Skip to main content
Log in

Accuracy of within- and among-family genomic prediction for Fusarium head blight and Septoria tritici blotch in winter wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Genomic selection is an approach that uses whole-genome marker data to predict breeding values of genotypes and holds the potential to improve the genetic gain in breeding programs. In this study, two winter wheat populations (DS1 and DS2) consisting of 438 and 585 lines derived from six and eight bi-parental families, respectively, were genotyped with genome-wide single nucleotide polymorphism markers and phenotyped for Fusarium head blight and Septoria tritici blotch severity, plant height and heading date. We used ridge regression-best linear unbiased prediction to investigate the potential of genomic selection under different selection scenarios: prediction across each winter wheat population, within- and among-family prediction in each population, and prediction from DS1 to DS2 and vice versa. Moreover, we compared a full random model to a model incorporating quantitative trait loci (QTL) as fixed effects. The prediction accuracies obtained by cross-validation within populations were moderate to high for all traits. Accuracies for individual families were in general lower and varied with population size and genetic architecture of the trait. In the among-family prediction scenario, highest accuracies were achieved by predicting from one half-sib family to another, while accuracies were lowest between unrelated families. Our results further demonstrate that the prediction accuracy can be considerably increased by a fixed effect model approach when major QTL are present. Taken together, the implementation of genomic selection for Fusarium head blight and Septoria tritici blotch resistance seems to be promising, but the composition of the training population is of utmost importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adhikari TB, Yang X, Cavaletto JR et al (2004) Molecular mapping of Stb1, a potentially durable gene for resistance to Septoria tritici blotch in wheat. Theor Appl Genet 109:944–953

    Article  CAS  PubMed  Google Scholar 

  • Agostinelli AM, Clark AJ, Brown-Guedira G, Van Sanford DA (2012) Optimizing phenotypic and genotypic selection for Fusarium head blight resistance in wheat. Euphytica 186:115–126

    Article  Google Scholar 

  • Ahmed T, Tsujimoto H, Sasakuma T (2000) Identification of RFLP markers linked with heading date and its heterosis in hexaploid wheat. Euphytica 116:111–119

    Article  CAS  Google Scholar 

  • Anderson JA, Chao SM, Liu SX (2007) Molecular breeding using a major QTL for Fusarium head blight resistance in wheat. Crop Sci 47:112–119

    Article  Google Scholar 

  • Arruda M, Brown P, Lipka A, Krill A, Thurber C, Kolb F (2015) Genomic selection for predicting Fusarium head blight resistance in a wheat breeding program. Plant Genome. https://doi.org/10.3835/plantgenome2015.01.0003

    Article  PubMed  Google Scholar 

  • Arruda M, Lipka A, Brown P, Krill A, Thurber C, Brown-Guedira G et al (2016) Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivum). Mol Breed 36:1–11

    Article  CAS  Google Scholar 

  • Aulchenko Y, Ripke S, Isaacs A, van Duijn C (2007) GenABEL: an R package for genome-wide association analysis. Bioinformatics 23:1294–1296

    Article  CAS  PubMed  Google Scholar 

  • Baltazar B, Scharen A, Kronstad W (1990) Association between dwarfing genes ‘Rht 1’ and ‘Rht 2’and resistance to Septoria tritici Blotch in winter wheat (Triticum aestivum L. em Thell). Theor Appl Genet 79:422–426

    Article  CAS  PubMed  Google Scholar 

  • Balut AL, Clark AJ, Brown-Guedira G, Souza E, Van Sanford DA (2013) Validation of Fhb1 and QFhs.nau-2DL in several soft red winter wheat populations. Crop Sci 53:934–945

    Article  CAS  Google Scholar 

  • Bassi FM, Bentley AR, Charmet G, Ortiz R, Crossa J (2016) Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci 242:23–36

    Article  CAS  PubMed  Google Scholar 

  • Bernardo R (2003) Parental selection, number of breeding populations, and size of each population in inbred development. Theor Appl Genet 107:1252–1256

    Article  CAS  PubMed  Google Scholar 

  • Bernardo R (2014) Genomewide selection when major genes are known. Crop Sci 54:68–75

