553

    Article  Google Scholar 

  • Nabeshima T, Hosokawa M, Yano S, Ohishi K, Doi M (2012) Screening of chrysanthemum cultivars with resistance to Chrysanthemum stunt viroid. J Jpn Soc Hortic Sci 81:285–294

    Article  CAS  Google Scholar 

  • Nicholson P, Skidmore DI, Ingram DS (1989) Resistance of narcissus to infection by Fusarium oxysporum f. sp. narcissi. Mycol Res 93:363–368

    Article  Google Scholar 

  • Norman DJ, Henny RJ, Yuen JMF (1999) Resistance levels of pot anthurium cultivars to Xanthomonas campestris pv. dieffenbachiae. HortScience 34:721–722

    Google Scholar 

  • Omori H, Hosokawa M, Shiba H, Shitsukawa N, Murai K, Yazawa S (2009) Screening of chrysanthemum plants with strong resistance to Chrysanthemum stunt viroid. J Jpn Soc Hortic Sci 78:350–355

    Article  Google Scholar 

  • Onozaki T, Yamaguchi T, Himeno M, Ikeda H (1999a) Evaluation of 277 carnation cultivars for resistance to bacterial wilt. J Jpn Soc Hortic Sci 68:546–550

    Article  Google Scholar 

  • Onozaki T, Yamaguchi T, Himeno M, Ikeda H (1999b) Evaluation of wild Dianthus accessions for resistance to bacterial wilt (Burkholderia caryophylli). J Jpn Soc Hortic Sci 68:974–978

    Article  Google Scholar 

  • Onozaki T, Tanikawa N, Taneya M, Kudo K, Funayama T, Ikeda H, Shibata M (2004) A RAPD-derived STS marker linked to a bacterial wilt (Burkholderia caryophylli) resistance gene in carnation. Euphytica 138:255–262

    Article  CAS  Google Scholar 

  • Pang CM, van Empel P, van Tuyl JM (2006) Inheritance and resistance to Botrytis disease in F1 generation of tulips. J Northwest Sci-Tech Univ Agric For 34:105–108

    Google Scholar 

  • Qiu XQ, Jian HY, Wang QG, Zhou NN, Chen M, Zhang H, Tang KX (2015) Powdery mildew resistance identification of wild Rosa germplasms. Acta Hortic 1064:329–335

    Article  Google Scholar 

  • Ridings WH, Hartman RD (1976) Pathogenicity of Pythium myriotylum and other species of Pythium to caladium derived from shoot-tip culture. Phytopathology 66:704–709

    Article  Google Scholar 

  • Roebroeck EJA, Mes JJ (1992) Physiological races and vegetative compatibility groups within Fusarium oxysporum f. sp. gladioli. Neth J Plant Pathol 98:57–64

    Article  Google Scholar 

  • Romanow LR, van Eijk JP, Eikelboom W (1986) Investigating resistance in tulip to tulip breaking virus and its transmission. Acta Hortic 177:235–239

    Article  Google Scholar 

  • Romanow LR, van Eijk JP, Eikelboom W, van Schadewijk AR, Peters D (1991) Determining levels of resistance to tulip breaking virus (TBV) in tulip (Tulipa L.) cultivars. Euphytica 51:273–280

    Article  Google Scholar 

  • Schulz DF, Debener T (2007) Screening for resistance to downy mildew and its early detection in roses. Acta Hortic 751:189–198

    Article  CAS  Google Scholar 

  • Schulz DF, Linde M, Blechert O, Debener T (2009) Evaluation of genus Rosa germplasm for resistance to black spot, downy mildew and powdery mildew. Eur J Hortic Sci 74:1–9

    Google Scholar 

  • Scovel G, Ovadis M, Vainstein A, Reuven M, Ben-Yephet Y (2001) Marker assisted selection for resistance to Fusarium oxysporum in the greenhouse carnation. Acta Hortic 552:151–156

    Article  CAS  Google Scholar 

  • Seijo TE, Peres NA, Deng Z (2010) Characterization of strains of Xanthomonas axonopodis pv. dieffenbachiae from bacterial blight of caladium and identification of sources of resistance for breeding improved cultivars. HortScience 45:220–224

