Skip to main content

Marine Fungi as a Bioresource of Medicinal Entities

  • Chapter
  • First Online:
Fungi Bioactive Metabolites
  • 173 Accesses

Abstract

The search for new drugs is the aim of drug discovery research. Even today, biodiversity is the inspirational source of novel metabolites, and marine environments have proven to possess an exceptional chemical space. Marine fungi have received immense attention as sustainable producers of unique secondary metabolites with promising bioactive properties, such as immunomodulatory, anticancer, anti-inflammatory, antimicrobial, and antivirals. Marine fungi are often found in symbiotic association with higher organisms, such as tunicates, corals, sponges, mollusks, cnidarians, and fish, as well as seaweeds, mangroves, and kelps. They are also found in seawater, deep-sea sediments, and the intertidal region. As an adaptive evolution, the marine fungal metabolites possess unique carbon skeletons, halogenated decorations, functional groups, and heterocyclic structures that contribute to more significant bioactivity than terrestrial sources. The roadmap for a marine natural product to the market involves several stages, including sampling, isolation and taxonomic identification of fungi, extraction of secondary metabolites, primary screening for specific bioactivities, isolation of a pure compound, secondary screening for target identification using genetic and biochemical screens, yield enhancement, in vivo studies, preclinical and clinical analysis, costing, and market approval. The advances in genomics, metabolomics, data science, automation, and robotics have immensely eased the roadmap and accelerated novel compound discovery. The generation of compound libraries has allowed the exploration of new bioactivities for known structures. However, to limit the dereplication of known compounds, efforts must be undertaken to explore marine-specific fungi and innovative marine-specific culture conditions. This chapter aims to highlight the incredible potential of marine fungi as a bioresource of medicinal compounds and the several advancements in natural product research that can accelerate the approval of a fungal drug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Lateff A (2008) Chaetominedione, a new tyrosine kinase inhibitor isolated from the algicolous marine fungus Chaetomium sp. Tetrahedron Lett 49:6398–6400

    Article  CAS  Google Scholar 

  • Agrawal S, Adholeya A, Barrow CJ, Deshmukh SK (2018) Marine fungi: an untapped bioresource for future cosmeceuticals. Phytochem Lett 23:15–20

    Article  CAS  Google Scholar 

  • Ahmad B, Shah M, Choi S (2019) Oceans as a source of immunotherapy. Mar Drugs 17:282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida C, Part N, Bouhired S, Kehraus S, König GM (2011) Stachylines A−D from the sponge-derived fungus Stachylidium sp. J Nat Prod 74:21–25

    Article  CAS  PubMed  Google Scholar 

  • Almeida MC, Resende DI, da Costa PM, Pinto MM, Sousa E (2021) Tryptophan derived natural marine alkaloids and synthetic derivatives as promising antimicrobial agents. Eur J Med Chem 209:112945

    Article  CAS  PubMed  Google Scholar 

  • Aly AH, Edrada-Ebel R, Wray V, Müller WE, Kozytska S, Hentschel U, Proksch P, Ebel R (2008) Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides. Phytochemistry 69:1716–1725

    Article  CAS  PubMed  Google Scholar 

  • Amend A, Burgaud G, Cunliffe M, Edgcomb VP, Ettinger CL, Gutiérrez MH, Heitman J, Hom EF, Ianiri G, Jones AC, Kagami M (2019) Fungi in the marine environment: open questions and unsolved problems. MBio 10:e01189–e01118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aparanji S, Kamat S (2022) Widely tunable near-infrared Raman fiber laser irradiating breast cancer cells leads to cell size reduction and increased granularity of intracellular components as a precursor to cell death. In: Optical interactions with tissue and cells XXXIII; and advanced photonics in urology, vol 11958. SPIE, Bellingham, pp 50–56

    Google Scholar 

  • Blunt JW, Copp BR, Hu WP, Munro MH, Northcote PT, Prinsep MR (2007) Marine natural products. Nat Prod Rep 24:31–86

    Article  CAS  PubMed  Google Scholar 

  • Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163

    Article  CAS  PubMed  Google Scholar 

  • Caesar LK, Montaser R, Keller NP, Kelleher NL (2021) Metabolomics and genomics in natural products research: complementary tools for targeting new chemical entities. Nat Prod Rep 38:2041–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2019) Marine natural products. Nat Prod Rep 36:122–173

    Article  CAS  PubMed  Google Scholar 

  • Chandra M (2020) Molecular characterization of fungi isolated from sea urchin Stomopneustes variolaris (Lamarck, 1816)–St. Mary’s Island, west coast of India. Biomedicine 40:313–318

    Google Scholar 

  • Chemistry World (n.d.) PharmaSea to scour ocean depths for new drugs. News. https://www.chemistryworld.com/news/pharmasea-to-scour-ocean-depths-for-new-drugs/5928.article. Accessed December 25, 2022

