Skip to main content
Log in

Genome-wide association study for agronomic and physiological traits in spring wheat evaluated in a range of heat prone environments

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We identified 27 stable loci associated with agronomic traits in spring wheat using genome-wide association analysis, some of which confirmed previously reported studies. GWAS peaks identified in regions where no QTL for grain yield per se has been mapped to date, provide new opportunities for gene discovery and creation of new cultivars with desirable alleles for improving yield and yield stability in wheat.

Abstract

We undertook large-scale genetic analysis to determine marker-trait associations (MTAs) underlying agronomic and physiological performance in spring wheat using genome-wide association studies (GWAS). Field trials were conducted at seven sites in three countries (Sudan, Egypt, and Syria) over 2–3 years in each country. Twenty-five agronomic and physiological traits were measured on 188 wheat genotypes. After correcting for population structure and relatedness, a total of 245 MTAs distributed over 66 loci were associated with agronomic traits in individual and mean performance across environments respectively; some of which confirmed previously reported loci. Of these, 27 loci were significantly associated with days to heading, thousand kernel weight, grain yield, spike length, and leaf rolling for mean performance across environments. Despite strong QTL by environment interactions, eight of the loci on chromosomes 1A, 1D, 5A, 5D, 6B, 7A, and 7B had pleiotropic effects on days to heading and yield components (TKW, SM−2, and SNS). The winter-type alleles at the homoeologous VRN1 loci significantly increased days to heading and grain yield in optimal environments, but decreased grain yield in heat prone environments. Top 20 high-yielding genotypes, ranked by additive main effects and multiplicative interaction (AMMI), had low kinship relationship and possessed 4–5 favorable alleles for GY MTAs except two genotypes, Shadi-4 and Qafzah-11/Bashiq-1–2. This indicated different yield stability mechanisms due to potentially favorable rare alleles that are uncharacterized. Our results will enable wheat breeders to effectively introgress several desirable alleles into locally adapted germplasm in developing wheat varieties with high yield stability and enhanced heat tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acuna TLB, Rebetzke GJ, He X, Maynol E, Wade LJ (2014) Mapping quantitative trait loci associated with root penetration ability of wheat in contrasting environments. Mol Breed 34:631–642

    Article  Google Scholar 

  • Acuna-Galindo MA, Mason RE, Subrahmanyam NK, Hays D (2014) Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Sci 55:477–492

    Article  Google Scholar 

  • Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB et al (2015) Rising temperatures reduce global wheat production. Nat Clim Change 5:143–147

    Article  Google Scholar 

  • Ayeneh A, van Ginkel M, Reynolds MP, Ammar K (2002) Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress. Field Crop Res 79:173–184

    Article  Google Scholar 

  • Beales J, Turner A, Griffiths S, Snape JW, Laurie DA (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B57:289–300

    Google Scholar 

  • Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T (2012) Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor Appl Genet 125:1473–1485

    Article  PubMed  Google Scholar 

  • Bentley AR, Scutari M, Gosman N, Faure S, Bedford F, Howell P, Cockram J, Rose GA, Barber T, Irigoyen J, Horsnell R, Pumfrey C, Winnie E, Schacht J, Beauchene K, Praud S, Greenland A, Balding D, Mackay IJ (2014) Applying association mapping and genomic selection to the dissection of key traits in elite European wheat. Theor Appl Genet 127:2619–2633

    Article  CAS  PubMed  Google Scholar 

  • Bordes J, Goudemand E, Duchalais L, Chevarin L, Oury FX, Heumez E, Lapierre A, Perretant MR, Rolland B, Beghin D, Laurent V, Le Gouis J, Storlie E, Robert O, Charmet G (2014) Genome-wide association mapping of three important traits using bread wheat elite breeding populations. Mol Breed 33:755–768

    Article  Google Scholar 

  • Borlaug NE, Dowswell CR (2003) Feeding a world of ten billion people: a 21st century challenge. In: Proceedings of the international congress in the wake of the double helix: from the green revolution to the gene revolution, pp 27–31

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Brazauskas G, Lenk I, Pedersen MG, Studer B, Lübberstedt T (2011) Genetic variation, population structure, and linkage disequilibrium in European elite germplasm of perennial ryegrass. Plant Sci 181:412–420

    Article  CAS  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavanagh CR, Chao SM, Wang SC, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai GH, Pumphrey M, Tomar L, Wong DB, Kong S, Reynolds M, da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Nat Acad Sci USA 110:8057–8062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao SM, Dubcovsky J, Dvorak J, Luo MC, Baenziger SP, Matnyazov R, Clark DR, Talbert LE, Anderson JA, Dreisigacker S, Glover K, Chen JL, Campbell K, Bruckner PL, Rudd JC, Haley S, Carver BF, Perry S, Sorrells ME, Akhunov ED (2010) Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genom 11:727

    Article  CAS  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudnikov AJ (2011) Waxiness in Aegilops tauschii: its occurrence in natural habitats of the species. Cereal Res Commun 39:283–288