    Google Scholar 

  • Shahin A, Arens P, van Heusden AW, van der Linden G, van Kaauwen M, Khan N, Schouten HJ, van de Weg WE, Visser RFG, van Tuyl JM (2011) Genetic mapping in Lilium: mapping of major genes and quantitative trait loci for several ornamental traits and disease resistances. Plant Breed 130:372–382

    Article  CAS  Google Scholar 

  • Song X, Deng Z (2013) Powdery mildew resistance in gerbera: mode of inheritance, quantitative locus identification, and resistance responses. J Am Soc Hortic Sci 138:470–478

    CAS  Google Scholar 

  • Sparnaaij LD (1983) Questions around Fusarium resistance in carnation. Acta Hortic 141:41–42

    Article  Google Scholar 

  • Sparnaaij LD, Demmink JF (1987) Current research in the Netherlands on improvement of breeding and selection methods for resistance of carnations to Fusarium oxysporum f. sp. dianthi. Acta Hortic 216:111–117

    Article  Google Scholar 

  • Sparnaaij LD, Garretsen F, Bekker W (1975) Additive inheritance of resistance to Phytophthora cryptogea Pethybridge & Lafferty in Gerbera jamesonii Bolus. Euphytica 24:551–556

    Article  Google Scholar 

  • Straathof ThP, Eikelboom W (1997) Tulip breeding at CPRO-DLO. Daffodil Tulip Yearb 8:27–33. http://www.liliumbreeding.nl/Tulipa_breeding.pdf. Accessed 8 Nov 2015

  • Straathof ThP, Inggamer H (1992) Influence of temperature, inoculum concentration and time course in a scale test for Fusarium resistance in Lilium. Acta Hortic 325:695–701

    Google Scholar 

  • Straathof ThP, Löffler HJM (1994a) Resistance to Fusarium oxysporum at different developmental stages of Asiatic hybrid lilies. J Am Soc Hortic Sci 119:1068–1072

    Google Scholar 

  • Straathof ThP, Löffler HJM (1994b) Screening for Fusarium resistance in seedling populations of Asiatic hybrid lily. Euphytica 78:43–51

    Google Scholar 

  • Straathof ThP, van Tuyl JM (1994) Genetic variation in resistance to Fusarium oxysporum f. sp. lilii in the genus Lilium. Ann Appl Biol 125:61–72

    Google Scholar 

  • Straathof ThP, Jansen J, Löffler HJM (1993) Determination of resistance to Fusarium oxysporum in Lilium. Phytopathology 83:568–572

    Google Scholar 

  • Straathof ThP, Eikelboom W, van Tuyl JM (1996a) Screening for TBV-resistance in seedling populations of Tulipa L. Acta Hortic 432:392–399

    Google Scholar 

  • Straathof ThP, van Tuyl JM, Dekker B, van Winden MJM, Sandbrink JM (1996b) Genetic analysis of inheritance of partial resistance to Fusarium oxysporum in Asiatic hybrids of lily using RAPD markers. Acta Hortic 414:209–218

    Google Scholar 

  • Straathof ThP, Jansen J, Roebroeck EJA, Löffler HJM (1997a) Fusarium resistance in Gladiolus: selection in seedling populations. Plant Breed 116:283–286

    Google Scholar 

  • Straathof ThP, Löffler HJM, Linfield CA, Roebroeck EJA (1997b) Breeding for resistance to Fusarium oxysporum in flower bulbs. Acta Hortic 430:477–486

    Google Scholar 

  • Straathof ThP, Roebroeck EJA, Löffler HJM (1998) Studies on Fusarium-Gladiolus interactions. J Phytopathol 146:83–88

    Google Scholar 

  • Straathof ThP, Mes JJ, Eikelboom W, van Tuyl JM (2002) A greenhouse screening assay for Botrytis tulipae resistance in tulips. Acta Hortic 570:415–421

    Google Scholar 

  • Takatsu Y, Ohishi K, Tomita Y, Hayashi M, Nakajima M, Akutsu K (2000) Use of chrysanthemum plantlets grown in vitro to test cultivar susceptibility to white rust, Puccinia horiana P. Hennings. Plant Breed 119:528–530

    Article  Google Scholar 

  • Tang N, van der Lee T, Shahin A, Holdinga M, Bijman P, Caser M, Visser RGF, van Tuyl JM, Arens P (2015) Genetic mapping of resistance to Fusarium oxysporum f. sp. tulipae in tulip. Mol Breed 35:122. doi:10.1007/s11032-015-0316-3. Accessed 8 Nov 2015

