Skip to main content
Log in

Molecular characterization of lipoxygenase genes on chromosome 4BS in Chinese bread wheat (Triticum aestivum L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

This study cloned two novel TaLox genes on chromosome of 4BS and developed a co-dominant marker, Lox-B23, in bread wheat that showed highly significant association with lipoxygenase activity.

Abstract

Lipoxygenase (Lox), a critical enzyme in the carotenoid biosynthetic pathway, significantly influences the color and processing quality of wheat-based products. Two novel Lox genes, designated TaLox-B2 and TaLox-B3, were cloned on chromosome 4BS of Chinese bread wheat. The deduced amino acid sequence showed that both TaLox-B2 and TaLox-B3 genes encoded an 861-aa protein and possessed a lipoxygenase superfamily domain at the 170–838 interval. Two different TaLox-B2 alleles, designated TaLox-B2a and TaLox-B2b, were subsequently discovered. A co-dominant marker, Lox-B23, was developed based on sequences of TaLox-B2a, TaLox-B2b, and TaLox-B3 genes to precisely distinguish these three alleles in Chinese bread cultivars. Among five allelic combinations of Lox genes at Lox-B1, Lox-B2, and Lox-B3 loci, wheat cultivars with TaLox-B1a/TaLox-B2a/TaLox-B3a combination exhibited the highest Lox activity, whereas those with TaLox-B1a/TaLox-B2b/TaLox-B3b combination significantly showed the lowest Lox activity. A RIL population was used to evaluate the influence of TaLox-B3a gene on Lox activity. Results showed that TaLox-B3a gene could significantly increase the Lox activity in bread wheat. Physical mapping indicated that both TaLox-B2 and TaLox-B3 genes were located on chromosome 4BS in bread wheat. This study provides useful information to further understand the molecular and genetic bases of Lox activity in bread wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bagge M, Xia XC, Lϋbberstedt T (2007) Functional marker in wheat. Curr Opin Plant Biol 10:211–216

    Article  CAS  PubMed  Google Scholar 

  • Baik BK, Czuchajowska Z, Pomeranz Y (1995) Discoloration of dough for oriental noodles. Cereal Chem 72:198–205

    CAS  Google Scholar 

  • Berg C, Hammarstrom S, Herbertsson H, Lindstrom E, Svensson AC, Soderstrom M, Tengvall P, Bengtsson T (2006) Platelet-induced growth of human fibroblasts is associated with an increased expression of 5-lipoxygenase. J Thromb Haemost 96:652–659

    CAS  Google Scholar 

  • Borrelli GM, Troeeoli A, Fonzo ND, Fares C (1999) Durum wheat lipoxygenase activity and other quality parameters that affect pasta color. Cereal Chem 76:335–340

    Article  CAS  Google Scholar 

  • Borrelli GM, Deleonardis AM, Platani C, Troccoli A (2008) Distribution along durum wheat kernel of the components involved in semolina color. J Cereal Sci 48:494–502

    Article  CAS  Google Scholar 

  • Carrera A, Echenique V, Zhang W, Helguera M, Manthey F, Schrager A, Picca A, Cervigni G, Dubcovsky J (2007) A deletion at the Lpx-B1 locus is associated with low lipoxygenase activity and improves pasta color in durum wheat (Triticum turgidum spp. durum). J Cereal Sci 45:67–77

    Article  CAS  Google Scholar 

  • Chang C, Zhang HP, Xu J, You MS, Li BY, Liu GT (2007) Variation in two PPO genes associated with polyphenol oxidase activity in seeds of common wheat. Euphytica 154:181–193

    Article  CAS  Google Scholar 

  • Chen F, Zhang FY, Xia XC, Dong ZD, Cui DQ (2012) Distribution of puroindoline alleles in bread wheat cultivars of the Yellow and Huai valley of China and discovery of a novel puroindoline a allele without PINA protein. Mol Breed 29:371–378

    Article  CAS  Google Scholar 

  • Chen F, Li HH, Li XN, Dong ZD, Zuo AH, Shang XL, Cui DQ (2013a) Alveograph and Mixolab parameters associated with Puroindoline-D1 genes in Chinese winter wheats. J Sci Food Agricul 10:2541–2548

    Article  Google Scholar 

  • Chen F, Zhang FY, Li HH, Morris CF, Cao YY, Shang XL, Cui DQ (2013b) Allelic variation and distribution independence of Puroindoline b-B2 variants and their association with grain texture in wheat. Mol Breed 32:399–409

    Article  Google Scholar 

  • Crawford AC, Stefanova K, Lambe W, McLean R, Wilson R, Barclay I, Francki MG (2011) Functional relationships of phytoene synthase 1 alleles on chromosome 7A controlling flour colour variation in selected Australian wheat genotypes. Theor Appl Genet 123:95–108