  • Chen S, Ding M, Liu W, Huang X, Liu Z, Lu Y, Liu H, She Z (2018) Anti-inflammatory meroterpenoids from the mangrove endophytic fungus Talaromyces amestolkiae YX1. Phytochemistry 146:8–15

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Jiang M, Chen B, Salaenoi J, Niaz SI, He J, Liu L (2019) Penicamide a, a unique N, N′-ketal quinazolinone alkaloid from ascidian-derived fungus Penicillium sp. 4829. Mar Drugs 17:522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu D, Peng C, Ding B, Liu F, Zhang F, Lin H, Li Z (2011) Biological active metabolite cyclo (L-Trp-L-Phe) produced by South China Sea sponge Holoxea sp. associated fungus Aspergillus versicolor strain TS08. Bioprocess Biosyst Eng 34:223–229

    Article  CAS  PubMed  Google Scholar 

  • Colonia BS, de Melo Pereira GV, Rodrigues FM, Muynarsk ED, da Silva VA, de Carvalho JC, Soccol VT, de Oliveira PR, Soccol CR (2021) Integrating metagenetics and high-throughput screening for bioprospecting marine thraustochytrids producers of long-chain polyunsaturated fatty acids. Bioresour Technol 333:125176

    Article  CAS  PubMed  Google Scholar 

  • Corral P, Esposito FP, Tedesco P, Falco A, Tortorella E, Tartaglione L, Festa C, D’Auria MV, Gnavi G, Varese GC, de Pascale D (2018) Identification of a sorbicillinoid-producing Aspergillus strain with antimicrobial activity against Staphylococcus aureus: a new polyextremophilic marine fungus from Barents Sea. Mar Biotechnol 20:502–511

    Article  CAS  Google Scholar 

  • Cui CM, Li XM, Li CS, Proksch P, Wang BG (2010) Cytoglobosins A−G, cytochalasans from a marine-derived endophytic fungus, Chaetomium globosum QEN-14. J Nat Prod 73:729–733

    Article  CAS  PubMed  Google Scholar 

  • Damare S, Raghukumar C, Raghukumar S (2006) Fungi in deep-sea sediments of the Central Indian Basin. Deep Sea Res I Oceanogr Res Pap 53(1):14–27

    Article  Google Scholar 

  • Dighton J, White JF (2017) The fungal community: its organization and role in the ecosystem. CRC Press, London

    Book  Google Scholar 

  • Dunlea AG, Scudder RP, Murray RW (2018) Marine sediment. In: White WM (ed) Encyclopedia of geochemistry. Springer, Cham, pp 878–892

    Chapter  Google Scholar 

  • Ebada SS, Schulz B, Wray V, Totzke F, Kubbutat MH, Müller WE, Hamacher A, Kassack MU, Lin W, Proksch P (2011) Arthrinins A–D: novel diterpenoids and further constituents from the sponge derived fungus Arthrinium sp. Bioorg Med Chem 19:4644–4651

    Article  CAS  PubMed  Google Scholar 

  • Edrada RA, Wray V, Berg A, Gräfe U, Brauers G, Proksch P (2000) Novel spiciferone derivatives from the fungus Drechslera hawaiiensis isolated from the marine sponge Callyspongia aerizusa. Z Naturforsch C J Biosci 55:218–221

    Article  CAS  PubMed  Google Scholar 

  • Ein-Gil N, Ilan M, Carmeli S, Smith GW, Pawlik JR, Yarden O (2009) Presence of Aspergillus sydowii, a pathogen of gorgonian sea fans in the marine sponge Spongia obscura. ISME J 3:752–755

    Article  PubMed  Google Scholar 

  • Elbandy M, Shinde PB, Hong JK, Bae KS, Kim M, Lee SM, Jung JH (2009) α-Pyrones and yellow pigments from the sponge-derived fungus Paecilomyces lilacinus. Bull Korean Chem Soc 30:188–192

    Article  CAS  Google Scholar 

  • El-Beih AA, Kawabata T, Koimaru K, Ohta T, Tsukamoto S (2007) Monodictyquinone a: a new antimicrobial anthraquinone from a sea urchin-derived fungus Monodictys sp. Chem Pharm Bull 55:1097–1098

    Article  CAS  Google Scholar 

  • Elsebai MF, Kehraus S, Gütschow M, König GM (2009) New polyketides from the marine-derived fungus Phaeosphaeria spartinae. Nat Prod Commun 4:637

    Google Scholar 

  • Elsebai MF, Kehraus S, Gütschow M, König GM (2010) Spartinoxide, a new enantiomer of A82775C with inhibitory activity toward HLE from the marine-derived fungus Phaeosphaeria spartinae. Nat Prod Commun 5:1071–1076

