Skip to main content

Advertisement

Log in

Fifty years of marine mycology

  • Review
  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Marine fungi have been widely studied over the past millennium and considerable progress has been made in documenting their phylogeny, biodiversity, ultrastructure, ecology, physiology and their ability to cause decay of lignocellulosic compounds. These studies have generated a wealth of publications and this review will focus primarily on research undertaken since 1995. During this period new topics have attracted marine mycologists especially: algicolous and manglicolous fungi, deep sea fungi, planktonic fungi, endophytes of marine plants, and the screening of taxa for new chemical structures and bioactive compounds. This review will also highlight areas that warrant further investigation, including surveys for marine fungi in Africa, artic waters and south America, more detailed studies of their physiology and biochemistry, and to determine the marine origin of so called “marine derived” fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbanat D, Leighton M, Maise W, Jones EBG, Pierce C, Greenstein M (1998) Cell wall active anifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15 G256. I. Taxonomy and fermentation. J Antibiot 51:196–302

    Google Scholar 

  • Abdel-Aziz FA (2010) Marine fungi from two sandy Mediterranean beaches on the Egyptian north coast. Bot Mar 53:283–289

    Google Scholar 

  • Abdel-Wahab MA (2011a) Lignicolous marine fugi from Yokosuka, Japan. Bot Mar 54:209–221

    Google Scholar 

  • Abdel-Wahab MA (2011b) Marine fungi from Sarushima Island, Japan, with a phylogenetic evaluation of the genus Naufragella. Mycotaxon 115:443–456

    Google Scholar 

  • Abdel-Wahab MA, Nagahama T (2011a) Halosarpheia japonica sp. nov. (Halosphaeriales, Ascomycota) from marine habitats in Japan. Mycol Prog. doi:10.1007/s11557-0731-0

  • Abdel-Wahab MA, Nagahama T (2011b) Gesasha (Halosphaeriales, Ascomycota), a new genus with three new species from Gasashi mangroves in Japan. Nova Hedwiia 92:497–812

    Google Scholar 

  • Abdel-Wahab MA, Nagahama T, Abdel-Aziz FA (2008) Two new Corollospora species and one anamorph based on morphological and molecular data. Mycoscience 50:147–155

    Google Scholar 

  • Abdel-Wahab MA, Pang KL, Nagahama T, Abdel-Aziz FA, Jones EBG (2010) Phylogenetic evaluation of anamorphic species of Cirrenalia and Cumulopsora with the description of eight new genera and four new species. Mycol Prog 9:537–558. doi:10.1007/s11557-010-0661-x

    Google Scholar 

  • Abraham SP, Hoang TD, Alam M, Jones EBG (1994) Chemistry of the cytotoxic principles of the marine fungus Lignincola laevis. Pure Appl Chem 66:2391–2394

    CAS  Google Scholar 

  • Ahearn DG, Crow SA (1986) Fungi and hydrocarbons in the marine environment. In: Moss ST (ed) The biology of marine fungi. Cambridge Univ Press, pp 11–18

  • Ahearn DG, Roth FJ, Meyers SP (1968) Ecology and characterization of yeasts from aquatic regions of South Florida. Mar Biol 1:291–308

    Google Scholar 

  • Akai S, Fukutomi M, Ishida N, Kunoh H (1967) An anatomical approach to the mechanism of fungal infections in plants. In: Mirocha CJ, Uritani I (eds) The dynamic role of molecular constituents in plant parasite interaction. Minnesota Amer. Phytopath Soc, St Paul, pp 1–18

    Google Scholar 

  • Alam M, Jones EBG, Hossain M, Bilayet HD (1996) Isolation and structure of isoculmorin from the marine fungus Kallichroma tethys. J Nat Prod 59:454–456

    PubMed  CAS  Google Scholar 

  • Alderman DJ, Jones EBG (1967) Shell disease of Ostrea edulis L. Nature 216:797–798

    Google Scholar 

  • Alias SA, Jones EBG (2000a) Colonization of mangrove wood by marine fungi at Kuala Selangor mangrove stand, Malaysia. In: Hyde KD, Ho WH, Pointing SB (eds) Aquatic mycology across the millennium. Fungal Divers 5:9–21

  • Alias SA, Jones EBG (2000b) Vertical distribution of marine fungi on Rhizophora apiculata at Morib mangrove, Selangor, Malaysia. Mycoscience 41:431–436

    Google Scholar 

  • Alias SA, Jones EBG (2009) Marine fungi from mangroves of Malaysia. Inst Ocean Earth Studies 8:109

    Google Scholar 

  • Alias SA, Moss ST, Jones EBG (2001) Cucullosporella mangrovei, ultrastructure of ascospores and their appendages. Mycoscience 42:405–411

    Google Scholar 

  • Alias SA, Zianuddin N, Jones EBG (2010) Biodiversity of marine fungi in Malaysian mangroves. Bot Mar 53:545–554

    Google Scholar 

  • Alker AP, Smith W, Kim K (2001) Characterization of Aspergillus sydowii (Thom & Church), a fungal pathogen of Caribbean sea fan corals. Hydrobiol 460:105–111

    Google Scholar 

  • Alongi G, Catra M, Cormaci M (1999) First record of Haloguignardia cystoseira (Ascomycota) parasitic on Cystoseira elegans (Fucophyceae) from the Mediteranean Sea. Bot Mar 42:33–36

    Google Scholar 

  • Al-Saadoon AH (2006) A new arenicolous species of Corollospora from Iraq. Marsh Bull 2:134–139

    Google Scholar 

  • Alva P, Mckenzie EHC, Pointing SP, Pena-Murala R, Hyde KD (2002) Do seagrasses harbour endophytes? In: Hyde KD (ed) Fungi in marine environments. Fungal Divers Res Series 7:167–178

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16

    Google Scholar 

  • Amagata T, Usami Y, Minoura K, Ito T, Numata A (1998) Cytotoxic substances produced by a fungal strain from a sponge: physico-chemical properties and structures. J Antibiot 51:33–40

    PubMed  CAS  Google Scholar 

  • Amon JP (1986) Growth of marine fungi at ambient nutrient levels. In: Moss ST (ed) The biology of marine fungi. Cambridge Univ Press, pp 70–80

  • Ananda K, Sridhar KR (2002) Diversity of endophytic fungi in the roots of mangrove species on west coast of India. Can J Microbiol 48:871–878

    PubMed  CAS  Google Scholar 

  • Ananda K, Sridhar KR (2004) Diversity of filamentous fungi on decomposing leaf and woody litter of mangrove forests of southwest coast of India. Curr Sci 87:1431–1437

    Google Scholar 

  • Au DWT, Vrijmoed LLP (2002) A comparative ultrastructural study of ascospores sheaths in selected marine Loculoascomycetes. In: Hyde KD (ed) Fungi in marine environments. Fungal Divers Res Ser 7:81–91

  • Au DWT, Jones EBG, Vrijmoed LLP (1996) Ultrastructure of asci and ascospores of the mangrove ascomycete Dactylospora haliotrepha. Mycoscience 37:129–135

    Google Scholar 

  • Au DWT, Jones EBG, Vrijmoed LLP (1999a) Observations on the biology and ultrastructure of the asci and ascospores of Julella avicenniae from Malaysia. Mycol Res 103:865–972

    Google Scholar 

  • Au DWT, Jones EBG, Vrijmoed LLP (1999b) The ultrastructure of Capronia ciliomaris, an intertidal marine fungus from San Juan Island. Mycologia 91:326–333

    Google Scholar 

  • Au DWT, Vrijmoed LLP, Jones EBG (2001) Ultrastructure of asci and ascospores of Massarina velatospora from intertidal mangrove wood. Bot Mar 44:261–266

    Google Scholar 

  • Bahnweg G, Sparrow FK (1974) Occurrence, distribution and kinds of zoosporic fungi in subantarctic and antarctic waters. Veröff Inst Meeresforsch Bremerh 5:149–157

    Google Scholar 

  • Bajpai P, Bajpai PK, Ward OP (1991) Production of docosaheaxaenoic acid by Thraustochytrium aureum. Appl Microbiol Biotechnol 35:706–710

    CAS  Google Scholar 

  • Baker TA, Jones EBG, Moss ST (2001) Ultrastructure of ascus and ascospores appendages of the mangrove fungus Halosarpheia ratnagiriensis (Halosphaeriales, Ascomycota). Can J Bot 79:1–11

    Google Scholar 

  • Baker PW, Kennedy J, Dobson ADW, Matchesi JR (2009) Phylogenetic diversity and antimicrobial activities of fungi associated with Haliclona simulans isolated from Irish coastal waters. Mar Biotechnol 11:540–547

    PubMed  CAS  Google Scholar 

  • Barata M (2002) Fungi on the halophyte Spartina maritima in salt marshes. In: Hyde KD (ed) Fungi in marine environments. Fungal Divers Res Ser 7:179–193

  • Barghoorn ES, Linder DH (1944) Marine fungi: their taxonomy and biology. Farlowia 1:395–467

    Google Scholar 

  • Bass DA, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Watkinson SCC, Willcock S, Richards TA (2007) Yeasts form dominate fungal diversity in the deep oceans. Proc R Soc B 274:3069–3077

    PubMed  CAS  Google Scholar 

  • Bauer R, Luta M, Piatek M, Vanky K, Oberwinkler F (2007) Flamingomyces and Parvulago, new genera of marine smut fungi (Ustialinomycotina). Mycol Res 111:1199–1206

    PubMed  CAS  Google Scholar 

  • Begerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl Microbiol Biotechnol 87:99–108

    PubMed  CAS  Google Scholar 

  • Besitulo A, Sarma VV, Hyde KD (2002) Mangrove fungi from Siargao Islands, Philippines. In: Hyde KD (ed) Fungi in marine environments. Fungal Divers Res Ser 7:267–283

  • Besitulo A, Moslem MA, Hyde KD (2010) Occurrence and distribution of fungi in a mangrove forest on Siargao Island, Philippines. Bot Mar 54:535–544

    Google Scholar 

  • Bhakuni DS, Rawat DS (2005) Bioactive marine natural products. Anamaya Publ. New Delhi, pvii.2

  • Biabani MAF, Laatsch H (1998) Advances in chemical studies on low-molecular weight metabolites of marine fungi. J Prod Chem 340:589–607

    CAS  Google Scholar 

  • Binder M, Hibbett DS, Wang Z, Farnham WF (2006) Evolutionary relationships of Mycaureola dilseae (Agaricales), a basidiomycetes pathogen of a subtidal Rhodophyte. Amer J Bot 93:547–556

    Google Scholar 

  • Bonugli-Santos RC, Durrant LR, de Silva M, Sette LR (2010a) Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzyme Microbial Technol 46:32–37

    CAS  Google Scholar 

  • Bonugli-Santos RC, Durrant LR, Sette LR (2010b) Laccase activity and putative laccase genes in marine-derived basidiomycetes. Fungal Biol 114:863–872

    PubMed  CAS  Google Scholar 

  • Boonyuen N, Chuaseeharonnachai C, Suetrong S, Sri-indrasuthi V, Sivichai S, Pang KL, Jones EBG (2011) Savoryellales (Hypocreomycetidaem Ascomycota): a novel lineage of aquatic ascomycetes inferred from multiple-gene phylogenies of the genera Ascotaiwania, Ascothailandia, and Savoryella. Mycologia (in press)

  • Boonmee S, Ko TWK, Chukeatirote E, Chen H, Cai, L, McKenzie EHC, Jones EBG, Hassan BA and Hyde KD (in press) Two new Kirschsteiniothelia species with a Dendryphiopsis anamorph cluster in Kirschsteiniotheliaceae fam. nov.