    Article  PubMed  PubMed Central  Google Scholar 

  • Terefe-Ayana D, Yasmin A, Le TL, Kaufmann H, Biber A, Khr A, Linde M, Debener T (2011) Mining disease-resistance genes in roses: functional and molecular characterization of the Rdr1 locus. Front Plant Sci. doi:10.3389/fpls.2011.00035. Accessed 4 Nov 2015

    PubMed  PubMed Central  Google Scholar 

  • Tompsett AA (1986) Narcissus varietal susceptibility to Fusarium oxysporum (basal rot). Acta Hortic 177:77–83

    Article  Google Scholar 

  • Tramier R, Antonini C, Bettachini A, Metay C (1983) Studies on Fusarium wilt resistance in carnation. Acta Hortic 141:49–54

    Article  Google Scholar 

  • Tramier R, Atomini A, Bettachini A (1987) Variations of the tolerant level of carnation cultivars against Fusarium oxysporum f. sp. dianthi depending on the substrate. Acta Hortic 216:105–109

    Article  Google Scholar 

  • Tsuji T, Imai T, Ikegawa S, Kanamori M, Umada Y, Koizumi M, Kizu M, Iimura N, Urashima O (2005) The production and characteristics of the new tulip cultivar, ‘Arisa’. Acta Hortic 673:555–558

    Article  Google Scholar 

  • van Eijk JP, Eikelboom W (1983) Breeding for resistance to Fusarium oxysporum f. sp. tulipae in tulip (Tulipa L.). 3. Genotypic evaluation of cultivars and effectiveness of pre-selection. Euphytica 32:505–510

    Article  Google Scholar 

  • van Eijk JP, Bergman BHH, Eikelboom W (1978) Breeding for resistance to Fusarium oxysporum f. sp. tulipae in tulip (Tulipa L.). 1. Development of a screening test for selection. Euphytica 27:255–261

    Google Scholar 

  • van Eijk JP, Garretsen F, Eikelboom W (1979) Breeding for resistance to Fusarium oxysporum f. sp. tulipae in tulip (Tulipa L.). 2. Phenotypic and genotypic evaluation of cultivars. Euphytica 28:67–71

    Article  Google Scholar 

  • van Eijk JP, Eikelboom W, Hogenboom NG (1985) The importance of wild species and old cultivars for the breeding of flowerbulbs. Acta Hortic 177:399–403

    Google Scholar 

  • van Heusden AW, Jongerius MC, van Tuyl JM, Straathof TP, Mes JJ (2002) Molecular assisted breeding for disease resistance in lily. Acta Hortic 572:131–138

    Article  Google Scholar 

  • van Tuyl JM, van Creij GM (2006) Tulip. In: Anderson NO (ed) Flower breeding and genetics: Issues, challenges, and opportunities for the 21st century. Springer, Dordrecht, pp 623–641

    Google Scholar 

  • von Malek B, Debener T (1998) Genetic analysis of resistance to blackspot (Diplocarpon rosae) in tetraploid roses. Theor Appl Genet 96:228–231

    Article  Google Scholar 

  • Whitaker VM, Hokanson SC (2009) Partial resistance to black spot disease in diploid and tetraploid roses: general combining ability and implications for breeding and selection. Euphytica 169:421–429

    Article  Google Scholar 

  • Whitaker VM, Hokanson SC, Bradeen J (2007a) Distribution of rose black spot (Diplocarpon rosae) genetic diversity in eastern North America using amplified fragment length polymorphism and implications for resistance screening. J Am Soc Hortic Sci 132:534–540

    Google Scholar 

  • Whitaker VM, Zuzek K, Hokanson SC (2007b) Resistance of 12 rose genotypes to 14 isolates of Diplocarpon rosae Wolf (rose black spot) collected from eastern North America. Plant Breed 126:83–88

    Article  Google Scholar 

  • Whitaker VM, Bradeen J, Debener T, Biber A, Hokanson SC (2010a) Rdr3, a novel locus conferring black spot disease resistance in tetraploid rose: genetic analysis, LRR profiling, and SCAR marker development. Theor Appl Genet 120:573–585