    CAS  PubMed  Google Scholar 

  • Faulkner DJ (2001) Marine natural products. Nat Prod Rep 18:1R–49R

    Article  Google Scholar 

  • Fotedar R, Sandoval-Denis M, Kolecka A, Zeyara A, Al Malki A, Al Shammari H, Al Marri M, Kaul R, Boekhout T (2009) Toxicocladosporium aquimarinum sp. nov., and Toxicocladosporium qatarense sp. nov., isolated from marine waters of the Arabian gulf surrounding Qatar. Int J Syst Evol Microbiol 69:2992–3000

    Article  Google Scholar 

  • Fredimoses M, Zhou X, Ai W, Tian X, Yang B, Lin X, Liu J, Liu Y (2018) Emerixanthone E, a new xanthone derivative from deep sea fungus Emericella sp. SCSIO 05240. Nat Prod Res 33:2088–2094

    Article  PubMed  Google Scholar 

  • Furbino LE, Pellizzari FM, Neto PC, Rosa CA, Rosa LH (2018) Isolation of fungi associated with macroalgae from maritime Antarctica and their production of agarolytic and carrageenolytic activities. Polar Biol 41:527–535

    Article  Google Scholar 

  • Gao SS, Li XM, Williams K, Proksch P, Ji NY, Wang BG (2016) Rhizovarins A–F, indole-diterpenes from the mangrove-derived endophytic fungus Mucor irregularis QEN-189. J Nat Prod 79:2066–2074

    Article  CAS  PubMed  Google Scholar 

  • Garson MJ (1989) Biosynthetic studies on marine natural products. Nat Prod Rep 6:143–170

    Article  CAS  Google Scholar 

  • Gesner S, Cohen N, Ilan M, Yarden O, Carmeli S (2005) Pandangolide 1a, a metabolite of the sponge-associated fungus Cladosporium sp., and the absolute stereochemistry of Pandangolide 1 and iso-Cladospolide B. J Nat Prod 68:1350–1353

    Article  CAS  PubMed  Google Scholar 

  • Grassle FJ (2013) Marine ecosystems. In: Levin AS (ed) Encyclopedia of biodiversity, vol 2, 2nd edn. Academic Press, Waltham, pp 45–55

    Chapter  Google Scholar 

  • Guo W, Wang S, Li N, Li F, Zhu T, Gu Q, Guo P, Li D (2018) Saroclides A and B, cyclic depsipeptides from the mangrove-derived fungus Sarocladium kiliense HDN11-112. J Nat Prod 81(4):1050–1054

    Article  CAS  PubMed  Google Scholar 

  • Höller U, König GM, Wright AD (1999) A new tyrosine kinase inhibitor from a marine isolate of Ulocladium botrytis and new metabolites from the marine fungi Asteromyces cruciatus and Varicosporina ramulosa. Eur J Org Chem 1999:2949–2955

    Article  Google Scholar 

  • Höller U, Wright AD, Matthee GF, Konig GM, Draeger S, Hans-Jürgen AU, Schulz B (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104:1354–1365

    Article  Google Scholar 

  • Ingavat N, Dobereiner J, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P (2009) Aspergillusol a, an α-glucosidase inhibitor from the marine-derived fungus Aspergillus aculeatus. J Nat Prod 72:2049–2052

    Article  CAS  PubMed  Google Scholar 

  • Jadulco R, Proksch P, Wray V, Sudarsono, Berg A, Gräfe U (2001) New macrolides and furan carboxylic acid derivative from the sponge-derived fungus Cladosporium herbarum. J Nat Prod 64:527–530

    Article  CAS  PubMed  Google Scholar 

  • Jadulco R, Brauers G, Edrada RA, Ebel R, Wray V, Sudarsono, Proksch P (2002) New metabolites from sponge-derived fungi Curvularia lunata and Cladosporium herbarum. J Nat Prod 65:730–733

    Article  CAS  PubMed  Google Scholar 

  • Ji NY, Wang BG (2016) Mycochemistry of marine algicolous fungi. Fungal Divers 80:301–342

    Article  Google Scholar 

  • Jiménez C (2018) Marine natural products in medicinal chemistry. ACS Med Chem Lett 9:959–961

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones EB (2011) Fifty years of marine mycology. Fungal Divers 50:73–112

    Article  Google Scholar 

  • Jones EG, Pang KL, Stanley SJ (2012) 17 Fungi from marine algae. In: Marine fungi: and fungal-like organisms. De Gruyter, Berlin, p 329

    Chapter  Google Scholar 

  • Ju Z, Lin X, Lu X, Tu Z, Wang J, Kaliyaperumal K, Liu J, Tian Y, Xu S, Liu Y (2015) Botryoisocoumarin a, a new COX-2 inhibitor from the mangrove Kandelia candel endophytic fungus Botryosphaeria sp. KcF6. J Antibiot 68:653–656

    Article  CAS  Google Scholar 

  • Kamat S, Kumari M, Taritla S, Jayabaskaran C (2020a) Endophytic fungi of marine alga from Konkan coast, India—a rich source of bioactive material. Front Mar Sci 7:31