    Article  CAS  PubMed  Google Scholar 

  • Fedorova L, Fedorov A (2003) Introns in gene evolution. Genetica 118:123–131

    Article  CAS  PubMed  Google Scholar 

  • Feng B, Dong ZY, Xu ZB, An XL, Qin HJ, Wu N, Wang DW, Wang T (2010) Molecular analysis of lipoxygenase (LOX) genes in common wheat and phylogenetic investigation of LOX proteins from model and crop plants. J Cereal Sci 52:387–394

    Article  CAS  Google Scholar 

  • Feng B, Dong ZY, Xu ZB, Wang DW, Wang T (2012) Molecular characterization of a novel type of lipoxygenase (LOX) gene from common wheat (Triticum aestivum L.). Mol Breed 30:113–124

    Article  Google Scholar 

  • Fu BX (2008) Asian noodles: history, classification, raw materials, and processing. Food Res Int 41:888–902

    Article  CAS  Google Scholar 

  • Garbus I, Carrera AD, Dubcovsky J, Echenique V (2009) Physical mapping of durum wheat lipoxygenase genes. J Cereal Sci 50:67–73

    Article  CAS  Google Scholar 

  • Garbus I, Soresi D, Romero J, Echenique V (2013) Identification, mapping and evolutionary course of wheat lipoxygenase-1 genes located on the A genome. J Cereal Sci 58:298–304

    Article  CAS  Google Scholar 

  • Geng HW, Zhang Y, He ZH, Zhang LP, Appels R, Qu YY, Xia XC (2011) Molecular markers for tracking variation in lipoxygenase activity in wheat breeding. Mol Breed 28:117–126

    Article  CAS  Google Scholar 

  • Geng HW, Xia XC, Zhang LP, Qu YY, He ZH (2012) Development of functional markers for a lipoxygenase gene TaLox-B1 on chromosome 4BS in common wheat. Crop Sci 52:568–576

    Article  CAS  Google Scholar 

  • Hart GE, Langston PJ (1977) Chromosome location and evolution of isozyme structural genes in hexaploid wheat. Heredity 39:263–277

    Article  CAS  Google Scholar 

  • He ZH, Yang J, Zhang Y, Quail KJ, Peña (2004) Pan bread and dry white Chinese noodle quality in Chinese winter wheats. Euphytica 139:257–267

    Article  Google Scholar 

  • He XY, He ZH, Ma W, Appels R, Xia XC (2009) Allelic variants of phytoene synthase 1 (Psy1) genes in Chinese and CIMMYT wheat cultivars and development of functional markers for flour colour. Mol Breed 23:553–563

    Article  CAS  Google Scholar 

  • Hessler TG, Thomson MJ, Benscher D, Nachit MM, Sorrells ME (2002) Association of a lipoxygenase locus, Lpx-B1, with variation in lipoxygenase activity in durum seeds. Crop Sci 42:1695–1700

    Article  CAS  Google Scholar 

  • Lagudah ES, Appels R, McNeil D (1991) The Nor-D3 locus of Triticum tauschii: natural variation and genetic linkage to markers in chromosome 5. Genome 34:387–395

    Article  CAS  Google Scholar 

  • Leenhardt F, Lyana B, Rocka E, Boussardb A, Potusb J, Chanliaudc E, Remesy C (2006) Genetic variability of carotenoid concentration, and lipoxygenase and peroxidase activities among cultivated wheat species and bread wheat varieties. Europ J Agron 25:170–176

    Article  CAS  Google Scholar 

  • Li WL, Faris JD, Chittoor JM, Leach JE, Hulbert SH, Liu DJ, Chen PD, Gill BS (1999) Genomic mapping of defense response genes in wheat. Theor Appl Genet 98:226–233

    Article  CAS  Google Scholar 

  • Liavonchanka A, Feussner I (2006) Lipoxygenases: occurrence, functions and catalysis. J Plant Physiol 163:348–357

    Article  CAS  PubMed  Google Scholar 

  • Liu YN, He ZH, Appels R, Xia XC (2012) Functional markers in wheat: current status and future prospects. Theor Appl Genet 125:1–10

    Article  CAS  PubMed  Google Scholar 

  • Loiseau J, Vu BL, Macherel MH, Deunff YL (2001) Seed lipoxygeanses: occurrence and functions. Seed Sci Res 11:199–211

    CAS  Google Scholar 

  • Manna F, Borrelli GM, Massardo DR, Wolf K, Alifano P, Giudice DL, Fonzo D, DiVerential N (1998) Differential expression of lipoxygenase genes among durum wheat cultivars. Cereal Res Commun 26:23–30

    CAS  Google Scholar 

  • McIntosh RA, Devos KM, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Anderson OD (2007) Catalogue of gene symbols for wheat: 2007 supplement. http://www.wheat.pw.usda.gov/ggpages/wgc/2007upd.html