  • Booth T (1969) Marine fungi from British Columbia: monocentric Chytrids and Chytridiaceous species from coastal and interior halomorphic soils. Syesis 2:141–161

    Google Scholar 

  • Booth T (1971) Ecotypic responses of chytrids and chytridiaceous species to various salinity and tremperature cominations. Can J Bot 49:1757–1767

    Google Scholar 

  • Booth T, Kenkel N (1986) Ecological studies of lignicolous marine fungi: A distribution model based on ordination and classification. In: Moss ST (ed) The biology of marine fungi. Cambridge Univ Press, pp 297–310

  • Bower SM (1987) Labyrinthuloides haliotidis (Protozoa: Labyrinthomorpha), a parasite of juvenile abalone in a British Columbia mariculture facility. Can J Zool 65:1996–2007

    Google Scholar 

  • Bowles RD, Hunt AE, Bremer GB, Duchars MG, Eaton RA (1999) Long-chain n-3 polyunsaturated fatty acid production by member of the marine protistan group the thraustochytrids: screening of isolates and optimization of docosahexaenoic acid production. J Biotechnol 70:193–202

    CAS  Google Scholar 

  • Bringmann G, Lang G, Bruhn T, Schäffler K, Steffens S, Schmaljohann R, Wiese J, Imhoff JF (2010) Sorbifuranones A-C, Sorbicillinoid metabolizers from Penicillium strains isolated from Mediterraneaen sponges. Tetrahedron 66:9894–9901

    CAS  Google Scholar 

  • Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163

    PubMed  CAS  Google Scholar 

  • Butcher VVC, Hyde KD, Pointing SB, Reddy CA (2004) Production of wood decay enzymes, mass loss and lignin solubilization in wood by marine ascomycetes and their anamorphs. Fungal Divers 15:1–14

    Google Scholar 

  • Byrne PJ, Jones EBG (1974) Lignicolous marine fungi. Veroff Inst Meeresforsch Bremerh Supple 5:301–320

    Google Scholar 

  • Campbell J, Anderson JL, Shearer CA (2003) Systematics of Halosarpheia based on morphological and molecular data. Mycologia 95:530–552

    PubMed  CAS  Google Scholar 

  • Campbell J, Volkmann-Kohlmeyer B, Gräfenhan T, Spatafora JW, Kohlmeyer J (2005) A re-evaluation of Lulworthiales: relationships based on 18S and 28S rDNA. Mycol Res 109:556–568

    PubMed  CAS  Google Scholar 

  • Campbell J, Ferrer A, Raja HA, Sivichai S, Shearer CA (2007) Phylogenetic realtionships among taxa in the Jahnulales inferred from 18S and 28S nuclear ribosomal DNA sequences. Can J Bot 85:873–882

    CAS  Google Scholar 

  • Campbell J, Inderbitzin P, Kohlmeyer J, Volkmann-Kohlmeyer B (2009) Koralionastetales, a new order of marine Ascomycota in the Sordariomyces. Mycol Res 113:373–380. doi:10.1016/j.mycres.2008.11.013

    PubMed  CAS  Google Scholar 

  • Cesati (1880) Mycetum in itinere Borneesi lectorum a cl.od. Beccari. Atti dell ‘Accademia Science Fis Mat Napoli 8:1–28

  • Chaeprasert S, Piapukiew J, Whalley AJS, Sihanonth P (2010) Endophytic fungi from mangrove plant species of Thailand: their antimicrobial and anticancer potentials. Bot Mar 53:555–564

    Google Scholar 

  • Chakravarty DK (1974) On the ecology of the infection of the marine diatom Coscinodiscus granii by Lagenisma coscinodisci in the Weser estuary. Veröff Inst Meeresforsch Bremerh 5:115–122

    Google Scholar 

  • Chen C, Imamura IM, Adachi K, Sakai M, Sano H (1996) Halymecins, new antimicroalgal substances produced by fungi isolated from a marine alga. J Antibiot 49:998–1005

    PubMed  CAS  Google Scholar 

  • Chen YS, Yanagida F, Chen LY (2009) Isolation of marine yeasts from coastal waters of northeastern Taiwan. Aquatic Biol 8:55–60

    Google Scholar 

  • Chesters CGC, Bull AT (1963) The enzyme degradation of laminarin 1. The distribution of laminarinase among microorganisms. Biochem J 86:28–31

    PubMed  CAS  Google Scholar 

  • Chinnaraj S (1993) Manglicolous fungi from Atollos Maldives, Indian Ocean. Ind J Mar Sci 22:14–142

    Google Scholar 

  • Chinworrubgsee M, Kittakoop P, Isaka M, Chanphen R, Tanticharoen M, Thebtaranonth Y (2002) Halorosellins A and B, unique isocoumarin glucosides from the marine fungus Halorosellinia oceanica. J Chem Peerkin Trans 22:2473–2476

    Google Scholar 

  • Chinworrungsee M, Kittakoop P, Isaka M, Rungrod A, Tanticharoen M, Thebtaranonth Y (2001) Antimalarial halorosellinic acid fron the marine fungus Halorosellinia oceanica. Bioorg Med Chem Lett 22:1965–1969

    Google Scholar 

  • Chokpaiboon S, Sommit D, Teerawatananond T, Muangsin N, Bunyapaiboonsri T, Pushom K (2010) Cytotoxic nor-chamigrane and chamigrane endoperoxidases from a basidiomycetes fungus. J Nat Prod 73:1005–1007

    PubMed  CAS  Google Scholar 

  • Chowdhery HJ, Rai JN (1980) Microfungi from mangrove swamps of West Begal India. 1. Two new species of the genus Aspergillus. Nova Hedwigia 32:229–236

    Google Scholar 

  • Clement DJ, Stanley MS, O’Neil J, Woodcock NA, Fincham DA, Clipson NJW, Hoole P (1999) Complementation cloning of salt tolerance determinants from the marine hyphomycete Dendryphiella salina in Aspergillus nidulans. Mycol Res 103:1252–1258

    Google Scholar 

  • Clokie JJP (1974) Site selection by thraustochytrid zoospores on Pinus pollen. Veröff Inst Meeresforsch Bremerh 5:159–174

    Google Scholar 

  • Clokie JJP, Dickinson CH (1972) The use of pollen colonisation for growth studies of thraustochytrids. Veröff Inst Meersforschung Bremerh Sonderband 2:265–270

    Google Scholar 

  • Cohn F (1865) Chytridii species novae marinae. Hedwigia 12:169–170

    Google Scholar 

  • Cotton (1909) Notes on marine Pyrenomycetes. Trans Br Mycol Soc 31:92–99

    Google Scholar 

  • Crouan PL, Crouan HM (1867) Florule du Finistére. Klincksieck, Paris and Brest

    Google Scholar 

  • Crow SA, Bourquin AW, Cook WL, Ahearn DG (1976) Microbiological populations in coastal surface slicks. In: Sharpley JM, Kaplan AM (eds) Proc 3rd Inter Biodegradation Symp. Appl Sci Publ, pp 93–98

  • Cuomo V (1986) Ecology and physiology of marine fungi. PhD Thesis, Univ Portsmouth, UK

  • Cuomo V, Vanzanella F, Fresi E, Mazzella L, Scipione MB (1982) Micoflora delle fenerogame dell ‘Isola d’Ischia: Posidonia ocenaica (L.) Delile e Cymodocea nodosa (Ucria) Aschers. Bull Musea Inst Biol. Univ Genova 50:162–166

    Google Scholar 

  • Cuomo V, Vanzanella F, Fresi F, Cinelli F, Mazzella L (1985) Fungal flora of Posidonia oceanica and its ecological significance. Trans Br Mycol Soc 84:35–40

    Google Scholar 

  • Cuomo V, Jones EBG, Grasso S (1988) Occurrence and distribution of marine fungi along the coast of the Mediterranean Sea. In: Jones EBG, Miller JD (eds) Aspects of marine microbiology. Pergamon Press, Oxford, Prog Ocean 21:189–200

  • Curran PMT, Gillespie DK, O’Muicheartaigh IG (1997) The effects of oil spill dispersants on conidial germination and ultrastructure in the marine fungus Zalerion maritimum. Bot Mar 40:359–367

    CAS  Google Scholar 

  • Damare S, Raghukumar C, Raghukumar S (2006) Fungi in deep-sea sediments of the Central Indian Basin. Deep-Sea Res I 53:14–27

    Google Scholar 

  • Das SS, Dey S, Bhattacharyya BC (1995) Dye decolorization in a column bioreactor using wood degrading fungus Phanerochaete chrysosporium. Ind Chem Eng 37:176–180

    CAS  Google Scholar 

  • Debbab A, Aly AH, Proksch P (2011) Secondary metabolites from terrestrial and marine microfungi. Fungal Divers (in press)

  • Desmaziéres JBHJ (1849) Planates Cryptogames de France. 2nd. Edition, No. 1778, Lille

  • Devarajan PT, Suryanarayanan TS, Geetha V (2002) Endophytic fungi associated with the tropical seagrass Halophila ovalis (Hydrocharitaceae). Ind J Mar Sci 31:73–74

    Google Scholar 

  • Du L, Feng T, Zhao B, Li D, Cai S, Zhu T, Wang F, Xiao X, Gu Q (2010) Alkaloids from a deep ocean sediment-derived fungus Penicillium sp. and their antitumor activities. J Antibiot 63:165–170

    PubMed  CAS  Google Scholar 

  • Duc PM, Hatai K, Kurata O, Tensha K, Uchida Y, Yaguchi T, Udagawa SI (2009) Fungal infection of mantis shrimp (Oratasquilla oratoria) by two anamorphic fungi found in Japan. Mycopathol 167:229–247

    Google Scholar 

  • Duong LM, Jeewon R, Lumyong S, Hyde KD (2006) DGGE coupled ribosoma DNA gene phylogenies reveal uncharacterized fungal phylotypes. Fungal Divers 23:121–138

    Google Scholar 

  • Dupont J, Magnin S, Rousseau F, Zbinden M, Frebourh G, Samadi S, Richer da Forges B, Jones EBG (2009) Molecular and ultrastructural characterization of two ascomycetes found on sunken wood off Vanuatu Islands in the deep Pacific Ocean. Mycol Res 113:1351–1364. doi:10.1016/j.mycres.2009.08.015, Published on line 6 September

    PubMed  CAS  Google Scholar 

  • Durieu de Maisonneuve C, Montagne JFC (1869) Pyrenomycetes Fr. In: Exploration Scientifique de l’Algérie, Botanique, de Saint-Vincent JB, Durieu de Maisonneuve C (eds) Paris, pp 443–608

  • Ebel R (2010) Natural product diversity from marine fungi. In: Moore B, Crews P (eds) Structural diversity II. Vol 2 Lander L, Liu HW (eds) Comprehensive natural products II: Structure and biology Elesvier, Oxford, pp 223–262

  • Eliane G, Courtney MS, Paul RJ, Fenical W, Lobkovsky E, Clardy J (2003) Trichodermamides A and B, cytotoxic modified dipeptides from the marine-derived fungus Trichoderma virens. J Nat Prod 66:423–426

    Google Scholar 

  • Fan KW, Chen F, Jones EBG, Vrijmoed LLP (2000) Utilization of food processing waste by Thraustochytrids. In: Hyde KD, Ho WH, Pointing SP (eds) Aquatic mycology across the millennium. Fungal Divers 5:185–194

  • Farrant CA, Hyde KD, Jones EBG (1985) Further studies on lignicolous marine fungi from Danish sand dunes. Trans Br Mycol Soc 85:164–167

    Google Scholar 

  • Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19:1–48

    PubMed  CAS  Google Scholar 

  • Fazzani K, Jones EBG (1977) Spore release and dispersal in marine and brackish water fungi. Mat Org 12:235–248

    Google Scholar 

  • Fell JW (1967) Distribution of yeasts in the Indian Ocean. Bull Mar Sci 17:454–470