    Article  Google Scholar 

  • Buerstmayr H, Steiner B, Lemmens M, Ruckenbauer P (2000) Resistance to Fusarium head blight in winter wheat: heritability and trait associations. Crop Sci 40:1012–1018

    Article  Google Scholar 

  • Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M, Ruckenbauer P (2002) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (type II resistance). Theor Appl Genet 104:84–91

    Article  CAS  PubMed  Google Scholar 

  • Buerstmayr H, Steiner B, Hartl L et al (2003) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor Appl Genet 107:503–508

    Article  CAS  PubMed  Google Scholar 

  • Buerstmayr H, Ban T, Anderson J (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant breed 128:1–26

    Article  CAS  Google Scholar 

  • Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 52:707–719

    Article  Google Scholar 

  • Chartrain L, Joaquim P, Berry ST, Arraiano LS, Azanza F, Brown JKM (2005) Genetics of resistance to Septoria tritici blotch in the Portuguese wheat breeding line TE 9111. Theor Appl Genet 110:1138–1144

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Griffey CA, Maroof MAS, Stromberg EL, Biyashev RM, Zhao W, Chappell MR, Pridgen TH, Dong Y, Zeng Z (2006) Validation of two major quantitative trait loci for Fusarium head blight resistance in Chinese wheat line W14. Plant Breed 125:99–101

    Article  CAS  Google Scholar 

  • Cools HJ, Fraaije BA (2008) Are azole fungicides losing ground against Septoria wheat disease? Resistance mechanisms in Mycosphaerella graminicola. Pest Manag Sci 64:681–684

    Article  CAS  PubMed  Google Scholar 

  • Crossa J, de Los Campos G, Pérez P et al (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daetwyler H, Pong-Wong R, Villanueva B, Woolliams JA (2010) The impact of genetic architecture on genome-wide evaluation methods. Genetics 185:1021–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Roos A, Hayes B, Goddard M (2009) Reliability of genomic predictions across multiple populations. Genetics 183:1545–1553

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Blanco IA, Frohberg RC, Stack RW, Berzonsky WA, Kianian SF (2003) Detection of QTL linked to Fusarium head blight resistance in Sumai 3-derived North Dakota bread wheat lines. Theor Appl Genet 106:1027–1031

    Article  PubMed  Google Scholar 

  • Draeger R, Gosman N, Steed A et al (2007) Identification of QTLs for resistance to Fusarium head blight, DON accumulation and associated traits in the winter wheat variety Arina. Theor Appl Genet 115:617–625

    Article  CAS  PubMed  Google Scholar 

  • Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4:250–255

    Article  Google Scholar 

  • Fisher RA (1921) On the “probable error” of a coefficient of correlation deduced from a small sample. Metron 1:1–32

    Google Scholar 

  • Fones H, Gurr S (2015) The impact of Septoria tritici blotch disease on wheat: an EU perspective. Fungal Genet Biol 79:3–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Gervais L, Dedryver F, Morlais JY et al (2003) Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor Appl Genet 106:961–970

    Article  CAS  PubMed  Google Scholar 

  • Gilmour A, Gogel B, Cullis B, Thompson R (2009) ASReml user guide release 3.0. VSN International Hemel Ltd, Hempstead. http://www.vsni.co.uk. Accessed 3 March 2017

  • Goddard M, Hayes B (2007) Genomic selection. J Anim Breed Genet 124:323–330

    Article  CAS  PubMed  Google Scholar 

  • González-Camacho J, de los Campos G, Pérez P et al (2012) Genome-enabled prediction of genetic values using radial basis function neural networks. Theor Appl Genet 125:759–771

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodwin SB (2007) Back to basics and beyond: increasing the level of resistance to Septoria tritici blotch in wheat. Australas Plant Pathol 36:532–538

    Article  Google Scholar 

  • Gosman N, Steed A, Simmonds J, Leverington-Waite M, Wang Y, Snape J, Nicholson P (2008) Susceptibility to Fusarium head blight is associated with the Rht-D1b semi-dwarfing allele in wheat. Theor Appl Genet 116:1145–1153

    Article  CAS  PubMed  Google Scholar 

  • Gower J (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338

    Article  Google Scholar 

  • Griffiths S, Simmonds J, Leverington M et al (2009) Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119:383–395