    Article  Google Scholar 

  • Kamat S, Kumari M, Sajna KV (2020b) Endophytic fungus, Chaetomium globosum, associated with marine green alga, a new source of chrysin. Sci Rep 10:1–17

    Article  Google Scholar 

  • Kamat S, Kumari M, Sajna KV, Mohan S, Jayabaskaran C (2022a) Marine endophytes from the Indian coasts: the untapped sources of sustainable anticancer drug discovery. Sustain Chem Pharm 27:100675

    Article  CAS  Google Scholar 

  • Kamat S, Kumari M, Jayabaskaran C (2022b) Visualizing the anti-cancer effects of chrysin nanoparticles by flow cytometry, microscopy and Fourier transform infrared spectroscopy. In: Colloidal nanoparticles for biomedical applications XVII 11977. SPIE, Bellingham, pp 40–52

    Google Scholar 

  • Kamat S, Kumari M, Jayabaskaran C (2022c) Infrared spectroscopy and flow cytometry studies on the apoptotic effect of nano-chrysin in HeLa cells. Spectrochim Acta A Mol Biomol Spectrosc 282:121666

    Article  CAS  PubMed  Google Scholar 

  • Kebede B, Wrigley SK, Prashar A, Rahlff J, Wolf M, Reinshagen J, Gribbon P, Imhoff JF, Silber J, Labes A, Ellinger B (2017) Establishing the secondary metabolite profile of the marine fungus: Tolypocladium geodes sp. MF458 and subsequent optimisation of bioactive secondary metabolite production. Mar Drugs 15:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Khotimchenko YS, Silachev DN, Katanaev VL (2022) Marine natural products from the Russian Pacific as sources of drugs for neurodegenerative diseases. Mar Drugs 20:708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kjer J, Debbab A, Aly AH, Proksch P (2010) Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc 5:479–490

    Article  CAS  PubMed  Google Scholar 

  • Klemke C, Kehraus S, Wright AD, König GM (2004) New secondary metabolites from the marine endophytic fungus Apiospora montagnei. J Nat Prod 67:1058–1063

    Article  CAS  PubMed  Google Scholar 

  • Koh LL, Goh NK, Chou LM, Tan YW (2000) Chemical and physical defenses of Singapore gorgonians (Octocorallia: Gorgonacea). J Exp Mar Biol Ecol 251:103–115

    Article  PubMed  Google Scholar 

  • Kohlmeyer J (1974) On the definition and taxonomy of higher marine fungi. Veroff Inst Meerforsh Bremerhav 5:263–286

    Google Scholar 

  • König GM, Kehraus S, Seibert SF, Abdel-Lateff A, Müller D (2006) Natural products from marine organisms and their associated microbes. Chembiochem 7:229–238

    Article  PubMed  Google Scholar 

  • Kubanek J, Jensen PR, Keifer PA, Sullards MC, Collins DO, Fenical W (2003) Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc Natl Acad Sci 100:6916–6921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari M, Taritla S, Sharma A, Jayabaskaran C (2018) Antiproliferative and antioxidative bioactive compounds in extracts of marine-derived endophytic fungus Talaromyces purpureogenus. Front Microbiol 9:1777

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari M, Kamat S, Jayabaskaran C (2022) Usnic acid induced changes in biomolecules and their association with apoptosis in squamous carcinoma (A-431) cells: a flow cytometry, FTIR and DLS spectroscopic study. Spectrochim Acta A Mol Biomol Spectrosc 274:121098

    Article  CAS  PubMed  Google Scholar 

  • Küppers L, Ebrahim W, El-Neketi M, Özkaya FC, Mándi A, Kurtán T, Orfali RS, Müller WE, Hartmann R, Lin W, Song W (2017) Lactones from the sponge-derived fungus Talaromyces rugulosus. Mar Drugs 15:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Lam C, Stang A, Harder T (2008) Planktonic bacteria and fungi are selectively eliminated by exposure to marine macroalgae in close proximity. FEMS Microbiol Ecol 63:283–291

    Article  CAS  PubMed  Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Priess K (1995) Fungi in corals: symbiosis or disease? Interaction between polyps and fungi causes pearl-like skeleton biomineralization. Mar Ecol Prog Ser 117:137–147

    Article  Google Scholar 

  • Lee SM, Li XF, Jiang H, Cheng JG, Seong S, Choi HD, Son BW (2003) Terreusinone, a novel UV-A protecting dipyrroloquinone from the marine algicolous fungus Aspergillus terreus. Tetrahedron Lett 44:7707–7710

    Article  CAS  Google Scholar 

  • Lee YM, Hong JK, Lee CO, Bae KS, Kim DK, Jung JH (2010) A cytotoxic lipopeptide from the sponge-derived fungus Aspergillus versicolor. Bull Korean Chem Soc 31:205–208

    Article  CAS  Google Scholar 

  • Li HJ, Lan WJ, Lam CK, Yang F, Zhu XF (2011) Hirsutane Sesquiterpenoids from the marine-derived fungus Chondrostereum sp. Chem Biodivers 8:317–324