    Article  Google Scholar 

  • Edae EA, Byrne PF, Haley SD, Lopes MS, Reynolds MP (2014) Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor Appl Genet 127:791–807

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Bramley H, Palta JA, Siddique KHM (2011) Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci 30:1–17. doi:10.1080/07352689.2011.615687

    Article  Google Scholar 

  • Fu DL, Szucs P, Yan LL, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genom 274:442–443

    Article  CAS  Google Scholar 

  • Gao F, Wen W, Liu J, Rasheed A, Yin G, Xia X, Wu X, He Z (2015) Genome-wide linkage mapping of Qtl for yield components, plant height and yield-related physiological traits in the chinese wheat cross Zhou 8425b/Chinese Spring. Front Plant Sci 6:1099

    PubMed  PubMed Central  Google Scholar 

  • Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie D, Bilham L, Snape J (2009) Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119:383–395

    Article  CAS  PubMed  Google Scholar 

  • Griffiths S, Simmonds J, Leverington M, Wang YK, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Snape J (2012) Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm. Mol Breed 29:159–171

    Article  Google Scholar 

  • Jannink JL (2007) Identifying quantitative trait locus by genetic background interactions in association studies. Genetics 176:553–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jighly A, Oyiga BC, Makdis F, Nazari K, Youssef O, Tadesse W, Abdalla O, Ogbonnaya FC (2015) Genome wide DArT and SNP scan for QTL associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in elite ICARDA Wheat (Triticum aestivum L.) germplasm. Theor Appl Genet 128:1277–1295

    Article  CAS  PubMed  Google Scholar 

  • Jighly A, Alagu M, Makdis F, Singh M, Singh S, Emebiri LC, Ogbonnaya FC (2016) Genomic regions conferring resistance to multiple fungal pathogens in synthetic hexaploid wheat. Mol Breeding 36:127. doi:10.1007/s11032-016-0541-4

    Article  Google Scholar 

  • Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuchel H, Williams KJ, Langridge P, Eagles HA, Jefferies SP (2007) Genetic dissection of grain yield in bread wheat. I. QTL analysis. Theor Appl Genet 115:1029–1041

    Article  CAS  PubMed  Google Scholar 

  • Lipka AE, Feng T, Qishan WJP, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Lopes MS, Reynolds MP, Jalal-Kamali MR, Moussa M, Feltaous Y, Tahir ISA, Barma N, Vargas M, Mannes Y, Baum M (2012a) The yield correlations of selectable physiological traits in a population of advanced spring wheat lines grown in warm and drought environments. Field Crop Res 128:129–136

    Article  Google Scholar 

  • Lopes MS, Reynolds MP, Manes Y, Singh RP, Crossa J, Braun HJ (2012b) Genetic yield gains and changes in associated traits of CIMMYT spring bread wheat in a “historic” set representing 30 years of Breeding. Crop Sci 52:1123–1131

    Article  Google Scholar 

  • Lopes MS, Reynolds MP, McIntyre CL, Mathews KL, Jalal Kamali MR, Moussa M, Feltaous Y, Tahir ISA, Chatrath R, Ogbonnaya FC, Baum M (2013) QTLs for yield and associated traits in the Seri/Babax population grown across several environments in Mexico, in the West Asia, North Africa, and South Asia regions. Theor Appl Genet 126:971–984. doi:10.1007/s00122-012-2030-4

    Article  PubMed  Google Scholar 

  • Lopes MS, Dreisigacker S, Pena RJ, Sukumaran S, Reynolds MP (2015) Genetic characterization of the wheat association mapping initiative (WAMI) panel for dissection of complex traits in spring wheat. Theor Appl Genet 128:453–464

    Article  CAS  PubMed  Google Scholar 

  • Makumburage GB, Stapleton A (2011) Phenotype uniformity in combined-stress environments has a different genetic architecture than in single-stress treatments. Front Plant Sci 2:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Marza F, Bai GH, Carver BF, Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112:688–698

    Article  CAS  PubMed  Google Scholar 

  • McIntyre CL, Mathews KL, Rattey A, Chapman SC, Drenth J, Ghaderi M, Reynolds M, Shorter R (2010) Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor Appl Genet 120:527–541

    Article  CAS  PubMed  Google Scholar 

  • Mulki MA, Jighly A, Ye GY, Emebiri LC, Moody D, Ansari O, Ogbonnaya FC (2013) Association mapping for soilborne pathogen resistance in synthetic hexaploid wheat. Mol Breed 31:299–311

    Article  CAS  Google Scholar 

  • Neumann K, Kobiljski B, Dencic S, Varshney RK, Borner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27:37–58

    Article  Google Scholar 

  • Ogbonnaya FC, Seah S, Delibes A, Jahier J, Lopez-Brana I, Eastwood RF, Lagudah ES (2001) Molecular-genetic characterisation of a new nematode resistance gene in wheat. Theor Appl Genet 102:623–629