    Article  CAS  PubMed  Google Scholar 

  • Habier D, Fernando R, Dekkers J (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallauer A, Miranda JB (1981) Quantitative genetics in maize breeding. Iowa State University Press, Iowa City

    Google Scholar 

  • Han S, Utz H, Liu W et al (2016) Choice of models for QTL mapping with multiple families and design of the training set for prediction of Fusarium resistance traits in maize. Theor Appl Genet 129:431–444

    Article  CAS  PubMed  Google Scholar 

  • Hanocq E, Laperche A, Jaminon O, Lainé A, Le Gouis J (2007) Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet 114:569–584

    Article  CAS  PubMed  Google Scholar 

  • Hayes B, Visscher P, Goddard M (2009) Increased accuracy of artificial selection by using the realized relationship matrix. Genet Res 91:47–60

    Article  CAS  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690

    Article  Google Scholar 

  • Herter CP, Ebmeyer E, Kollers S, Korzun V, Miedaner T (2019) An experimental approach for estimating the realized gain from genomic selection for Fusarium head blight and Septoria tritici blotch in winter wheat. Theor Appl Genet (submitted)

  • Hess D, Shaner G (1987) Effect of moisture and temperature on development of Septoria tritici blotch in wheat. Phytopathology 77:215–219

    Article  Google Scholar 

  • Holzapfel J, Voss HH, Miedaner T, Korzun V, Häberle J, Schweizer G, Mohler V, Zimmermannn G, Hartl L (2008) Inheritance of resistance to Fusarium head blight in three European winter wheat populations. Theor Appl Genet 117:1119–1128

    Article  PubMed  Google Scholar 

  • Jannink J-L, Lorenz A, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genom 9:166–177

    Article  CAS  Google Scholar 

  • Jiang Y, Schulthess A, Rodemann B et al (2016) Validating the prediction accuracies of marker-assisted and genomic selection of Fusarium head blight resistance in wheat using an independent sample. Theor Appl Genet 130:471–482

    Article  CAS  PubMed  Google Scholar 

  • Juliana P, Singh R, Singh P et al (2017) Comparison of models and whole-genome profiling approaches for genomic-enabled prediction of Septoria tritici blotch, Stagonospora nodorum blotch, and tan spot resistance in wheat. Plant Genome. https://doi.org/10.3835/plantgenome2016.08.0082

    Article  PubMed  Google Scholar 

  • Klahr A, Zimmermann G, Wenzel G, Mohler V (2007) Effects of environment, disease progress, plant height and heading date on the detection of QTLs for resistance to Fusarium head blight in an European winter wheat cross. Euphytica 154:17–28

    Article  CAS  Google Scholar 

  • Kollers S, Rodemann B, Ling J et al (2013) Genetic architecture of resistance to Septoria tritici blotch (Mycosphaerella graminicola) in European winter wheat. Mol Breed 32:411–423

    Article  CAS  Google Scholar 

  • Kuchel H, Hollamby G, Langridge P, Williams K, Jefferies S (2006) Identification of genetic loci associated with ear-emergence in bread wheat. Theor Appl Genet 113:1103–1112

    Article  CAS  PubMed  Google Scholar 

  • Kutcher HR, Johnston AM, Bailey KL, Malhi SS (2011) Managing crop losses from plant diseases with foliar fungicides, rotation and tillage on a Black chernozem in Saskatchewan, Canada. Field Crop Res 124:205–212

    Article  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lehermeier C, Krämer N, Bauer E et al (2014) Usefulness of multiparental populations of maize (Zea mays L.) for genome-based prediction. Genetics 198:3–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Liabeuf D, Sim S, Francis D (2018) Comparison of marker-based genomic estimated breeding values and phenotypic evaluation for selection of bacterial spot resistance in tomato. Phytopathology 108:392–401

    Article  PubMed  Google Scholar 

  • Liu S, Hall M, Griffey C, McKendry A (2009) Meta-analysis of QTL associated with Fusarium head blight resistance in wheat. Crop Sci 49:1955–1968

    Article  CAS  Google Scholar 

  • Löffler M, Schön CC, Miedaner T (2009) Revealing the genetic architecture of FHB resistance in hexaploid wheat (Triticum aestivum L.) by QTL meta-analysis. Mol Breed 23:473–488