    Article  CAS  PubMed  Google Scholar 

  • Li XD, Miao FP, Liang XR, Ji NY (2014) Meroterpenes from an algicolous strain of Penicillium echinulatum. Magn Reson Chem 52:247–250

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Li XM, Meng LH, Wang BG (2015) Polyketides from the marine mangrove-derived fungus Aspergillus ochraceus MA-15 and their activity against aquatic pathogenic bacteria. Phytochem Lett 12:232–236

    Article  CAS  Google Scholar 

  • Liu H, Chen S, Liu W, Liu Y, Huang X, She Z (2016) Polyketides with immunosuppressive activities from mangrove Endophytic fungus Penicillium sp. ZJ-SY2. Mar Drugs 14:217

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu FA, Lin X, Zhou X, Chen M, Huang X, Yang B, Tao H (2017) Xanthones and quinolones derivatives produced by the Deep-Sea-derived fungus Penicillium sp. SCSIO Ind16F01. Molecules 22:1999

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Qiu P, Li J, Chen G, Chen Y, Liu H, She Z (2018) Anti-inflammatory polyketides from the mangrove-derived fungus Ascomycota sp. SK2YWS-L. Tetrahedron 74:746–751

    Article  CAS  Google Scholar 

  • Liu Z, Wang Q, Li S, Cui H, Sun Z, Chen D, Lu Y, Liu H, Zhang W (2019) Polypropionate derivatives with Mycobacterium tuberculosis protein tyrosine phosphatase B inhibitory activities from the deep-sea-derived fungus Aspergillus fischeri FS452. J Nat Prod 82:3440–3449

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Zang R, Wang X, Chen Z, Song X, Ju J, Huang H (2019) Natural hydroxamate-containing siderophore acremonpeptides A-D and an aluminum complex of acremonpeptide D from the marine-derived Acremonium persicinum SCSIO 115. J Nat Prod 82:2594–2600

    Article  CAS  PubMed  Google Scholar 

  • Mayer A, Hamann MT (2004) Marine pharmacology in 2000: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. Mar Biotechnol 6:37–52

    Article  CAS  Google Scholar 

  • Miao FP, Li XD, Liu XH, Cichewicz RH, Ji NY (2012) Secondary metabolites from an algicolous Aspergillus versicolor strain. Mar Drugs 10:131–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed DJ, Martiny JB (2011) Patterns of fungal diversity and composition along a salinity gradient. ISME J 5:379–388

    Article  PubMed  Google Scholar 

  • Nakanishi K, Doi M, Usami Y, Amagata T, Minoura K, Tanaka R, Numata A, Yamada T (2013) Anthcolorins A–F, novel cytotoxic metabolites from a sea urchin-derived Aspergillus versicolor. Tetrahedron 69:4617–4623

    Article  CAS  Google Scholar 

  • Namikoshi M, Kobayashi H, Yoshimoto T, Meguro S, Akano K (2000) Isolation and characterization of bioactive metabolites from marine-derived filamentous fungi collected from tropical and sub-tropical coral reefs. Chem Pharm Bull 48:1452–1457

    Article  CAS  Google Scholar 

  • Nenkep V, Yun K, Son BW (2016) Oxysporizoline, an antibacterial polycyclic quinazoline alkaloid from the marine-mudflat-derived fungus Fusarium oxysporum. J Antibiot 69:709–711

    Article  CAS  Google Scholar 

  • Niu S, Si L, Liu D, Zhou A, Zhang Z, Shao Z, Wang S, Zhang L, Zhou D, Lin W (2016) Spiromastilactones: a new class of influenza virus inhibitors from deep-sea fungus. Eur J Med Chem 108:229–244

    Article  CAS  PubMed  Google Scholar 

  • Numata A, Takahashi C, Matsushita T, Miyamoto T, Kawai K, Usami Y, Matsumura E, Inoue M, Ohishi H, Shingu T (1992) Fumiquinazolines, novel metabolites of a fungus isolated from a saltfish. Tetrahedron Lett 33:1621–1624

    Article  CAS  Google Scholar 

  • Numata A, Takahashi C, Ito Y, Takada T, Kawai K, Usami Y, Matsumura E, Imachi M, Ito T, Hasegawa T (1993) Communesins, cytotoxic metabolites of a fungus isolated from a marine alga. Tetrahedron Lett 34:2355–2358

    Article  CAS  Google Scholar 

  • Nyanga C (2020) The role of mangroves forests in decarbonizing the atmosphere. In: Rosi L, Frediani M, Bartoli M (eds) Carbon-based material for environmental protection and remediation. IntechOpen, London. https://doi.org/10.5772/INTECHOPEN.92249

    Chapter  Google Scholar 

  • Oliveira EC, Absher TM, Pellizzari FM, Oliveira MC (2009) The seaweed flora of Admiralty Bay, King George Island, Antarctic. Polar Biol 32:1639–1647