    Google Scholar 

  • Fell JW (1974) Distributions of yeasts in the water masses of the sourthern oceans. In: Colwell RR, Morita RY (eds) Effect of the ocean environment of mircobial activities. Univ Park Press, Baltiomore, pp 510–523

    Google Scholar 

  • Fell JW (1976) Yeasts in oceanic regions. In: Jones EBG (ed) Recent advances in aquatic mycology. Elek Press, London, pp 93–124

    Google Scholar 

  • Fell JW, Ahearn DG, Meyers SP, Roth FJ (1960) Isolation of yeasts from Biscayne Bay, Florida and adjacent benthic waters. Limnol Oceanogr 5:366–371

    Google Scholar 

  • Fell JW, Statzall-Tallman A, Kurtzman CP (2004) Lachancea meyersii sp. nov., an ascosporogenous yeast from mangrove regions in the Bahama Islands. Studies Mycol 50:359–363

    Google Scholar 

  • Fell JW, Statzell-Tallman A, Scorzetti G, Gutiérrez MH (2010) Five new species of yeasts from fresh water and marine habitats in the Florida Everglades. Antonie Van Leeuwenhoek. doi:10.1007/s10482-010-9521-6

  • Fisher WW, Nilson EH, Schleser BA (1975) Effect of the fungus Haliphthoros milfordensis on the juvenile stages of the American lobster Homarus americanus. J Invert Path 26:42–45

    Google Scholar 

  • Gachon MM, Küpper H, Küpper FC, Setlik I (2006) Singel-cell chlorophyll fluorescence kinetic microscopy of Pylaiella littorlais (Phaeophyceae) infected by Chytridium polysiphoniae (Chytridiomycota). Eur J Phycol 41:395–403

    Google Scholar 

  • Gachon MM, Strittmatter M, Müller DG, Kleinteich J, Küpper FC (2009) Detection of differential host susceptibility to the marine Oomycete pathogen Eurychasma dicksonii by real-time PC: Not all algae are equal. Appl Environ Microbiol 75:322–328

    PubMed  CAS  Google Scholar 

  • Gachon MM, Sime-Ngando T, Strittmatter M, Chambouvet A, Kim GH (2010) Algal diseases: spotlight on a black box. Trends Plant Sci 15:633640

    Google Scholar 

  • Gaertner A (1968) (ed) Marine Mykologie. Symposium über Niedere Pilze im Küstenbereich in Bremerhaven vom 17. Bis 19 Oktober 1966, Veröff Inst Meeresforsch Bremer, 519p

  • Gaertner A (1972) Characters used in the classification of thraustochytriaceous fungi. Veröff Inst Meeresforsch Bremerh 13:183–194

    Google Scholar 

  • Gaertner A (1974) (ed) Marine Mykologie. 2. Internationales Symposium in Bremerhaven vom 11. bis 16. September 1972. Veröff Inst Meeresforsch Bremerh, 159p

  • Galpin MFJ, Jennings DH (1975) Histochemical study of the hyphae and the distribution of adenosine triphosphatase in Dendryphiella salina. Trans Br Mycol Soc 65:477–483

    Google Scholar 

  • Galpin MFJ, Jennings DH, Oates K, Hobot JA (1978) Localisation by X-ray microanalysis of soluble ions, particularly potassium and sodium in fungal hyphae. Exp Mycol 2:258–269

    CAS  Google Scholar 

  • Gao Z, Hohnson ZI, Wang GL (2010) Molecular characterization of the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters. ISME J 4:111–120

    PubMed  Google Scholar 

  • Gerlach SA, Höhnk W (1966) (eds) Meerebiologisches Symposium18. bis 20 Oktober 1965, in Bremerhaven. Veröff Inst Meeresforsch Bremerh, 385p

  • Gessner RV, Kohlmeyer J (1976) Geographical distribution and taxonomy of fungi from salt marsh Spartina. Can J Bot 54:2023–2037

    Google Scholar 

  • Gibb FM, Wethered JM, Jennings DH (1986) The effect of monovalent ions on enzyme activity in Dendryphiella salina. In: Moss ST (ed), The biology of marine fungi. Cambridge Univ Press, pp 27–33

  • Gleason FH, Küpper FC, Amon JP, Picard K, Gachon SMM, Marano AV, Sime-Ngando T, Lilje O (2011) Zoosporic true fungi in marine ecosystems: a review. Mar Freshwater Res 62:383–393

    CAS  Google Scholar 

  • Gloer JB (1995) The chemistry of fungal antagonism and defense. Can J Bot 73(Suppl):S1265–S1274

    CAS  Google Scholar 

  • Goldstein S (1963) Studies of a new species of Thraustochytrium that displays light stimulated growth. Mycologia 55:799–811

    CAS  Google Scholar 

  • Gonzáles MC, Hanlin RT (2010) Potential use of marine arenicolous ascomycetes as bioindicators of ecosystem disturbance on sandy Canaun beaches: Corollospora maritima: as a candidate species. Bot Mar 53:577–580

    Google Scholar 

  • Grant WD, Atkinson M, Burke B, Molloy C (1996) Chitinolysis by the marine ascomycete Corollospora maritima Werdermann: purification and properties of a chitobiosidase. Bot Mar 39:177–186

    CAS  Google Scholar 

  • Grasso S, La Ferala R, Jones EBG (1985) Lignicolous marine fungi in a harbour environment (Milazzo). Bot Mar 28:259–264

    Google Scholar 

  • Grasso S, Panebianco C, La Ferala R (1990) Lignicolous marine fungi in the Straits of Messina, Italy. Hyrobiol 206:149–154

    Google Scholar 

  • Groβ M, Kosmoswosky IJ, Lorenz R, Molitoris HP, Jaenicke R (1994) Response of bacteria and fungi to high-pressure stress as investigated by two-dimensional gel electrophoresis. Electophoresis 15:1559–1565

    Google Scholar 

  • Grube, Ryan BD (2002) Colemopsidium. In: Nash TH, Ryan BD, Gries C, Bungarts F (eds) Lichen flora of the Greater Sonoran Desert Region, Lichuenc Unlimited Temp, pp 1162–1164

  • Gueidan C, Roux C, Lutzoni F (2007) Using a multigene phylogenetic analysis to assess generic delineation and character evolution in Verrucariaceae (Verrucariales, Ascomycota). Mycol Res 111:1145–1168

    PubMed  CAS  Google Scholar 

  • Guerriero A, D’Ambrosio M, Cuomo V, Vanzanella F, Pietra F (1988) Dendryphiellin A, the first fungal trinor-ermophilane. Isolation from the marine deuteromycete Dendryphiella salina (Sutherland) Pugh et Nicot. Helvetica Chim Acta 71:57–61

    CAS  Google Scholar 

  • Guerriero A, D’Ambrosio M, Cuomo V, Vanzanella F, Pietra F (1989) Novel trinor-eremophilanes (dedryphiellin B, C, and D), eremophilanes (dendryphiellin E, F and G) and branched C9-carboxylic acids (dendryphiellic acid A and B) from the marine deuteromycete Dendryphiella salina (Sutherland) Pugh et Nicot. Helvetica Chim Acta 72:438–446

    CAS  Google Scholar 

  • Hale MS, Eaton RA (1984) Soft rot cavitiy widening—a consideration of the kinetics. Inter Res Group Wood Preservation. No IRG/WP/1227

  • Hale MS, Eaton RA (1985a) The ultrastructure of soft rot fungi. II. Cavity-forming hyphae in wood cell walls. Mycologia 77:594–605

    Google Scholar 

  • Hale MS, Eaton RA (1985b) The oscillatory growth of fungal hyphae on wood cell walls. Trans Br Mycol Soc 84:227–288

    Google Scholar 

  • Harder R, Uebelmesser ER (1955) Űber marine saprophytische Chytridiales und einiege andere Pilze vom Meeresboden und Meeresstrand. Arch Mikrobiol 22:87–144

    PubMed  CAS  Google Scholar 

  • Harrison JL, Jones EBG (1974) Patterns of salinity tolerance displayed by the lower fungi. Veroff Inst Meeresforsch Bremerh Suppl 5:197–220

    Google Scholar 

  • Harvey JBJ, Goff LJ (2010) Genetic covariation of the marine fungal symbiot Haloguignardia irritans (Ascomycota, Pezizomycotina) with its algal hosts Cystoseira and Halidrys (Phaeophyceae, Fucales) along the west coast of North America. Mycol Res 114:82–95

    CAS  Google Scholar 

  • Hau RFC, Rush MC (1982) Preinfectional interactions between Helminthosporium oryzae and resistant and susceptible rice plants. Phytopath 72:285–292

    Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655

    Google Scholar 

  • Hennings (1908) Fungi Philippinensis. I. Hedwigia 47:250–265

  • Hibbett DS, Binder M (2001) Evolution of marine mushrooms. Biol Bull 201:319–322

    PubMed  CAS  Google Scholar 

  • Hibbett DS, Ohman A, Kirk PM (2009) Fungal ecology catches fire. New Phytol 184:279–282

    PubMed  Google Scholar 

  • Hibbitts J, Hughes GC, Sparks AK (1981) Trichomaris invadens gen. et sp. nov. an ascomycete parasite of the tanner crab (Chionoecetes bairdi) Rathbin (Crustaceae, Brachyura). Can J Bot 59:121–128

    Google Scholar 

  • Höhnk W (1952) Studien zur Brack-und Seewassermykologie 1. Veröff Inst Meeresforsch Bremerh 1:115–125

    Google Scholar 

  • Höhnk W (1954a) Studien zur Brack-und Seewassermykologie IV. Ascomyceten des Küstensandes. Veröff Inst Meeresforsch Bremerh 3:27–33

    Google Scholar 

  • Höhnk W (1954b) Von den Mikropilzen in Watt und Meer. Abh Naturwiss Ver Bremen 33:407–429

    Google Scholar 

  • Höhnk W (1955a) Studien zur Brack-und Seewassermykologie V. Höhere Pilze des submersern Holzes. Veröff Inst Meeresforsch Bremerh 3:199–227

    Google Scholar 

  • Höhnk W (1955b) Marine Pilze vom watt und meeresgrund (Chytridiales und Thraustochytriaceae). Natwissen 42:348–349

    Google Scholar 

  • Höhnk W (1961) A further contribution to the oceanic mycology. Cons Inter Explor Mer 12:202–208

    Google Scholar 

  • Höhnk W (1963) (ed) Meerebiologisches Symposium 23. Bis 25 Oktober, 1962 in Bremerhaven. Veröff Inst Meeresforsch Bremerh 247 p

  • Höhnk W, Aleem AA (1953) Ein Brackwasserpilze: Olpidium maritimum nov. spec. Veröff Inst Meeresforsch Bremerh 2:224–229

    Google Scholar 

  • Höller U, Wright AD, Matthée GF, Konig KM, Draeger S, Aust HJ, Schulz B (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104:1354–1365

    Google Scholar 

  • Holligan PM, Jennings DH (1972) Carbohydrate metabolism in the fungus Dendryphiella salina. III. The effect of the nitrogen source on the metabolism of 1-14C- and 6-14C-glucose. New Phytol 71:1119–1133

    CAS  Google Scholar 

  • Hughes GC (1969) Marinhe fungi from British Columbia: occurrence and distribution of lignicolous species. Syesis 2:121–140

    Google Scholar 

  • Hsieh SY, Moss ST, Jones EBG (2007) Ascoma development in the marine ascomycete Corollospora gracilis (Halosphaeriales, Hypocreomycetidae, Sordariomycetes). Bot Mar 50:302–313

    Google Scholar 

  • Huang YF, Qiao L, Lv AL, Pei YH, Tian L (2008) Eremophilane sesquiterpenes from the marine fungus Penicillium sp. BL27-2. Chin Chem Lett 19:562–564