    Article  CAS  Google Scholar 

  • Olivares-Villegas JJ, Reynolds MP, McDonald GK (2007) Drought-adaptive attributes in the Seri/Babax hexaploid wheat population. Func Plant Biol 34:189–203

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasheed A, Xia X, Ogbonnaya F, Mahmood T, Zhang Z, Mujeeb-Kazi A, He Z (2014) Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis. BMC Plant Biol 14:128

    Article  PubMed  PubMed Central  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8:e66428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebetzke GJ, Rattey AR, Farquhar GD, Richards RA, Condon AG (2013) Genomic regions for canopy temperature and their genetic association with stomatal conductance and grain yield in wheat. Funct Plant Biol 40:14–33

    Article  CAS  Google Scholar 

  • Saini HS, Aspinall D (1982) Abnormal sporogenesis in wheat (Triticum aestivum L.) induced by short periods of high temperature. Ann Bot 49:835–846

    Article  Google Scholar 

  • Segura V, Vilhjalmsson BJ, Platt A, Korte A, Seren U, Long Q, Nordborg M (2012) An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet 44:825–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmonds J, Scott P, Leverington-Waite M, Turner AS, Brinton J, Korzun V, Snape J, Uauy C (2014) Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat (Triticum aestivum L.). BMC Plant Biol 14:191. doi:10.1186/s12870-014-0191-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Sukumaran S, Dreisigacker S, Lopes MS, Chavez P, Reynolds MP (2015) Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor Appl Genet 128:353–363

    Article  CAS  PubMed  Google Scholar 

  • Tadesse W, Ogbonnaya FC, Jighly A, Sanchez-Garcia M, Sohail Q, Rajaram S, Baum M (2015) Genome-wide association mapping of yield and grain quality traits in winter wheat genotypes. PLoS One 10:e0141339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talukder S, Babar M, Vijayalakshmi K, Poland J, Prasad P, Bowden R, Fritz A (2014) Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC Genet 15:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang Y-L, Li J, Wu Y-Q, Wei H-T, Li C-S, Yang W-Y, Chen F (2011) Identification of QTLs for yield-related traits in the recombinant inbred line population derived from the cross between a synthetic hexaploid wheat-derived variety Chuanmai 42 and a Chinese eilte variety Chuannong 16. Agric Sci China 10:1665–1680

    Article  CAS  Google Scholar 

  • Trethowan RM (2014) Delivering drought tolerance to those who need it: from genetic resource to cultivar. Crop Pasture Sci 65:645–654

    Google Scholar 

  • Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SC, Wong DB, Forrest K, Allen A, Chao SM, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E, Sequencing IWG (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weir BS (1996) Genetic data analysis II. Sinauer Associates, Sunderland

    Google Scholar 

  • Würschum T, Langer SM, Longin CFH (2015) Genetic control of plant height in European winter wheat cultivars. Theor Appl Genet 128:865–874

    Article  PubMed  Google Scholar 

  • Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J (2004) Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet 109:1677–1686

    Article  CAS  PubMed  Google Scholar 

  • Yang DL, Jing RL, Chang XP, Li W (2007) Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum). J Integr Plant Biol 49:646–654

    Article  CAS  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zanke C, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Beier S, Ganal MW, Roder MS (2014a) Genetic architecture of main effect QTL for heading date in European winter wheat. Front Plant Sci 5:217

    Article  PubMed  PubMed Central  Google Scholar 

  • Zanke CD, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Neumann K, Ganal MW, Roder MS (2014b) Whole genome association mapping of plant height in winter wheat (Triticum aestivum L.). PLoS One 9:e113287

    Article  PubMed  PubMed Central  Google Scholar 

  • Zegeye H, Rasheed A, Makdis F, Badebo A, Ogbonnaya FC (2014) Genome-wide association mapping for seedling and adult plant resistance to stripe rust in synthetic hexaploid wheat. PLoS ONE 9(8):e105593. doi:10.1371/journal.pone.0105593

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Wang J, Zhang L, Rong C, Zhao F, Peng T, Li H, Cheng D, Liu X, Qin H, Zhang A, Tong Y, Wang D (2013) Association analysis of genomic loci important for grain weight control in elite common wheat varieties cultivated with variable water and fertiliser supply. PLoS One 8:e57853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JJ, Dell B, Biddulph B, Khan N, Xu YJ, Luo H, Appels R (2014) Vernalization gene combination to maximize grain yield in bread wheat (Triticum aestivum L.) in diverse environments. Euphytica 198:439–454

    Article  CAS  Google Scholar 

  • Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding was provided by Grains Research and Development Corporation and ICARDA (Grant No. ICA00009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis C. Ogbonnaya.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Communicated by Andreas Graner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1946 kb)

Supplementary material 2 (XLSX 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogbonnaya, F.C., Rasheed, A., Okechukwu, E.C. et al. Genome-wide association study for agronomic and physiological traits in spring wheat evaluated in a range of heat prone environments. Theor Appl Genet 130, 1819–1835 (2017). https://doi.org/10.1007/s00122-017-2927-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-2927-z

Navigation