    Article  Google Scholar 

  • Osterhage C, Kaminsky R, König GM, Wright AD (2000) Ascosalipyrrolidinone a, an antimicrobial alkaloid, from the obligate marine fungus Ascochyta salicorniae. J Org Chem 65:6412–6417

    Article  CAS  PubMed  Google Scholar 

  • Papon N, Copp BR, Courdavault V (2022) Marine drugs: biology, pipelines, current and future prospects for production. Biotechnol Adv 54:107871

    Article  CAS  PubMed  Google Scholar 

  • Paz Z, Komon-Zelazowska M, Druzhinina IS, Aveskamp MM, Shnaiderman A, Aluma Y, Carmeli S, Ilan M, Yarden O (2010) Diversity and potential antifungal properties of fungi associated with a Mediterranean sponge. Fungal Divers 42:17–26

    Article  Google Scholar 

  • Pejin B, Karaman M (2017) Antitumor natural products of marine-derived fungi. In: Mérillon JM, Ramawat K (eds) Fungal metabolites, Reference series in phytochemistry. Springer, Cham, pp 1–28

    Google Scholar 

  • Perović-Ottstadt S, Adell T, Proksch P, Wiens M, Korzhev M, Gamulin V, Müller IM, Müller WE (2004) A (1→ 3)-β-d-glucan recognition protein from the sponge Suberites domuncula: mediated activation of fibrinogen-like protein and epidermal growth factor gene expression. Eur J Biochem 271:1924–1937

    Article  PubMed  Google Scholar 

  • Proksch P, Ebel R, Edrada R, Riebe F, Liu H, Diesel A, Bayer M, Li X, Han Lin W, Grebenyuk V, Müller WE (2008) Sponge-associated fungi and their bioactive compounds: the Suberites case. Bot Mar 51:209–218

    Article  CAS  Google Scholar 

  • Raghukumar C, Nagarkar S, Raghukumar S (1992) Association of thraustochytrids and fungi with living marine algae. Mycol Res 96:542–546

    Article  Google Scholar 

  • Raghukumar S, Sathe-Pathak V, Sharma S, Raghukumar C (1995) Thraustochytrid and fungal component of marine detritus. III. Field studies on decomposition of leaves of the mangrove Rhizophora apiculata. Aquat Microb Ecol 9:117–125

    Article  Google Scholar 

  • Rateb ME, Ebel R (2011) Secondary metabolites of fungi from marine habitats. Nat Prod Rep 28:290–344

    Article  CAS  PubMed  Google Scholar 

  • Rateb ME, Houssen WE, Legrave NM, Clements C, Jaspars M, Ebel R (2010) Dibenzofurans from the marine sponge-derived ascomycete Super1F1-09. Bot Mar 53:499–506

    Article  CAS  Google Scholar 

  • Resende DI, Boonpothong P, Sousa E, Kijjoa A, Pinto MM (2019) Chemistry of the fumiquinazolines and structurally related alkaloids. Nat Prod Rep 36:7–34

    Article  CAS  PubMed  Google Scholar 

  • Rot C, Goldfarb I, Ilan M, Huchon D (2006) Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria. BMC Evol Biol 6:1–11

    Article  Google Scholar 

  • Rowley DC, Kelly S, Kauffman CA, Jensen PR, Fenical W (2003) Halovirs A–E, new antiviral agents from a marine-derived fungus of the genus Scytalidium. Bioorg Med Chem 11:4263–4274

    Article  CAS  PubMed  Google Scholar 

  • Sahu T, Ratre YK, Chauhan S, Bhaskar LV, Nair MP, Verma HK (2021) Nanotechnology based drug delivery system: current strategies and emerging therapeutic potential for medical science. J Drug Deliv Sci Technol 63:102487

    Article  CAS  Google Scholar 

  • Sajna KV, Kamat S, Jayabaskaran C (2020) Antiproliferative role of secondary metabolites from Aspergillus unguis AG 1.1 (G) isolated from marine macroalgae Enteromorpha sp. by inducing intracellular ROS production and mitochondrial membrane potential loss leading to apoptosis. Front Mar Sci 7:543523

    Article  Google Scholar 

  • Saka R, Chella N (2021) Nanotechnology for delivery of natural therapeutic substances: a review. Environ Chem Lett 19:1097–1106

    Article  CAS  Google Scholar 

  • San-Martín A, Rovirosa J, Astudillo L, Sepúlveda B, Ruiz D, San-Martin C (2008) Biotransformation of the marine sesquiterpene pacifenol by a facultative marine fungus. Nat Prod Res 22:1627–1632

    Article  PubMed  Google Scholar 

  • Sebak M, Molham F, Greco C, Tammam MA, Sobeh M, El-Demerdash A (2022) Chemical diversity, medicinal potentialities, biosynthesis, and pharmacokinetics of anthraquinones and their congeners derived from marine fungi: a comprehensive update. RSC Adv 12:24887–24921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehgal SN (2003) Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc 35:S7–S14