    Article  CAS  Google Scholar 

  • Lorenz A, Smith K (2015) Adding genetically distant individuals to training populations reduces genomic prediction accuracy in barley. Crop Sci 55:2657–2667

    Article  CAS  Google Scholar 

  • Lorenz A, Chao S, Asoro F et al (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123

    Article  Google Scholar 

  • Marulanda JJ, Melchinger AE, Würschum T (2015) Genomic selection in biparental populations: assessment of parameters for optimum estimation set design. Plant Breed 134:623–630

    Article  CAS  Google Scholar 

  • McCartney CA, Somers DJ, Fedak G, DePauw RM, Thomas J, Fox SL, Humphreys DG, Lukow O, Savard ME, McCallum BD, Gilbert J, Cao W (2007) The evaluation of FHB resistance QTLs introgressed into elite Canadian spring wheat germplasm. Mol Breed 20:209–221

    Article  Google Scholar 

  • McGill R, Tukey JW, Larsen WA (1978) Variations of box plots. Am Stat 32:12–16

    Google Scholar 

  • Meuwissen T, Hayes B, Goddard M (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michel S, Ametz C, Gungor H, Epure D, Grausgruber H, Löschenberger F, Buerstmayr H (2016) Genomic selection across multiple breeding cycles in applied bread wheat breeding. Theor Appl Genet 129:1179–1189

    Article  PubMed  PubMed Central  Google Scholar 

  • Miedaner T, Korzun V (2012) Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 102:560–566

    Article  PubMed  Google Scholar 

  • Miedaner T, Gang G, Geiger H (1996) Quantitative-genetic basis of aggressiveness of 42 isolates of Fusarium culmorum for winter rye head blight. Plant Dis (USA) 80:500–504

    Article  Google Scholar 

  • Miedaner T, Wilde F, Steiner B, Buerstmayr H, Korzun V, Ebmeyer E (2006) Stacking quantitative trait loci (QTL) for Fusarium head blight resistance from non-adapted sources in an European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity. Theor Appl Genet 112:562–569

    Article  CAS  PubMed  Google Scholar 

  • Miedaner T, Würschum T, Maurer HP, Korzun V, Ebmeyer E, Reif JC (2011) Association mapping for Fusarium head blight resistance in European soft winter wheat. Mol Breed 28:647–655

    Article  Google Scholar 

  • Miedaner T, Risser P, Paillard S, Schnurrbusch T, Keller B, Hartl L, Holzapfel J, Korzun V, Ebmeyer E, Utz HF (2012) Broad-spectrum resistance loci for three quantitatively inherited diseases in two winter wheat populations. Mol Breed 29:731–742

    Article  CAS  Google Scholar 

  • Miedaner T, Zhao Y, Gowda M et al (2013) Genetic architecture of resistance to Septoria tritici blotch in European wheat. BMC Genom 14:858

    Article  CAS  Google Scholar 

  • Miedaner T, Schulthess AW, Gowda M, Reif JC, Longin CFH (2017) High accuracy of predicting hybrid performance of Fusarium head blight resistance by mid-parent values in wheat. Theor Appl Genet 130:461–470

    Article  CAS  PubMed  Google Scholar 

  • Miedaner T, Herter CP, Ebmeyer E, Kollers S, Korzun V (2019) Use of non-adapted QTL for Fusarium head blight resistance for breeding semi-dwarf wheat. Plant Breed (submitted 2018)

  • Mirdita V, He S, Zhao Y et al (2015a) Potential and limits of whole genome prediction of resistance to Fusarium head blight and Septoria tritici blotch in a vast Central European elite winter wheat population. Theor Appl Genet 128:2471–2481

    Article  CAS  PubMed  Google Scholar 

  • Mirdita V, Liu G, Zhao Y et al (2015b) Genetic architecture is more complex for resistance to Septoria tritici blotch than to Fusarium head blight in Central European winter wheat. BMC Genom 16:430

    Article  CAS  Google Scholar 

  • Nakaya A, Isobe SN (2012) Will genomic selection be a practical method for plant breeding? Ann Bot 110:1303–1316

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul PA, McMullen MP, Hershman DE, Madden LV (2010) Meta-analysis of the effects of triazole-based fungicides on wheat yield and test weight as influenced by Fusarium head blight intensity. Phytopathology 100:160–171