    CAS  Google Scholar 

  • Huhndorf SM (1994) Neotropical ascomycetes. 5. Hypsostromataceae, a new family of Loculoascomycetes and Manglicola samuelsii, a new species from Guyana. Mycologia 86:266–269

    Google Scholar 

  • Hyde KD (1988a) A study of the vertical zonation of intertidal fungi on Rhizophora apiculata at Kampong Kapok mangrove, Brunei. Aquatic Bot 36:255–262

    Google Scholar 

  • Hyde KD (1988b) Observation on the vertical distribution of marine fungi on Rhizophora spp. at Kg. Danau mangrove, Brunei. Asian Mar Biol 5:77–81

    Google Scholar 

  • Hyde KD (1988c) Studies on the tropical marine fungi of Brunei. II. Notes on five interesting species. Trans Mycol Soc Japan 29:161–171

    Google Scholar 

  • Hyde KD (1988d) The genus Linocarpon from the mangrove palm Nypa fruticans. Trans Mycol Soc Japan 29:338–350

    Google Scholar 

  • Hyde KD (1990) Vertical zonation of intertidal mangrove fungi. In: Hattori T, Ishida Y, Maruyama Y, Morita RY, Uchida A (eds) Recent advances in microbial ccology. pp 302–306

  • Hyde KD (1991) Fungal colonization of Rhizophora apiculata and Xylocarpus granatum poles in Kg. Kapok mangrove, Brunei. Sydowia 43:31–38

    Google Scholar 

  • Hyde KD (1992a) Fungi from decaying intertidal fronds of Nypa fruiticans, including three new genera and four new species. Bot J Linn Soc 116:95–110

    Google Scholar 

  • Hyde KD (1992b) Fungi from Nypa fruticans: Nipicola carbospora gen. et sp. nov. (Ascomycotina). Crypt Bot 2:330–332

    Google Scholar 

  • Hyde KD, Alias SA (2000) Biodiversity and distribution of fungi associated with decomposing Nypa fruticans. Biol Conser 9:393–402

    Google Scholar 

  • Hyde KD, Jones EBG (1986) Marine fungi from Seychelles. IV. Cucullospora mangrovei gen. et sp. nov. from dead mangrove. Bot Mar 29:491–495

    Google Scholar 

  • Hyde KD, Jones EBG (1988) Marine mangrove fungi. Mar Ecol 9:15–33

    Google Scholar 

  • Hyde KD, Jones EBG (1989a) Marine fungi from Seychelles. VIII. Rhizophila marina, a new ascomycete from mangrove prop roots. Mycotaxon 34:527–533

    Google Scholar 

  • Hyde KD, Jones EBG (1989b) Intertidal mangrove fungi from Brunei. Lautospora gigantea gen. et sp. nov., a new Loculoascomycete from prop roots of Rhizophora sp. Bot Mar 32:79–482

    Google Scholar 

  • Hyde KD, Lee SY (1995) Ecology of fungi and their role in nutrient cycling: what gaps occur in our knowledge? Hyrobiol 195:107–118

    Google Scholar 

  • Hyde KD, Sarma VV (2006) Biodiversity and ecological observations on filamentous fungi of mangrove palm Nypa fruticans Wurumb. (Liliopsida-Arecales) along the Tutong River, Brunei. Ind J Mar Sci 35:297–307

    Google Scholar 

  • Hyde KD, Jones EBG, Moss ST (1986a) Mycelial adhesion to surfaces. In: Moss ST (ed) The biology of marine fungi. Cambridge Univ Press, pp 331–340

  • Hyde KD, Jones EBG, Moss ST (1986b) How do fungal spores attach to surfaces? In: Barry S, Houghton DR, Llewellyn GC, O’Rear CE (eds) Biodeterioration 6. CAB International Mycological Institute and The Biodeterioration Society, London, pp 584–589

    Google Scholar 

  • Hyde KD, Moss ST, Jones EBG (1989) Attachment studies in marine fungi. Biofouling 1:287–298

    Google Scholar 

  • Hyde KD, Greenwood R, Jones EBG (1993) Spore attachment in marine fungi. Mycol Res 97:7–14

    Google Scholar 

  • Hyde KD, Goh TK, Lu BS, Alias SA (1999) Eleven new intertidal fungi from Nypa fruticans. Mycol Res 103:1409–1422

    Google Scholar 

  • Hyde KD, Wong WS, Aptroot A (2002) Marine and estuarine species of Lophiostoma and Massarina. In: Hyde KD (ed) Fungi in marine environments. Fungal Divers Res Ser 7:93–109

  • Inderbitzin P, Desjardin DE (1999) A new halotolerant species of Physalacria from Hong Kong. Mycologia 91:666–668

    Google Scholar 

  • Inderbitzin P, Landvik S, Abdel-Wahab MA, Berbee ML (2001) Aliquandostipitaceae, a new family for two new tropical ascomycetes with unusually wide hyphae and dimorphic ascomata. Amer J Bot 88:52–61

    Google Scholar 

  • Inderbitzin P, Kohlmeyer J, Volkmann-Kohlmeyer B, Berbee ML (2002) Decorospora, a new genus for the marine ascomycetes Pleospora gaudefroyi. Mycologia 91:651–659

    Google Scholar 

  • Isaka M, Suyarnsestakorn C, Tanticharoen M, Kongsaeree P, Thabtaranonth Y (2002) Aigialomycins A-E, new resorcyclic macrolides from the marine mangrove fungus Aigialus parvus. J Org Chem 67:1561–1566

    PubMed  CAS  Google Scholar 

  • Isaka M, Yngchum A, Intamas S, Kocharin K, Jones EBG, Kongsaree P, Prabpai S (2009) Aigialomycins and related polyketide metabolites from the mangrove fungus Aigialus parvus BCC 5311. Tetrahedron 65:4396–4403

    CAS  Google Scholar 

  • Ishino M, Kiyomichi N, Takatori K, Sugita T, Shiro M, Kinoshita K, Takahashi K, Koyama K (2010) Phomactin I, 13-epi-phomactin I, and phomcatin J, three novel diterpenes from a marine-derived fungus. Tetrahedron 66:2594–2597

    CAS  Google Scholar 

  • Iwamoto C, Minoura K, Oka T, Ohta T, Hagishita S, Numata QW (1999) Absolute stereostructure of novel cytotoxic metabolites, penostatins A-E from a Penicillium sp. separated from an Enteromorpha alga. Tetrahedron 55:14353–14368

    CAS  Google Scholar 

  • Jadulco R, Proksch P, Wray V, Sudarsono BA, Gräfe U (2001) New macrolides and furan carboxylic acid derivative from the spongew-derived fungus Cladosporium herbarum. J Nat Prod 64:527–530

    PubMed  CAS  Google Scholar 

  • Janson JE, Bernan VS, Greenstein M, Bugni TS, Ireland CM (2005) Penicillium dravuni, a new marine-derived species from an alga in Fiji. Mycologia 97:444–453

    Google Scholar 

  • Jaritkhuan S (2002) Thraustochytrids: a new alternative source of fatty acids for aquaculture. In: Hyde KD (ed) Fungi in marine environment. Fungal Divers Res Ser 7:345–357

  • Jennings DH (1986a) Some aspects of the physiology and biochemistry of marine fungi. Biol Rev 58:423–459

    Google Scholar 

  • Jennings DH (1986b) Fungal growth in the sea. In: Moss ST (ed) The biology of marine fungi. Cambridge Univ Press, pp 1–10

  • Jensen PR, Fenical W (2002) Secondary metabolies from marine fungi. In: Hyde KD (ed) Fungi in marine environments. Fungal Divers Res Ser 7:293–315

  • Jiang GC, Lin YC, Zhou SN, Vrijmoed LLP, Jones EBG (2000) Studies on the secondary metabolites of mangrove fungus no. 1403 from the South China Sea. J Sunb Yat-sen Univ (Nat Sci) 39:68–72

    CAS  Google Scholar 

  • Johnson TW (1956a) Marine fungi I. Leptosphaeria and Pleospora. Mycologia 48:495–505

    Google Scholar 

  • Johnson TW (1956b) Marine fungi. II. Ascomycetes and Deuteromycetes from submerged wood. Mycologia 48:841–851

    Google Scholar 

  • Johnson TW (1956c) Ascus development and spore discharge in Leptosphaeria discors, a marine and brackish-water fungus. Bull Mar Sci Gulf Carib 6:349–358

    Google Scholar 

  • Johnson RG, Jones EBG, Moss ST (1984) Taxonomic studies of the Halosphaeriaceae: Remispora Linder, Marinospora Cavaliere and Carbosphaerella Schmidt. Bot Mar 27:557–566

    Google Scholar 

  • Johnson RG, Jones EBG, Moss ST (1987) Taxonomic studies of the Halosphaeriaceae: Ceriosporopsis, Haligena and Appendichordella gen. nov. Can J Bot 65:931–942

    Google Scholar 

  • Jones EBG (1962) Marine fungi. Trans Br Mycol Soc 45:93–114

    Google Scholar 

  • Jones EBG (1968) The distribution of marine fungi on wood submerged in the sea. In: Walters AH, Elphick JJ (eds) Biodeterioration of materials. Elsevier, Amsterdam, pp 460–485

    Google Scholar 

  • Jones EBG (1971) The ecology and rotting ability of marine fungi. In: Jones EBG, Eltringham SK (eds) Marine borers, fungi and fouling organisms of wood. OECD, Paris, pp 237–258

    Google Scholar 

  • Jones EBG (1973) Marine fungi—spore dispersal, settlement and colonization. In: Acker AF, Floyd Brown B, De Palma JR, Inverson WP (eds) Proc 3rd Intern Congress Marine Corrosion Fouling. Northeastern Univ Press, pp 640-647

  • Jones EBG (1985) Wood-inhabiting marine fungi from San Juan Island with special reference to ascospore appendages. Bot J Lin Soc 91:219–231

    Google Scholar 

  • Jones EBG (1994) Fungal adhesion. Mycol Res 98:961–981

    Google Scholar 

  • Jones EBG (1995) Ultrastructure and taxonomy of the aquatic ascomycetous order Halosphaeriales. Can J Bot 73:S790–S801

    Google Scholar 

  • Jones EBG (2000) Marine fungi: some factors influencing biodiversity. Fungal Divers 4:53–73

    Google Scholar 

  • Jones EBG (2006) Form and function of fungal spore appendages. Mycoscience 47:167–183

    CAS  Google Scholar 

  • Jones EBG (2008) Marine compounds in marine organisms. Bot Mar 51:161–162

    Google Scholar 

  • Jones EBG (2009) The battle against marine biofouling: a historical review. In: Hellio C, Yebra DM (eds) Advances in marine antifouling coatings and technologies. Woodhead Publ. Ltd, UK, pp 19–45

    Google Scholar 

  • Jones EBG (2010) Fungi. In: Relini G (ed) Checklist of the flora and fauna in Italian seas. Biol Mar Mediterr 17(suppl. 1):900, pp 681–684

  • Jones EBG (2011) Are there more marine fungi to be described? Bot Mar in press

  • Jones EBG, Abdel-Wahab MA (2005) Marine fungi from the Bahamas Islands. Bot Mar 48:356–364

    Google Scholar 

  • Jones EBG, Choeyklin R (2008) Ecology of marine and freshwater basidiomycetes. In: Boddy L, Frankland JC, van West P (eds) Ecology of saprotrophic basidiomycetes. Academic, London, pp 301–324

    Google Scholar 

  • Jones EBG, Hyde KD (1988) Methods for the study of marine fungi from the mangroves. In: Agate AD, Subramanian CV, Vannucci M (eds) Mangrove microbiology. Role of microorganisms in nutrient cycling of mangrove soils and waters. UNDP/UNESCO, New Dehli, pp 9–27