  • Nachit MM, Elouafi I, Pagnotta MA, El Saleh A, Iacono E, Labhilili M, Asbati A, Azrak M, Hazzam H, Benscher D, Khairallah M, Ribaut JM, Tanzarella OA, Porceddu E, Sorrells ME (2001) Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L. var. durum). Theor Appl Genet 102:177–186

    Article  CAS  Google Scholar 

  • Permyakova MD, Trufanov VA (2011) Effect of soybean lipoxygenase on baking properties of wheat flour. Appl Biochem Micro 47:315–320

    Article  CAS  Google Scholar 

  • Permyakova MD, Trufanov VA, Pshenichnikova TA, Ermakova MF (2010) Role of lipoxygenase in the determination of wheat grain quality. Appl Biochem Micro 46:87–92

    Article  CAS  Google Scholar 

  • Porta H, Rocha-Sosa M (2002) Plant lipoxygenases. Physiological and molecular features. Plant Physiol 130:15–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seltmann MA, Stingl NE, Lautenschlaeger JK, Krischke M, Mueller MJ, Berger S (2010) Differential impact of lipoxygenase 2 and jasmonates on natural and stress-induced senescence in Arabidopsis. Plant Physiol 152:1940–1950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shibata D, Slusarenko A, Casey R, Hildebrand D, Bell E (1994) Lipoxygenases. Plant Mol Biol Rep 12:41–42

    Article  Google Scholar 

  • Shiiba K, Nengishi Y, Okada K, Nagao S (1991) Purification and characterization of lipoxygenase isozymes from wheat germ. Cereal Chem 68:115–122

    CAS  Google Scholar 

  • Surry K (1964) Spectrophotometric method for determination of lipoxidase activity. Plant Physiol 39:65–70

    Article  Google Scholar 

  • Trufanov VA, Permyakova MD, Pshenichnikova TA, Ermakova MF, Davydov VA, Permyakov AV, Berezovskaya EV (2007) The effect of intercultivar substitution of wheat Triticum aestivum L. Chromosomes on lipoxygenase activity and its correlation with the technological properties of flour. Appl Biochem Micro 43:9l–97

    Article  Google Scholar 

  • van Mechelen JR, Smits M, Douma AC, Rouster J, Cameron-Mills V, Heidekamp F, Valk BE (1995) Primary structure of a lipoxygenase from barley grain as deduced from its cDNA sequence. Biochim Biophys Acta 1254:221–225

    Article  PubMed  Google Scholar 

  • van Mechelen JR, Schuurink RC, Smits M, Graner A, Douma AC, Sedee NJA, Schmitt NF, Valk BE (1999) Molecular characterization of two lipoxygenases from barley. Plant Mol Biol 39:1283–1298

    Article  PubMed  Google Scholar 

  • Verlotta A, Simone VD, Mastrangelo AM, Cattivelli L, Papa R, Trono D (2010) Insight into durum wheat Lpx-B1: a small gene family coding for the lipoxygenase responsible for carotenoid bleaching in mature grains. BMC Plant Biol 10:263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Veronico P, Giannino D, Melillo MT, Leone A, Reyes A, Kennedy MW, Bleve-Zacheo T (2006) A novel lipoxygenase in pea roots. Its function in wounding and biotic stress. Plant Physiol 141:1045–1055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang R, Shen WB, Liu LL, Jiang L, Liu YQ, Su N, Wan JM (2008) A novel lipoxygenase gene from developing rice seeds confers dual position specificity and responds to wounding and insect attack. Plant Mol Biol 66:401–414

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Chao S, Manthey F, Chicaiza O, Brevis JC, Echenique V, Dubcovsky J (2008) QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theor Appl Genet 117:1361–1377

    Article  CAS  PubMed  Google Scholar 

  • Žilić S, Dodig D, Šukalović VH-T, Maksimović M, Saratlić G, Škrbić B (2010) Bread and durum wheat compared for antioxidants contents, and lipoxygenase and peroxidase activities. Int J Food Sci Technol 45:1360–1367

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by the 973 projects (2014CB138105 and 2014CB160303), National Natural Science Foundation (31370031) and Program for New Century Excellent Talents in University (NCET-13-0776) of China.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Chen or Dangqun Cui.

Additional information

Communicated by I. D. Godwin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental 1. Name, origin and TaLox-Bgenotype of Chinese bread wheat cultivars surveyed (XLSX 15 kb)

122_2015_2518_MOESM2_ESM.docx

Supplemental 2. Full alignment of genomic DNA sequences of TaLox-B2a, TaLox-B2b and TaLox-B3 alleles in bread wheat (DOCX 26 kb)

Supplemental 3. Polygenetic tree of different lipoxygenase genes from tetraploid and hexaploid wheat (TIFF 139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Chen, F., Wu, P. et al. Molecular characterization of lipoxygenase genes on chromosome 4BS in Chinese bread wheat (Triticum aestivum L.). Theor Appl Genet 128, 1467–1479 (2015). https://doi.org/10.1007/s00122-015-2518-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2518-9

Keywords

Navigation