    Article  CAS  PubMed  Google Scholar 

  • Piepho H, Williams E, Fleck M (2006) A note on the analysis of designed experiments with complex treatment structure. HortScience 41:446–452

    Article  Google Scholar 

  • Pirgozliev SR, Edwards SG, Hare MC et al (2003) Strategies for the control of Fusarium head blight in cereals. Eur J Plant Pathol 109:731–742

    Article  Google Scholar 

  • Poland J, Rutkoski J (2016) Advances and challenges in genomic selection for disease resistance. Annu Rev Phytopathol 54:79–98

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. Retrieved from R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 3 Mar 2017

  • Reif J, Maurer H, Korzun V, Ebmeyer E, Miedaner T, Würschum T (2011) Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor Appl Genet 123:283

    Article  PubMed  Google Scholar 

  • Rutkoski J, Benson J, Jia Y, Brown-Guedira G, Jannink J, Sorrells M (2012) Evaluation of genomic prediction methods for Fusarium head blight resistance in wheat. Plant Genome 5:51–61

    Article  CAS  Google Scholar 

  • Rutkoski J, Poland J, Singh R et al (2014) Genomic selection for quantitative adult plant stem rust resistance in wheat. Plant genome. https://doi.org/10.3835/plantgenome2014.02.0006

    Article  Google Scholar 

  • Rutkoski J, Singh RP, Huerta-Espino J, Bhavani S, Poland J, Jannink JL, Sorrells ME (2015) Genetic gain from phenotypic and genomic selection for quantitative resistance to stem rust of wheat. Plant Genome. https://doi.org/10.3835/plantgenome2014.10.0074

    Article  PubMed  Google Scholar 

  • Salameh A, Buerstmayr M, Steiner B, Neumayer A, Lemmens M, Buerstmayr H (2011) Effects of introgression of two QTL for Fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on Fusarium head blight resistance, yield and quality traits. Mol Breed 28:485–494

    Article  Google Scholar 

  • Saur L, Trottet M (1992) Héritabilité de la résistance à la fusariose de l’épi et sélection récurrente dans une population de blé tendre. Agronomie 12:297–302

    Article  Google Scholar 

  • Schmolke M, Zimmermann G, Buerstmayr H et al (2005) Molecular mapping of Fusarium head blight resistance in the winter wheat population Dream/Lynx. Theor Appl Genet 111:747–775

    Article  CAS  PubMed  Google Scholar 

  • Shindo C, Tsujimoto H, Sasakuma T (2003) Segregation analysis of heading traits in hexaploid wheat utilizing recombinant inbred lines. Heredity 90:56–63

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Ma H, Rajaram S (1995) Genetic analysis of resistance to scab in spring wheat cultivars ‘Frontana’. Plant Dis 79:238–240

    Article  Google Scholar 

  • Snijders C, Perkowski J (1990) Effects of head blight caused by Fusarium culmorum on toxin content and weight of wheat kernels. Phytopathology 80:566–570

    Article  CAS  Google Scholar 

  • Spindel J, Begum H, Akdemir D, Collard B, Redoña E, Jannink J, McCouch S (2016) Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Heredity 116:395–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasachary, Gosman N, Steed A, Hollins T, Bayles R, Jennings P, Nicholson P (2009) Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor Appl Genet 118:695–702

    Article  CAS  PubMed  Google Scholar 

  • Stram D, Lee J (1994) Variance components testing in the longitudinal mixed effects model. Biometrics 50:1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Thompson E, Shaw R (1990) Pedigree analysis for quantitative traits: variance components without matrix inversion. Biometrics 46:399–413

    Article  CAS  PubMed  Google Scholar 

  • Tinker N, Fortin M, Mather D (1993) Random amplified polymorphic DNA and pedigree relationships in spring barley. Theor Appl Genet 85:976–984

    Article  CAS  PubMed  Google Scholar 

  • Torriani SFF, Brunner PC, McDonald BA, Sierotzki H (2009) QoI resistance emerged independently at least 4 times in European populations of Mycosphaerella graminicola. Pest Manag Sci 65:155–162