    Google Scholar 

  • Jones EBG, Irvine J (1972) The role of marine fungi in the biodeterioration of materials. In: Walters AH, Hueck-van der Plas EH (eds) Biodeterioration of materials. Volume 2 Applied Sci Publ, pp 422-431

  • Jones EBG, Jennings DH (1964) The effect of salinity on the growth of marine fungi in comparison with non-marine species. Trans Br Mycol Soc 47:619–625

    Google Scholar 

  • Jones EBG, Jennings DH (1965) The effect of cations on the growth of fungi. New Phytol 64:86–100

    CAS  Google Scholar 

  • Jones EBG, Le Campion-Alsumard T (1970) Marine fungi on polyurethane plates submerged in the sea. Nova Hedwigia 19:567–590

    Google Scholar 

  • Jones EBG, Mitchell JI (1996) Biodiversity of marine fungi. In: Cimerman A, Gunde-Cimerman N (eds) Biodiversity: International Biodiversity Seminar. Nat Inst Chem Slovenia Nat Comm UNESCO, Ljubljana, pp 31–42

    Google Scholar 

  • Jones EBG, Pang KL (2010) (eds) 11th International Marine and Freshwater Mycology Symposium, Taichung, Taiwan R.O.C. November 2009. Bot Mar pp 475–600

  • Jones EBG, Pugsili M (2006) Marine fungi from Florida. Florida Sci 69:157–164

    Google Scholar 

  • Jones EBG, Tan TK (1987) Observations on manglicolous fungi from Malaysia. Trans Br Mycol Soc 89:390–392

    Google Scholar 

  • Jones EBG, Vrijmoed LLP (2003) Biodiversity of marine fungi in Hong Kong coastal waters. In: Morton B (ed) Perspectives on marine environment change in Hong Kong and Southern China 1977–2001. Proc Inter Workshop Reunion Conference. Hong Kong Univ Press, Hong Kong, pp 75–92

    Google Scholar 

  • Jones EBG, Byrne P, Alderman DJ (1971) The response of fungi to salinity. Viet et Milieu supplement No. 22, pp 265–280

  • Jones EBG, Johnson RG, Moss ST (1983) Taxonomic studies of the Halosphaeriaceae: Corollospora Werdmann. Bot J Linn Soc 87:193–212

    Google Scholar 

  • Jones EBG, Johnson RG, Moss ST (1984) Taxonomic studies of the Halosphaeriaceae: Halosphaeria Linder. Bot Mar 27:129–143

    Google Scholar 

  • Jones EBG, Johnson RG, Moss ST (1986) Taxonomic studies of the Halosphaeriaceae. Philosophy and rationale for the selection of characters in the delineation of genera. In: Moss ST (ed) The biology of marine fungi. Cambridge Univ. Press, Cambridge, pp 211–230

    Google Scholar 

  • Jones EBG, Uyenco FR, Follosco MP (1988) Fungi on driftwood collected in the intertidal zone from the Philippines. Asian Mar Biol 5:103–106

    Google Scholar 

  • Jones EBG, Hyde KD, Read SJ, Moss ST, Alias SA (1996a) Tirisporella gen. nov., an ascomycete from the mangrove palm Nypa fruticans. Can J Bot 74:1487–1495

    Google Scholar 

  • Jones EBG, Hyde K, Alias SA, Moss ST (1996b) Tirisporella gen. nov. an ascomycete from the mangrove palm Nypa fruticans. Can J Bot 74:1487–1495

    Google Scholar 

  • Jones EBG, Vrijmoed LLP, Alias SA (1998) Intertidal marine fungi from San Juan island and comments on temperate water species. Bot J Scotl 50:177–184

    Google Scholar 

  • Jones EBG, Chatmala I, Pang KL (2006) Two new genera of the Halosphaeriaceae isolated from marine habitats in Thailand: Pseudoligninicola and Thalespora. Nova Hedwigia 83:219–232

    Google Scholar 

  • Jones EBG, Chatmala I, Klasuban A, Pang KL (2008a) Ribosomal DNA phylogeny of marine anamorphic fungi: Cumulospora varia, Dendryphiella species and Orbimyces spectabilis. The Raffles Bull Zool suppl 19:11–18

    Google Scholar 

  • Jones EBG, Stanely SJ, Pinruan U (2008b) Marine endophytes: sources of new chemical natural products: a review. Bot Mar 51:163–170

    Google Scholar 

  • Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009a) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187

    Google Scholar 

  • Jones EBG, Zuccaro A, Nakagiri A, Mitchell JL, Pang KL (2009b) Phylogenetic relationships of the genus Sigmoidea and a new genus Halosigmoidea gen. nov. Bot Mar 52:349–359

    CAS  Google Scholar 

  • Kagami M, de Bruin A, Ibelinbgs BW, Van Donk E (2007) Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiol 578:113–129

    Google Scholar 

  • Kato H, Yoshida T, Tokue T, Nojiri Y, Hirota H, Ohta T, Williams RM, Tsukamoto S (2007) Notoamides A-D: prenylated indole alkaloids isolated from marine-derived fungus Aspergillus sp. Agnew Chem Int Ed Engl 46:2254–2256

    CAS  Google Scholar 

  • Kendrick B, Risk MJ, Michaelids J, Bergman K (1982) Amphibious microborers: bioeroding fungi isolated from live corals. Bull Mar Sci 32:862–867

    Google Scholar 

  • Khao LV, Hatai K, Aoki T (2004) Fusarium incarnatum isolated from black tiger shrimp Penaeus mondon with black gill disease cultured in Vietnam. J Fish Dis 27:507–515

    Google Scholar 

  • Khao LV, Hatai K, Yuasa A, Sawada K (2005) Morphology and molecular phylogeny of Fusarium solani isolated from kuuruma prawn Penaeus japonicas with black gills. Fish Pathol 40:103–109

    Google Scholar 

  • Kitancharoen N, Nakamura K, Wada S, Hatai K (1994) Atkinsiella awabi sp. nov. isolated from stocked abalone, Haliotis sieboldii. Mycoscience 35:265–270

    Google Scholar 

  • Kjer J, Wray V, Edrada-Ebel RA, Ebel R, Pretsch A, Lin WH, Proksch P (2009) Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. isolated from the mangrove plant Sonneratia alba. J Nat Prod 72:2053–2057

    PubMed  CAS  Google Scholar 

  • Koch J (1974) Marine fungi on driftwood from the West coast of Jutland, Denmark. Friesia 10:209–250

    Google Scholar 

  • Koch J, Jones EBG (1989) The identity of Crinigera maritima and three new genera of marine cleistothecial ascomycetes. Can J Bot 67:1183–1197

    Google Scholar 

  • Koch J, Petersen KRL (1996) A check list of higher marine fungi on wood from Danish coasts. Mycotaxon 60:397–414

    Google Scholar 

  • Koch J, Jones EBG, Moss ST (1983) Goenhiella bivestia, gen. et sp. nov., a lignicolous marine fungus from Denmark. Bot Mar 26:265–270

    Google Scholar 

  • Koch J, Pang K-L, Jones EBG (2007) Rostrupiella danica gen. et sp. nov., a Lulworthia-like marine lignicolous species from Denmark and the USA. Bot Mar 50:1–8

    Google Scholar 

  • Kohlmeyer J (1956) Űber den Cellulose-Abbau durch einige phytopathogene Pilze. Phtytopath Z 27:147–182

    Google Scholar 

  • Kohlmeyer J (1966) Ecological observations on arenciolous marine fungi. Z Alig Mikrobiol 6:95–106

    CAS  Google Scholar 

  • Kohlmeyer J (1967) Intertidal and phycophilous fungi from Tenerife (Canary Islands). Trans Br Mycol Soc 50:137–147

    Google Scholar 

  • Kohlmeyer J (1968) Revisions and descriptions of algicolous marine fungi. Phytopathol Z 63:341–363

    Google Scholar 

  • Kohlmeyer J (1969a) Ecological notes on fungi in mangrove forests. Trans Brit Mycol Soc 53:237–250

    Google Scholar 

  • Kohlmeyer J (1969b) The role of marine fungi in the penetration of calcareous substances. Am Zool 9:741–746

    Google Scholar 

  • Kohlmeyer J (1972a) Parasitic Haloguignardia oceanica (Ascomycetes) and hyperparasitic Sphaceloma cecidii sp. nov. (Deuteromycetes) in drift Sargassum in North Carolina. J Elisha Mitchell Soc Soc 88:255–259

    Google Scholar 

  • Kohlmeyer J (1972b) Marine fungi deteriorating chitin of hydrozoa and keratin-like annelid tubes. Inter J Life Oceans Coastal Waters 12:277–284

    Google Scholar 

  • Kohlmeyer J (1973) Fungi on marine algae. Bot Mar 16:201–215

    Google Scholar 

  • Kohlmeyer J (1975) Revision of algicolous Zigonella spp. and description of Pontogenia gen nov. (Ascomycetes). Bot Jahrb 96:200–211

    Google Scholar 

  • Kohlmeyer J (1977) New genera and species of higher fungi from the deep sea. (1615–5325). Rev Mycol 41:189–206

    Google Scholar 

  • Kohlmeyer J (1979) Marine fungal pathogens among Ascomycetes and Deuteromycetes. Experientia 35:437439

    Google Scholar 

  • Kohlmeyer J, Demoulin V (1981) Parastic and symbiotic fungi on marine algae. Bot Mar 24:9–18

    Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1966) On the life history of marine Ascomycetes: Halosphaeria mediosetigera and H. circumvestita. Nova Hedwigia 12:189–202

    Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology. The higher fungi. Academic Press, New York

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1987a) Marine fungi from Belize with a description of two new genera of Ascomycetes. Bot Mar 30:195–204

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1987b) Reflections on the genus Corollospora (Ascomycetes). Trans Br Mycol Soc 88:181–188

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1987c) Koralionastetaceae fam. nov. (Ascomycetes) from coral rocks. Mycologia 79:764–778

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1989) Corollospora armoricana sp. nov., an arenicolous ascomycete from Brittany (France). Can J Bot 67:1281–1284

    Google Scholar 

  • Kohlmeyer J, Volkman-Kohlmeyer B (1990) A new species of Koralionastes (Ascomycotina) fromn the Caribbean and Australia. Can J Bot 68:1554–1559

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (2000) Fungi on Juncus roemerianus. 14. Three new coelomycetes, including Floricola, anam.-gen nov. Bot Mar 43:385–392

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (2001) The biodiversity of fungi on Juncus roemerianus. Mycol Res 105:1411–1412

    Google Scholar 

  • Kohlmeyer J, Volkmannn-Kohlmeyer B (2003) Marine Ascomycetes from algae and animals hosts. Bot Mar 46:285–306

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B, Eriksson OE (1995) Fungi on Juncus roemerianus. 2. New dictyosporous ascomycetes. Bot Mar 38:165–174

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B, Eriksson OE (1997) Fungi on Juncus roemerianus. 9. New obligate and facultative marine ascomycotina. Bot Mar 40:291–300

    Google Scholar 

  • Kohlmeyer J, Spatafora JA, Volkmann-Kohlmeyer B (2000) Lulworthiales, a new order of marine Ascomycota. Mycologia 92:453–458

    Google Scholar 

  • Kong RYC, Kim SCF (2002) Molecular cloning and characterization of the isopenicillin synthase (IPNS) gene from the marine fungus, Kallichroma tethys. In: Hyde KD (ed) Fungi in marine environments. Fungal Divers Res Ser 7:359–370

  • Kralj A, Kehraus S, Krick A, van Echten-Deckett G, König GM (2007) Planata Med 73:366–371