    Article  CAS  PubMed  Google Scholar 

  • Whitaker VM, Debener T, Roberts AV, Hokanson SC (2010b) A standard set of host differentials and unified nomenclature for an international collection of Diplocarpon rosae races. Plant Pathol 59:745–752

    Article  Google Scholar 

  • Wilfret GJ (1981) ‘Florida Flame’ gladiolus. HortScience 16:787–788

    Google Scholar 

  • Wilfret GJ (1986) ‘Dr. Magie’ gladiolus. HortScience 21:163–164

    Google Scholar 

  • Wilfret GJ (1993) ‘Morning Mist’ gladiolus. HortScience 28:752–753

    Google Scholar 

  • Windham MT, Reed SM, Mmbaga MT, Windham AS, Li Y, Rinehart TA (2011) Evaluation of powdery mildew resistance in Hydrangea macrophylla. J Environ Hortic 29:60–64

    Google Scholar 

  • Xiong J-S, Ding J, Li Y (2015) Genome-editing technologies and their potential application in horticultural crop breeding. Hortic Res 2:15019. doi:10.1038/hortres.2015.19. Accessed 18 Jan 2016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu AG, Davidson CG (1998) Components of partial resistance to black spot disease (Diplocarpon rosae Wolf) in garden roses. HortScience 33:96–99

    Google Scholar 

  • Xu Q, Wen X, Deng X (2005) Isolation of TIR and nonTIR NBS-LRR resistance gene analogues and identification of molecular markers linked to a powdery mildew resistance locus in chestnut rose (Rosa roxburghii Tratt). Theor Appl Genet 111:819–830

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Wen X, Deng X (2007) Cloning of two classes of PR genes and the development of SNAP markers for powdery mildew resistance loci in chestnut rose (Rosa roxburghii Tratt). Mol Breed 19:179–191

    Article  CAS  Google Scholar 

  • Yagi M (2015) Recent progress in genomic analysis of ornamental plants, with a focus on carnation. Hortic J 84:3–13

    Article  Google Scholar 

  • Yagi M, Onozaki T, Taneya M, Matanabe H, Yoshimura T, Yoshinari T, Ochiai Y, Shibata M (2006) Construction of a genetic linkage map for the carnation by using RAPD and SSR markers and mapping quantitative trait loci (QTL) for resistance to bacterial wilt caused by Burkholderia caryophylli. J Jpn Soc Hortic Sci 75:166–172

    Article  CAS  Google Scholar 

  • Yagi M, Kimura T, Yamamoto T, Isobe S, Tabata S, Onozaki T (2012a) QTL analysis for resistance to bacterial wilt (Burkholderia caryophylli) in carnation (Dianthus caryophyllus) using an SSR-based genetic linkage map. Mol Breed 30:495–509

    Article  CAS  Google Scholar 

  • Yagi M, Tanikawa N, Shibata M, Onozaki T (2012b) Breeding of carnations (Dianthus caryophyllus L.) for resistance to bacterial wilt (Burkholderia caryophylli). Acta Hortic 937:427–432

    Article  Google Scholar 

  • Yagi M, Kosugi S, Hirakawa H et al (2013a) Sequence analysis of the genome of carnation (Dianthus caryophyllus L.). DNA Res 1–11. doi:10.1093/dnares/dst053. Accessed 25 Dec 2015

    Google Scholar 

  • Yagi M, Yamamoto T, Isobe S, Hirakawa H, Tabata S, Tanase K, Yamaguchi H, Onozaki T (2013b) Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.). BMC Genomics 14:734. http://www.biomedcentral.com/1471-2164/14/734. Accessed 25 Dec 2015

  • Yan Z, Dolstra O, Prins TW, Stam P, Visser PB (2006) Assessment of partial resistance to powdery mildew (Podosphaera pannosa) in a tetraploid rose population using a spore-suspension inoculation method. Eur J Plant Pathol 114:301–308

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanao Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Deng, Z. (2018). Breeding for Disease Resistance in Florists’ Crops. In: McGovern, R., Elmer, W. (eds) Handbook of Florists' Crops Diseases. Handbook of Plant Disease Management. Springer, Cham. https://doi.org/10.1007/978-3-319-39670-5_4

Download citation

Publish with us

Policies and ethics