    Article  CAS  PubMed  Google Scholar 

  • Utz H, Melchinger A, Schön C (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Von der Ohe C, Ebmeyer E, Korzun V, Miedaner T (2010) Agronomic and quality performance of winter wheat backcross populations carrying non-adapted Fusarium head blight resistance QTL. Crop Sci 50:2283–2290

    Article  Google Scholar 

  • Voss H, Holzapfel J, Hartl L et al (2008) Effect of the Rht-D1 dwarfing locus on Fusarium head blight rating in three segregating populations of winter wheat. Plant Breed 127:333–339

    Article  Google Scholar 

  • Wang S, Wong D, Forrest K et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegenast T, Longin CFH, Utz HF, Melchinger AE, Maurer HP, Reif JC (2008) Hybrid maize breeding with doubled haploids IV. Number versus size of crosses and importance of parental selection in two-stage selection for testcross performance. Theor Appl Genet 117:251–260

    Article  PubMed  Google Scholar 

  • Whittaker J, Thompson R, Denham M (2000) Marker-assisted selection using ridge regression. Genet Res 75:249–252

    Article  CAS  PubMed  Google Scholar 

  • Wilde F, Korzun V, Ebmeyer E, Geiger HH, Miedaner T (2007) Comparison of phenotypic and marker-based selection for Fusarium head blight resistance and DON content in spring wheat. Mol Breed 19:357–370

    Article  CAS  Google Scholar 

  • Willyerd KT, Li C, Madden L, Bradley V, Bergstrom CA, Sweets GC, McMullen LE et al (2012) Efficacy and stability of integrating fungicide and cultivar resistance to manage Fusarium head blight and deoxynivalenol in wheat. Plant Dis 96:957–967

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1978) Evolution and genetics of populations, variability within and among natural populations, vol 4. The University of Chicago Press, Chicago, p 91

    Google Scholar 

  • Würschum T (2012) Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet 125:201–210

    Article  PubMed  Google Scholar 

  • Würschum T, Abel S, Zhao Y (2014) Potential of genomic selection in rapeseed (Brassica napus L.) breeding. Plant Breed 133:45–51

    Article  CAS  Google Scholar 

  • Würschum T, Langer S, Longin C (2015) Genetic control of plant height in European winter wheat cultivars. Theor Appl Genet 128:865–874

    Article  CAS  PubMed  Google Scholar 

  • Würschum T, Maurer H, Weissmann S, Hahn V, Leiser W (2017) Accuracy of within-and among-family genomic prediction in triticale. Plant Breed 136:230–236

    Article  CAS  Google Scholar 

  • Yang ZP, Gilbert J, Somers DJ, Fedak G, Procunier JD, McKenzie IH (2003) Marker assisted selection of Fusarium head blight resistance genes in two doubled haploid populations of wheat. Mol Breed 12:309–317

    Article  CAS  Google Scholar 

  • Yuen GY, Schoneweis SD (2007) Strategies for managing Fusarium head blight and deoxynivalenol accumulation in wheat. Int J Food Microbiol 119:126–130

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Pérez-Rodríguez P, Semagn K et al (2015) Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs. Heredity 114:291–299

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Gowda M, Liu W et al (2012) Accuracy of genomic selection in European maize elite breeding populations. Theor Appl Genet 124:769–776

    Article  PubMed  Google Scholar 

  • Zhou WC, Kolb FL, Bai GH, Domier LL, Boze LK, Smith NJ (2003) Validation of a major QTL for scab resistance with SSR markers and use of marker-assisted selection in wheat. Plant Breed 122:40–46

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We highly appreciate the excellent technical support of the teams at KWS LOCHOW and University of Hohenheim. This research was funded by the German Federal Ministry of Education and Research (BMBF, Grant No. 031B0011A+E) in the framework of Bioeconomy International (FusResist). The responsibility of the content of this publication rests with the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Miedaner.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical standards

The experiments comply with the current laws of Germany in which they were performed.

Additional information

Communicated by Jiankang Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1069 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herter, C.P., Ebmeyer, E., Kollers, S. et al. Accuracy of within- and among-family genomic prediction for Fusarium head blight and Septoria tritici blotch in winter wheat. Theor Appl Genet 132, 1121–1135 (2019). https://doi.org/10.1007/s00122-018-3264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3264-6

Navigation