    CAS  Google Scholar 

  • Kubanek J, Jensen PR, Keifer PA, Sullards MC, Collinas DO and Fenical W (2003) Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc Natl Acad Sci USA 100:6916–6921

    Google Scholar 

  • Kumaresan K, Suryananyanan TS (2001) Occurrence and distribution of endophytic fungi in a mangrove community. Mycol Res 105:1388–1391

    Google Scholar 

  • Kupka J, Anke T, Steglich W, Zechlin L (1981) Antibiotics from Basidiomycetes XI.The biological activity of siccayne, isolated from the marine fungus Halocyphina villosa. J Antibiot 34:298–304

    PubMed  CAS  Google Scholar 

  • Kutty SN, Philip R (2008) Marine yeasts—a review. Yeast 7:465–483

    Google Scholar 

  • Lachance MA, Starmer WT (1998) Aquatic habitats, ecology and yeasts. In: Kurtzman CP, Fell FW (eds) The Yeasts A Taxonomic Study, 4th edn. Elsevier, Amsterdam, pp 21–30

    Google Scholar 

  • Lai X, Cao L, Tan H, Fang S, Huang Y, Zhou S (2007) Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. ISME J 1:75–762

    Google Scholar 

  • Le Calvez T, Burgaud G, Mahe S, Barbier G, Vanden-Koornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. App Environ Microbiol 75:6415–6421

    Google Scholar 

  • Le Campion-Alsumard T, Golubic T, Priess K (1995) Fungi in corals symbiosis or disease? Interaction between polyps and fungi causes pearl-like skeleton biominerilazation. Mar Ecol Prog Ser 117:137–147

    Google Scholar 

  • Leidig E, Pruesse U, Vorlop KD, Winter J (1999) Biotransformtation of Poly R-4789 by continuos cultures of PVAL-encapsulated Trametes versicolor under non-sterile conditions. Bioprocess Eng 21:5–12

    CAS  Google Scholar 

  • Leightley LE (1980) Wood decay activities of marine fugi. Bot Mar 23:387–395

    Google Scholar 

  • Leightly LE, Eaton RA (1979) Nia vibrissa—a marine white rot fungus. Trans Br Mycol Soc 73:35–40

    Google Scholar 

  • Leong WF, Tan TK, Jones EBG (1991) Fungal colonization of submerged Bruguiera cylindrica and Rhizophora apiculata wood. Bot Mar 34:69–76

    Google Scholar 

  • Li Q, Wang G (2009) Diversity of fungal isolates from three Hawaiian marine sponges. Mirbiol Res 163:233–241

    Google Scholar 

  • Li HJ, Lin YC, Wang L, Zhou SN, Vrijmeod LLP, Jones EG (2001) Metabolites of marine fungus Hypoxylon oceanicum (#326) from the South China Sea. Acta Sci Natural Uni Sunyatseni 40:70

    Google Scholar 

  • Li JJ, Lin YC, Yao JH, Vrijmoed LLP, Jones EBG (2004) Two new metabolites from the mangrove endophytic fungus No. 2524. J Asian Nat Prods Res 6:185–191

    CAS  Google Scholar 

  • Li HJ, Lan WJ, Yao JH, Lin YC (2005) High performance liquid chromatography-electrospray ionization tandem mass spectrometry confirms the sequenves of new cyclic peptides produced by marine microorganisms. Chin J Instrument Anal 2446

  • Li DL, Li XM, Li TG, Dang HY, Wang BG (2008) Dioxopiperaine alkaloids produced by the marine mangrove derived endophytic fungus Eurotium rubrum. Helv Chin Acta 91:1888–1893

    CAS  Google Scholar 

  • Liberra K, Lindequist U (1995) Marine fungi: a prolific resource of biologically active natural products? Pharmazie 50:583–588

    PubMed  CAS  Google Scholar 

  • Lin YC, Zhou SN (2003) Marine microorganisms and their metabolites. Chem Indus Press, Beijing (in Chinese)

    Google Scholar 

  • Lin YC, Shao Z, Jiang GC, Zhou S, Cai JW, Vrijmoed LLP, Jones EBG (2000) Penicilazine, a unique quinolone derivative with 4H-5,6-dihydro-1,2- oxazine ring system from the marine fungus Penicillium sp. (strain #386) from South China Sea. Tetrahedron 56:9607–9609

    CAS  Google Scholar 

  • Lin YC, Wu XY, Feng SA, Jiang GC, Zhou SN, Vrijmoed LLP, Jones EBG (2001a) A novel N-cinnamoylcyclopeptide containing an allenic ether from the fungus Xylaria sp. (strain #2508) from the South China Sea. Tetrahedron Lett 42:449–451

    CAS  Google Scholar 

  • Lin YC, Wu XY, Feng SA, Jiang GC, Luo JH, Zhou SN, Vrijmoed LLP, Jones EBG, Krohn K, Steingrover K, Zsila F (2001b) Five unique compounds: Xyloketals from mangrove fungus Xylaria sp. from the South China Sea. J Org Chem 66:6252–6256

    PubMed  CAS  Google Scholar 

  • Lin YC, Wang J, Zhou SN, Jones EBG (2001c) New isocoumarins from the mangrove endophytic fungus #2533. Chem J Internet 3:406–410

    Google Scholar 

  • Lin YC, Wang J, Wu XY, Zhou SN, Vrijmoed LLP, Jones EBG (2002a) A novel compound, enniatin G, from the mangrove fungus Halosarpheia sp. (strain 732) from the South China Sea. Aust L Chem 55:225–227

    CAS  Google Scholar 

  • Lin YC, Li HJ, Jiang GC, Zhou SN, Vrijmoed LLP, Jones EBG (2002b) A novel gamma-lactone, eutypoid-A and other metabolites from marine fungus Eutypa sp. (#424) from the South China Sea. Ind J Chem Section B-Organic Chemistry Including Medicinal Chemistry 41:1542–1544

    Google Scholar 

  • Lindstrom S (1998) The seaweed resources of British Columbia, Canada. In: Critchley AT, Ohno M (eds) Seaweed resources of the world. Japan Inter Coop Agency, pp 266–272

  • Lintott WH, Lintott EA (2002) Marine fungi from New Zealand. In: Hyde KD (ed) Fungi in marine environments. Fungal Divers Res Ser 7:285–292

  • Lira Sp, Vita-maruqes AM, Seleghim MHR, Bugni TS, Labarbera DV, Sette LD, Sponchiado SRP, Ireland CM, Berlinck GS (2006) New destruxins from the marine-derived fungus Beauveria felina. J Antibiot 59:553–563

    PubMed  CAS  Google Scholar 

  • Liu WC, Li CQ, Zhu P, Yang JL, Cheng KD (2010) Phylogenetic diversity of culturable fungi associated with two marine sponges: Haliclona simulans and Gelliodes carnosa, collected from the Hainan Isalnd coastal waters of the South China Sea. Fungal Divers 41:1–15

    Google Scholar 

  • Lloyd LS, Wilson IM (1962) Development of the perithecium in Lulworthia medusa (Ell. et Ev.) Cribb et Cribb, a saprophyte on Spartina townsendii. Trans Br Mycol Soc 45:359–372

    Google Scholar 

  • Lopez-Garcia, Rodriguez-Valera F, Pedros-Allo C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    PubMed  CAS  Google Scholar 

  • Lopez-Garcia P, Philip H, Gail F, Moreira D (2003) Autochthonous eukaryotic diversity in hyptheremal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci USA 100:697–702

    PubMed  CAS  Google Scholar 

  • Loque CP, Medeiros AO, Pellizzari FM, Oliveira EC, Rosa CA, Rosa LH (2009) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33:641–648. doi:10.1007/s00300-009-0740-0

    Google Scholar 

  • Lorenz P, Jensen PR, Fenical W (1998) Mactanamide, a new fungistatic diketopiperazine produced by a marine Aspergillus sp. Nat Pro Lett 12:55–60

    CAS  Google Scholar 

  • Luo JH, Yang YB, Lin YC, Chen ZL, Jiang GC (2004) Antioxidative activities of two metabolites of cultured marine fungus, Halorosellinia oceanicum 323 in vitro. Zhong Yai Cai 17:188–192

    Google Scholar 

  • Luo W, Vrijmoed LLP, Jones EBG (2005) Screening of marine fungi for lignocellulose-degrading enzyme activities. Bot Mar 48:379–386

    CAS  Google Scholar 

  • Maekawa N, Suhara H, Kinjo K, Kondo R, Hashi Y (2005) Haloaleurodiscus mangrovei gen. sp. nov. (Basidiomycota) from mangrove forests in Japan. Mycol Res 109:825–832

    PubMed  Google Scholar 

  • Mantel PG, Hawksworth DL, Pazoutova S, Collinson LM, Rassing BR (2006) Amorosia littoralis gen. sp. nov., a new genus and species name for the scorpinone and caffeine-producing hyphomycetes from the littoral zone in The Bahamas. Mycol Res 110:1371–1378

    Google Scholar 

  • Maria GL, Sridhar R (2002) A new ascomycete, Passeriniella mangrovei sp. nov. from the mangrove forest of India. Ind J Forest 25:319–2002

    Google Scholar 

  • Maria GL, Sridhar KR (2003) Diversity of filamentous fungi on woody litter of five mangrove plant species from the southwest coast of India. Fungal Divers 14:109–126

    Google Scholar 

  • Maria GL, Sridhar KR (2004) Fungal colonization of immersed wood in mangroves of the Southwest coast of India. Can J Bot 82:1409–1418

    Google Scholar 

  • Maria GL, Sridhar KR, Bärlocher F (2006) Decomposition of dead twigs of Avicennia officinalis and Rhizophora mucronata in a mangrove in southwestern India. Bot Mar 45:450–455

    Google Scholar 

  • May LA, Smiley B, Schmidt MG (2001) Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage. Can J Microbiol 47:829–841

    PubMed  CAS  Google Scholar 

  • McKeown TA, Alias SA, Moss ST, Jones EBG (2001) Ultrastructural studies of Trematosphaeria malaysiana sp. nov. and Leptosphaeria pelagica. Mycol Res 105:615–624

    Google Scholar 

  • Menezes CB, Bonugli-Santos RC, Miqueletto PB, Passarini MRZ, Silva CHD, Justo MR, Fantinatti-Garboggini F, Oliveira VM, Berlinick RGS, Sette LD (2010) Microbial diversity associated with algae, ascidians and sponges from the north coast of Sao Paulo state. Brazil Microbiol Res. doi:10.1016/j.micres.2009.09.005

  • Meyers SP (1953) Marine fungi in Biscayne Bay, Florida. Bull Mar Sci Gulf Caribb 2:590–601

    Google Scholar 

  • Meyers SP (1954) Marine fungi in Biscayne Bay, Florida, II. Bull Mar Sci Gulf Caribb 3:307–327

    Google Scholar 

  • Meyers SP (1957) Taxonomy of marine Pyrenomycetes. Mycologia 49:475–528

    Google Scholar 

  • Meyers SP (1968) Degradative activities of filamentous marine fungi. In: Walters AH, Elpjhick JJ (eds) Biodeterioration of materials. Elsevier, Amsterdam, pp 594–609

    Google Scholar 

  • Meyers SP (1971a) Isolation and identification of filamentous marine fungi. In: Jones EBG, Eltringham SK (eds) Marine borers, fungi and fouling organisms of wood. OECD, pp 89–113

  • Meyers SP (1971b) Developments in the biology of filamentous marine fungi. In: Jones EBG, Eltringham SK (eds) Marine borers, fungi and fouling organisms of wood. OECD, pp 217–258

  • Meyers SP (1996) Fifty yers of marine mycology: highlights of the past, projections for the coming century. SIMS News 46:119–127