    Article  Google Scholar 

  • Shabana S, Lakshmi KR, Satya AK (2021) An updated review of secondary metabolites from marine fungi. Mini Rev Med Chem 21:602–642

    Article  CAS  PubMed  Google Scholar 

  • Smith GW, Ives LD, Nagelkerken IA, Ritchie KB (1996) Caribbean Sea-fan mortalities. Nature 383:487–487

    Article  CAS  Google Scholar 

  • Son BW, Jensen PR, Kauffman CA, Fenical W (1999) New cytotoxic epidithiodioxopiperazines related to verticillin a from a marine isolate of the fungus Penicillium. Nat Prod Lett 13:213–222

    Article  Google Scholar 

  • Son BW, Choi JS, Kim JC, Nam KW, Kim DS, Chung HY, Kang JS, Choi HD (2002) Parasitenone, a new epoxycyclohexenone related to gabosine from the marine-derived fungus Aspergillus parasiticus. J Nat Prod 65:794–795

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan R, Kannappan A, Shi C, Lin X (2021) Marine bacterial secondary metabolites: a treasure house for structurally unique and effective antimicrobial compounds. Mar Drugs 19:530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suryanarayanan TS, Venkatachalam A, Thirunavukkarasu N, Ravishankar JP, Doble M, Geetha V (2010) Internal mycobiota of marine macroalgae from the Tamil Nadu coast: distribution, diversity and biotechnological potential. Bot Mar 53:457–468

    Article  Google Scholar 

  • Takahashi C, Matsushita T, Doi M, Minoura K, Shingu T, Kumeda Y, Numata A (1995a) Fumiquinazolines A–G, novel metabolites of a fungus separated from a Pseudolabrus marine fish. J Chem Soc Perkin Trans 1:2345–2353

    Article  Google Scholar 

  • Takahashi C, Takai Y, Kimura Y, Numata A, Shigematsu N, Tanaka H (1995b) Cytotoxic metabolites from a fungal adherent of a marine alga. Phytochemistry 38:155–158

    Article  CAS  PubMed  Google Scholar 

  • Taritla S, Kumari M, Kamat S, Bhat SG, Jayabaskaran C (2021) Optimization of physico chemical parameters for production of cytotoxic secondary metabolites and apoptosis induction activities in the culture extract of a marine algal–derived endophytic fungus Aspergillus sp. Front Pharmacol 12:542891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tegally H, San JE, Giandhari J, de Oliveira T (2020) Unlocking the efficiency of genomics laboratories with robotic liquid-handling. BMC Genomics 21:1–15

    Article  Google Scholar 

  • Thirunavukkarasu N, Suryanarayanan TS, Girivasan KP, Venkatachalam A, Geetha V, Ravishankar JP, Doble M (2012) Fungal symbionts of marine sponges from Rameswaram, southern India: species composition and bioactive metabolites. Fungal Divers 55:37–46

    Article  Google Scholar 

  • Toledo-Hernández C, Sabat AM, Zuluaga-Montero A (2007) Density, size structure and aspergillosis prevalence in Gorgonia ventalina at six localities in Puerto Rico. Mar Biol 152:527–535

    Article  Google Scholar 

  • Tsuda M, Kasai Y, Komatsu K, Sone T, Tanaka M, Mikami Y, Kobayashi JI (2004) Citrinadin a, a novel Pentacyclic alkaloid from marine-derived fungus Penicillium citrinum. Org Lett 6:3087–3089

    Article  CAS  PubMed  Google Scholar 

  • Uchoa PK, Pimenta AT, Braz-Filho R, de Oliveira MD, Saraiva NN, Rodrigues BS, Pfenning LH, Abreu LM, Wilke DV, Florêncio KG, Lima MA (2017) New cytotoxic furan from the marine sediment-derived fungi Aspergillus Niger. Nat Prod Res 31:2599–2603

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Li Q, Zhu P (2008) Phylogenetic diversity of culturable fungi associated with the Hawaiian sponges Suberites zeteki and Gelliodes fibrosa. Antonie Van Leeuwenhoek 93:163–174

    Article  PubMed  Google Scholar 

  • Wang R, Liu TM, Shen MH, Yang MQ, Feng QY, Tang XM, Li XM (2012) Spiculisporic acids B–D, three new γ-butenolide derivatives from a sea urchin-derived fungus Aspergillus sp. HDf2. Molecules 17:13175–13182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li DH, Li ZL et al (2015) Terpenoids from the marine-derived fungus Aspergillus fumigatus YK-7. Molecules 21:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Chen R, Luo Z, Wang W, Chen J (2017) Antimicrobial activity and molecular docking studies of a novel anthraquinone from a marine-derived fungus Aspergillus versicolor. Nat Prod Res 32:558–563