    Google Scholar 

  • Meyers SP, Reynolds ES (1960) Occurrence of lignicolous fungi in Northeastern Atlantic and Pacific marine localities. Can J Bot 38:217–226

    Google Scholar 

  • Meyers SP, Feder KM, Tsue M (1964) Studies on relationships among nematodes and filamentous fungi in the marine environment. Dev Ind Micrbiol 5:354–3634

    Google Scholar 

  • Meyers SP, Opurt PA, Simms J, Boran LL (1965) Thalassiomycetes VII. Observations on fungal infestation of turtle grass, Thalassia testudinum Koning. Bull Mar Sci 15:54–564

    Google Scholar 

  • Meyers SP, Ahearn DG, Gunkel W, Roth FJ (1967) Yeasts from the North Sea. Mar Biol 1:118–1234

    Google Scholar 

  • Miller JD (1986) Secondary metabolites in lignicolous marine fungi. In: Moss ST (ed) The biology of marine fungi. Cambridge Univ Press, pp 61–80

  • Miller JD (2000) Screening for secondary metabolies. In: Hyde KD, Pointing SB (eds) Marine mycology—A practical approach. Fungal Divers Res Ser, pp 158–171

  • Miller JD, Jones EBG, Mohrir YE, Findlay JA (1985) Colonization of wood blocks by marine fungi in Langstone Harbour. Bot Mar 28:251–257

    Google Scholar 

  • Mohamed IE, Gross H, Pontius A, Kehraus S, Krick A, Kelter G, Maier A, Fiebig HH, König GM (2010) Epoxyphomalin A and B, prenylated polyketides with potent cytotoxicity from the marine-derived fungus Phoma sp. Org Lett 11:5014–5017

    Google Scholar 

  • Molitoris HP, Schaumann K (1986) Physiology of marine fungi: a screening programme for growth and enzyme production. In: Moss ST (ed), The biology of marine fungi. Cambridge Univ Press, pp 35–47

  • Morrison-Gardiner S (2002) Dominant fungi from Australian reefs. Fungal Divers 9:105–121

    Google Scholar 

  • Moss ST (1986) ed. The biology of marine fungi. Cambridge Univ, Press, 382p

    Google Scholar 

  • Mouzouras R (1986) Pattern of timber decay caused by marine fungi. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, pp 341–353

    Google Scholar 

  • Mouzouras R (1989) Soft rot decay of wood by marine microfungi. J Inst Wood Sci 11:393–201

    Google Scholar 

  • Mouzouras R, Jones EBG, Venkatasamy R, Holt DM (1988) Microbial decay of lignocellulose in the marine environment. In: Thompson MF, Sarojini R, Nagabhushanaim R (eds) Marine Biodeterioration. Oxford and J B H Publishing, New Delhi, pp 329–354

    Google Scholar 

  • Mugambi GK, Huhndorf SM (2009) Molecular phylogenetics of Pleosporales: Melanommataceae and Lophiostomataceae re-circumscribed (Pleosporomycetidae, Dothideomycetes, Ascomycoata) Studies Mycol 64:103–121

  • Müller G, Küppeer FC, Küpper H (1999) Infection experiments reveal broad host ranges of Eurychasma dicksonii (Oomycota) and Chytridium polysiphonia (Chytridiomycota), two eukaryotic parasites in marine brown algae. Phycol Soc 4:2–23

    Google Scholar 

  • Nagano Y, Nagahama T, Hatada Y, Numoura T, Takami H, Miyazaki J, Takai K, Horikoshi K (2010) Fungal diversity in deep-sea sediments—the presence of novel fungal groups. Fungal Ecol 3:316–325

    Google Scholar 

  • Nakagiri A, Tokura R (1987) Taxonomic studies of the genus Corollospora (Halosphaeriaceae, Ascomycotina) with descriptionsof seven new species. Trans Mycol Soc Japan 28:413–436

    Google Scholar 

  • Nawwar M, Hussein S, Ayoub NA, Hashim A, Mernitz G, Cuypers B, Linscheid M, Lindequist U (2010) Deuteromycols A and B, two benzofuranoids from a Red Sea marine-derived Deuteromycete sp. Arch Pharm Res 33:1729–33

    PubMed  CAS  Google Scholar 

  • Nedzarek A, Rakusa-Suszczewski S (2004) Decomposition of macro-algae and the release of nutrient in Admiralty Bay, King George Island, Antartica. Polar Biosc 17:16–35

    Google Scholar 

  • Newell SY, Fell JW (1980) Mycoflora of turtlegrass (Thalassia testudinum) as recorded after seawater incubation. Bot Mar 23:265–275

    Google Scholar 

  • Nikolcheva LG, Bourque T, Bärlocher F (2005) Fungal diversity during initial stage of leaf decomposition in a stream. Mycol Res 109:246–253

    PubMed  Google Scholar 

  • Norkrans B (1966) Studies on marine occurring yeasts. Growth related to pH, NaCl concentratrions and temperature. Arch Mikrobiol 54:374–392

    Google Scholar 

  • Norkrans B, Kylin A (1969) Regulation of potassium to sodium and of the osmotic potential in relation to salt tolerance in yeasts. J Bacteriol 100:836–845

    PubMed  CAS  Google Scholar 

  • Numata A, Takahashi C, Ito Y, Takada T, Kawai K, Usami Y, Matsumura E, Imachi M, Ito T, Hasegawa T (1993) Communsesins, cytotoxic metabolites of a fungus isolated from marine algae. Tetrahedron Lett 34:2355–2358

    CAS  Google Scholar 

  • Numata A, Takahashi C, Ito Y, Minoura K, Yamada T, Matsuda C, Nomoto K (1996) Penochalasins, a novel class of cytotoxic cytochalasins from a Penicillium species separated from a marine alga–structure determination and solution confirmation. J Chem Society-Perkin Trans 1(3):239–245

    Google Scholar 

  • Obire O, Anyanwu EC (2009) Impact of various concentrations of crude oil on fungal populations of soil. Int J Environ Sci Tech 6:211–218

    CAS  Google Scholar 

  • Ohno M, Largo DB (1998) The seaweed resources of Japan. In: Critchley CT, Ohno M (eds) Seaweed resources of the world. Japan Inter Coop Agency, pp 1–14

  • Okereke JN, Obiekezie SO, Obasi KO (2007) Microbial flora of oil-spilled sites in Egnema, Imo State, Nigeria. Afr J Biotech 6:991–993

    Google Scholar 

  • Palmer JG, Murmanis L, Highley TL (1983) Visualisation of hyphal sheaths in wood-decay Hymenomycetes. I Brown rotters Mycologia 75:995–1004

    Google Scholar 

  • Pan JH, Jones EBG, She ZG, Pang JY, Lin YC (2008) Review of bioactive compounds from fungi in the South China Sea. Bot Mar 51:179–190

    CAS  Google Scholar 

  • Panebianco C, Tam WY, Jones EBG (2002) The effect of pre-inoculation of balsa wood by selected marine fungi and their effect on subsequent colonisation in the sea. In: Hyde KD, Jones EBG (eds) Fungal succession. Fungal Divers 10:77–88

  • Pang KL (2002) Systematics of the Halosphaeriales which morphological characters are important? In: Hyde KD (ed) Fungi in marine enironments. Fungal Divers Res Ser 7:35–57

  • Pang KL, Mitchell JI (2005) Molecular approaches for assessing fungal diversity in marine substrata. Bot Mar 48:332–347

    CAS  Google Scholar 

  • Pang KL, Abdel-Wahab MA, El-Sharouney HM, Sivichai S, Jones EBG (2002) Jahnulales (Dothideomyces, Ascomycota) a new order of lignicolous freshwater ascomycetes. Mycol Res 106:1031–1042

    Google Scholar 

  • Pang KL, Vrijmoed LLP, Kong RC, Jones EBG (2003a) Lignincola and Nais, polyphyletic genera of the Halosphaeriales (Ascomycota). Mycol Prog 2:29–36

    Google Scholar 

  • Pang KL, Vrijmoed LLP, Kong RYC, Jones EBG (2003b) Polyphyly of Halosarpheia (Halosphaeriales, Ascomycota): implications on the use of unfurling ascospore appendage as a systematic character. Nova Hedwigia 77:1–18

    Google Scholar 

  • Pang KL, Jones EBG, Vrijmoed LLP (2004a) Two new marine fungi from China and Singapore, with the description of a new genus, Sabecola. Can J Bot 82:485–490

    Google Scholar 

  • Pang KL, Jones EBG, Vrijmoed LLP, Vokineswary S (2004b) Okeanomyces, a new genus to accommodate Halosphaeria cucullata (Halosphaeriales, Ascomycota). Bot J Linn Soc 146:223–229

    Google Scholar 

  • Pang KL, Vrijmoed LLP, Goh TK, Plaingame N, Jones EBG (2008a) Fungal endophytes associated with Kandelia candel (Rhizophoraceae) in Mai Po Nature Reserve, Hong Kong. Bot Mar 51:171–178

    Google Scholar 

  • Pang KL, Jones EBG, Vrijmoed LLP (2008b) Autecology of Antennospora (Fungi: Ascomycota: Sordariomycetidae: Halosphaeriales) and its phylogeny. The Raffles Bull Zool Suppl 19:1–10

    Google Scholar 

  • Pang KL, Jones EBG, Huang KH, Vrijmoed LLP (2009) Phylogenetic relationships amongst geographical isolates of Lignincola laevis (Halosphaeriales, Ascomycota) inferred from ITS regions of rDNA. In: Abstracts, Asian Mycological Congress & 11th International Marine and Freshwater Mycology Symposium, 15–19 Nov. 2009, National Museum of Natural Science, Taichung, Taiwan

  • Pang KL, Cheng J-S, Jones EBG (2010a) Marine mangrove fungi of Taiwan. Nat Taiwan Ocean Univ Chilung, p 131

  • Pang KL, Alias SA, Chiang MWL, Vrijmoed LLP, Jones EBG (2010b) Sedecimella taiwanensis gen. et sp. nov., a marine mangrove fungus in the Hypocreales (Hypocreomycetidae, Ascomycota). Bot Mar 53:493–498

    Google Scholar 

  • Patersen RA (1958) Parasitic and saprophytic phycomycetes which invade planktonic organisms 1. New taxa and records of Chytridiaceous fungi. Mycologia 20:85–96

    Google Scholar 

  • Paz Z, Komon-Zepazowska M, Druzginina IS, Aveskamp MM, Shnaiderman A, Akuma Y, Carneli S, Ilan M, Yarden O (2010) Diversity and potential antifungal properties of fungi associated with a Mediterranean sponge. Bot Mar 42:17–26

    Google Scholar 

  • Petersen KRL, Koch J (1997) Substrate preference and vertical zonation of lignicolous marine fungi on mooring posts of oak (Quercus sp.) and larch (Larix sp.) in Svanemollen harbour, Denmark. Bot Mar 40:451–463

    Google Scholar 

  • Phongpaichit S, Preedana S, Rungjondamai N, Sakayaroj J, Benzies C, Chuaypat J, Plathong S (2006) Aspergillosis of the gorgonian sea fan Annella sp., after the 2004 tsunami at Mu Ko Similan National Park, Andaman Sea, Thailand. Coral Reefs. doi:10.1007/s00338-006-0104-y

  • Pilantanapak A, Jones EBG, Eaton EA (2005) Marine fungi on Nypa fruticans in Thailand. Bot Mar 48:1–9

    Google Scholar 

  • Pivikin MV, Afiyatullov SS, Elyakov GB (1999) Biodiversity of marine fungi and new biological active substances from them. In: Chou CH, Walker GR, Reinhardt C (eds) From organisms to ecosystems in the Pacific. Biodivers Alleopathy pp 91–99