    Article  PubMed  Google Scholar 

  • Wang T, Li L, Zhou Y, Lu A, Li H, Chen J, Duan Z, Wang Q (2021) Structural simplification of marine natural products: discovery of hamacanthin derivatives containing indole and piperazinone as novel antiviral and anti-phytopathogenic-fungus agents. J Agric Food Chem 69:10093–10103

    Article  CAS  PubMed  Google Scholar 

  • Wegley L, Edwards R, Rodriguez-Brito B, Liu H, Rohwer F (2007) Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol 9:2707–2719

    Article  CAS  PubMed  Google Scholar 

  • Wiese J, Ohlendorf B, Blümel M, Schmaljohann R, Imhoff JF (2011) Phylogenetic identification of fungi isolated from the marine sponge Tethya aurantium and identification of their secondary metabolites. Mar Drugs 9:561–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson BA, Thornburg CC, Henrich CJ, Grkovic T, O’Keefe BR (2020) Creating and screening natural product libraries. Nat Prod Rep 37:893–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada T, Doi M, Shigeta H, Muroga Y, Hosoe S, Numata A, Tanaka R (2008) Absolute stereostructures of cytotoxic metabolites, chaetomugilins A–C, produced by a Chaetomium species separated from a marine fish. Tetrahedron Lett 49:4192–4195

    Article  CAS  Google Scholar 

  • Yamada T, Kikuchi T, Tanaka R (2015) Altercrasin a, a novel decalin derivative with spirotetramic acid, produced by a sea urchin-derived Alternaria sp. Tetrahedron Lett 56:1229–1232

    Article  CAS  Google Scholar 

  • Yasuhide M, Yamada T, Numata A, Tanaka R (2008) Chaetomugilins, new selectively cytotoxic metabolites, produced by a marine fish-derived Chaetomium species. J Antibiot (Tokyo) 61:615–622

    Article  CAS  PubMed  Google Scholar 

  • Yu JH, Keller N (2005) Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol 43:437–458

    Article  CAS  PubMed  Google Scholar 

  • Yu G, Wang Y, Yu R, Feng Y, Wang L, Che Q, Gu Q, Li D, Li J, Zhu T (2017) Chetracins E and F, cytotoxic epipolythiodioxopiperazines from the marine-derived fungus Acrostalagmus luteoalbus HDN13-530. RSC Adv 8:53–58

    Article  Google Scholar 

  • Yuan MX, Guo Q, Ran YQ, Qiu Y, Lan WJ, Li HJ (2019) New aromadendrane sesquiterpenoid pseuboydone F from the marine-derived fungus Pseudallescheria boydii F44-1. Rec Nat Prod 14:166–170

    Article  Google Scholar 

  • Yurchenko AN, Girich EV, Yurchenko EA (2021) Metabolites of marine sediment-derived fungi: actual trends of biological activity studies. Mar Drugs 19:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Mu J, Feng Y, Kang Y, Zhang J, Gu PJ, Wang Y, Ma LF, Zhu YH (2009) Broad-spectrum antimicrobial epiphytic and endophytic fungi from marine organisms: isolation, bioassay and taxonomy. Mar Drugs 7:97–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Li J, Zhu T, Gu Q, Li D (2016) Advanced tools in marine natural drug discovery. Curr Opin Biotechnol 42:13–23

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li SJ, Li JJ, Liang ZZ, Zhao CQ (2018) Novel natural products from extremophilic fungi. Mar Drugs 16:194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong W, Wang J, Wei X, Chen Y, Fu T, Xiang Y, Huang X, Tian X, Xiao Z, Zhang W, Zhang S (2018) Variecolortins A-C, three pairs of spirocyclic diketopiperazine enantiomers from the marine-derived fungus Eurotium sp. SCSIO F452. Org Lett 20:4593–4596

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Zhao X, Li J, Guo L, Bai L, Qi X (2020) A new compound Trichomicin exerts antitumor activity through STAT3 signaling inhibition. Biomed Pharmacother 121:109608

    Article  CAS  PubMed  Google Scholar 

  • Zuccaro A, Summerbell RC, Gams W, Schroers HJ, Mitchell JI (2004) A new acremonium species associated with Fucus spp., and its affinity with a phylogenetically distinct marine emericellopsis clade. Stud Mycol 50:283–297

    Google Scholar 

  • Zuccaro A, Schoch CL, Spatafora JW, Kohlmeyer J, Draeger S, Mitchell JI (2008) Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Appl Environ Microbiol 74:931–941

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siya Kamat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamat, S., Sureesh, D., Modi, S., Kumari, M., Jayabaskaran, C. (2024). Marine Fungi as a Bioresource of Medicinal Entities. In: Deshmukh, S.K., Takahashi, J.A., Saxena, S. (eds) Fungi Bioactive Metabolites. Springer, Singapore. https://doi.org/10.1007/978-981-99-5696-8_7

Download citation

Publish with us

Policies and ethics