  • Pivkin MV (2000) Filamentous fungi asscoaited with holthurians from the Sea of Japan, off the Primorye coast of Russia. Biol Bull 198:101–109

    PubMed  CAS  Google Scholar 

  • Poch GK, Gloer JB (1989) Helicascoides A and B: new lactone from the marine fungus Heliascus kanaloanus. J Nat Prod 52:257–260

    PubMed  CAS  Google Scholar 

  • Pointing (2001) Feasability of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    PubMed  CAS  Google Scholar 

  • Pointing SB, Vrijmoed LLP, Jones EBG (1998) A qualitative assessment of lignocellulose degrading enzyme activity in marine fungi. Bot Mar 41:293–298

    CAS  Google Scholar 

  • Poon MOK, Hyde KD (1998a) Biodiversity of intertidal estuarine fungi on Phragmites at Mai Po marshes, Hong Kong. Bot Mar 41:141–155

    Google Scholar 

  • Poon MK, Hyde KD (1998b) Evidence for the vertical distribution of saprophytic fungi on senescent Phragmites australis culms aat Mai Po Marshes, Hong Kong. Bot Mar 41:285–292

    Google Scholar 

  • Poonyth AD, Hyde KD, Peerally A (1999) Intertidal fungi in Mauritius mangroves. Bot Mar 42:285–292

    Google Scholar 

  • Porter D, Farnham WF (1986) Mycaureola edulis, a marine basidiomycete parasite of the red alga, Dilsea carnosa. Trans Br Mycol Soc 87:575–582

    Google Scholar 

  • Porter D, Lingle WL (1992) Endolithic thraustochytrid marine fungi from planted shell fragments. Mycologia 84:289–299

    Google Scholar 

  • Prihatini R, Boonyuen N, Sivichai S (2008) Phylogenetic evidence that two submerged-habitat fungal species, Speiropsis pedatospora and Xylomyces chlamydosporus, belong to the order Jahnulales incertae sedis Dothideomyccetes. Microbiol Indones 2:136–140

    Google Scholar 

  • Proksch P, Ebel R, Edrada R, Riebe F, Liu H, Diesel A, Bayer M, Li X, Lin WH, Grebenyuk V, Műller WEG, Draeger S, Zuccaro A, Schulz B (2008) Sponge-associated fungi and their bioactive compounds: the Suberites case. Bot Mar 51:209–218

    CAS  Google Scholar 

  • Pueschel CM, Vandermee JP (1985) Ultrastructure of the fungus Petersenia palmariae (Oomycetes) parasitic on the alga Palmaria mollis (Rhodophyceae). Can J Bot 63:409–418

    Google Scholar 

  • Raghukumar C, Raghukumar S, Chinnaraj A, Chdranohan D, D’Souza TM, and Reddy CA (1994) Laccase and other lignoceluloses modifying enzymes of marine fungi isolated from the coast of India. Bot Mar 37:515–523

    Google Scholar 

  • Raghukumar C (2002) Bioremediation of coloured pollutants by terrestrial versus facultative marine fungi. Hyd KD (ed) Fungi in marine environment. Fungal Divers Res Ser 76:317–344

  • Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35

    Google Scholar 

  • Raghukumar C, D’Souza TM, Thorn RG, Reddy CA (1999) Lignin modifying enzymes of Flavodon flavus, a basidiomycete isolated from a coastal marine environment. Appl Environ Microbiol 65:2100–2111

    Google Scholar 

  • Raghukumar C, Damare S, Singh P (2010) A review on deep-sea fungi: occurrence, diversity and adaptations. Bot Mar 53:479–492

    Google Scholar 

  • Rateb ME, Houssen WE, Legrve NM, Clements C, Jaspars M, Ebel R (2010) Dibenzofurans from the marine sponge-derived ascomycete super1F1-09. Bot Mar 53:499–506

    CAS  Google Scholar 

  • Raveendran K, Manimohan P (2007) Marine fungi of Kerala: A preliminary floristic and ecological study. Malabar Nat Hist Soc 270 p

  • Ravishankar JP, Suryanarayanan TS, Muruganandam V (2006) Strategeis for osmoregulation in the marine fungus Cirrenalia pygmea Kohl. (Hyphomycetes). Indian J Mar Sci 35:351–358

    Google Scholar 

  • Read SJ, Hsieh SY, Jones EBG, Moss ST, Chang HS (1992) Paraliomyces lentiferus: an ultrastructure study of a little known marine ascomycete. Can J Bot 70:2223–2232

    Google Scholar 

  • Read SJ, Jones EBG, Moss ST (1993a) Ultrastructural observations on Nimbospora bipolaris (Halosphaeriaceae, Ascomycetes). Phil Trans Royal Soc, Lond B 339:483–489

    Google Scholar 

  • Read SJ, Jones EBG, Moss ST (1993b) Taxonomic studies of marine Ascomycotina: ultrastructure of the asci, ascospores, and appendages of Savoryella species. Can J Bot 71:273–283

    Google Scholar 

  • Read SJ, Moss ST, Jones EBG (1994) Ultrastructure of asci and ascospores sheath of Massarina thalassiae (Loculoascomycetes, Ascomycotina). Bot Mar 37:547–533

    Google Scholar 

  • Read SJ, Jones EBG, Moss ST, Hyde KD (1995) Ultrastructure of asci and ascospores of two mangrove fungi: Swampomyces armeniacus and Marinosphaera mangrovei. Mycol Res 99:1465–1471

    Google Scholar 

  • Read SJ, Jones EBG, Moss ST (1997a) Ultrastructural observations of asci, ascospores and appendages of Massarina armatispora (Ascomycota). Mycoscience 38:141–146

    Google Scholar 

  • Read SJ, Moss ST, Jones EBG (1997b) Ultrastructure of asci, ascospores and appendages of Massarina rammunculicola (Loculoascomycetes, Ascomycota). Bot Mar 40:465–471

    Google Scholar 

  • Reeb D, Best PB, Botha A, Cloete KJ, Thornton M, Mouton M (2011) Fungi associated with the skin of a southern right whale (Eubalaena australis) from South Africa. Mycology 1:155–162

    Google Scholar 

  • Rees G (1980) Factors affecting the sedimentation rates of spores. Bot Mar 23:375–385

    Google Scholar 

  • Rees G, Jones EBG (1984) Observations on the attachment of spores of marine fungi. Bot Mar 27:145–160

    Google Scholar 

  • Rees G, Johnson RG, Jones EBG (1979) Lignicolous marine fungi from Danish sand dunes. Trans Br Mycol Soc 72:99–106

    Google Scholar 

  • Rukachaisirikul V, Khamthong N, Sukpondma Y, Phongpaichit S, Hutadilok-Towatana N, Graidist P, Sakayoroj J, Kirtikara K (2010) Cyclohexene, diketopiperazine, lactone and phenol derivatives from the Sea Fan derived-fungi Nigrospora sp. PSU-F11 and PSU-F12. Atch Pharm Res 33:375–380

    CAS  Google Scholar 

  • Rungjindamai N, Pinruan U, Choeyklin R, Hattori T, Jones EBG (2008) Molecular characterization of basidiomycetous endophytes isolated from leaves, rachis and petioles of the oil palm, Elaeis guineensis, in Thailand. Fungal Divers 33:139–161

    Google Scholar 

  • Sadaba RB (1996) An ecological study of fungi associated with the mangrove associate Acanthus ilicifolius in Mai Po, Hong Kong. PhD Dissertation, Univ. Hong Kong

  • Sadaba RB, Sarinas BGC (2010) Fungal communities in bunker C oil-impacted sites off southern Guimaras, Philippines: a post-spill assessment of Solar 1 oil spill. Bot Mar 53:565–576

    Google Scholar 

  • Sadaba RB, Vrijmoed LLP, Jones EBG, Hodgkiss IJ (1995) Observations on vertical distribution of fungi associated with standing senescent Acanthus ilicifolius stems at Mai Po mangrove, Hong Kong. Hydrobiol 295:119–126

    Google Scholar 

  • Sadaba RB, Hodgkiss IJ, Vrijmoed LLP, Jones EBG (2000) Cellulolytic and pectinolytic enzymes of selected fungi isolated from Acanthus ilicifolius. UPV J Nat Sci 5:46–54

    Google Scholar 

  • Sakayaroj J, Jones EBG, Chatmala I, Phongpaichit S (2004) In: Jones EBG, Tantichareon M, Hyde KD (eds) Thai fungal diversity. BIOTEC, Thailand, pp 107–117

    Google Scholar 

  • Sakayaroj J, Pang KL, Phongpaichi S, Jones EBG (2005a) A phylogenetic study of the genus Haligena Halosphaeriales, Ascomycota. Mycologia 97:804–811

    PubMed  CAS  Google Scholar 

  • Sakayaroj J, Pang KL, Jones EBG, Vrijmoed LLP, Abdel-Wahab MA (2005b) A systematic reassessment of marine ascomycetes Swampomyces and Torpedospora. Bot Mar 48:395–406

    Google Scholar 

  • Sakayaroj J, Preefanon S, Supaphon O, Jones EBG, Phongpaichit S (2010a) Phylogenetic diversity of endophyte assemblages associated with tropical seagrass Enhalus acoroides from Thailand. Fungal Divers 41:1–19

    Google Scholar 

  • Sakayaroj J, Pang KL, Jones EBG (2010b) Multi-gene phylogeny of the Halosphaeriaceae: its ordinal status, relationships between genera and morphological character evolution. Fungal Divers 46:87–109. doi:10.1007/s3225-010-0072-y

    Google Scholar 

  • Sarma VV, Hyde KD (2000) Tirispora mandoviana sp. nov. from Chorao mangroves, Goa, the west coast of India. Aust Mycol 19:52–56

    Google Scholar 

  • Sarma VV, Hyde KD (2001) A review of frequently occurring fungi in mangroves. Fungal Divers 8:1–34

    Google Scholar 

  • Sarma VV, Vittal BPR (2002) Observations on vertical distribution of mangicolous fungi on prop roots of Rhizophora apiculata Blume at Krishna delta, east coast of India. Kavaka 30:21–29

    Google Scholar 

  • Sarmiento-Ramirez JM, Abella E, Martin MP, Telleria MT, Lőpez-Jurado LF, Marco A, Diéguez-Uribeondo J (2010) Fusarium solani is responsible for mass mortalities in nests of loggerghead sea turtle, Caretta caretta, in Boavista, Cape Verde. Res Lett 312:192–200

    CAS  Google Scholar 

  • Schatz S (1980a) Taxonomic revision of two Pyrenomycetes associated with littoral-marine green algae. Mycologia 72:110–117

    Google Scholar 

  • Schatz S (1980b) The life history, developmental morphology, and taxonomy of Lautitia danica gen. nov., comb. nov. Can J Bot 62:28–32

    Google Scholar 

  • Schatz S (1983) The developmental morphology and life history of Phycomelaina laminariae. Mycologia 77:762–772

    Google Scholar 

  • Schaumann K (1968) Marine höhere Pilze (Ascomycetes und Fungo mperfecti) aus dem Weser-Ästuar. Veroeff Institue Meeresfrosch Bremerh 11:93–117

    Google Scholar 

  • Schaumann K (1969) Űber marine höhere Pilze von Holzsubstraten der Nordsee-Insel Helgoland. Ber Dtsch Botan Ges 82:307–327

    Google Scholar 

  • Schaumann K (1975) Marine Pilzfunde von der Norwegischen Rinne, der Parents-See und von denKüsten Westafrikas und deer Kanarischen Inseln. Veroeff Institue Meeresfrosch Bremerh 15:183–194

    Google Scholar 

  • Schaumann K, Mulach W, Molitoris HP (1986) Comparative studies on growth and exoenzyme production of different Lulworthia isolates. In: Moss ST (ed) The biology of marine fungi. Cambridge Univ Press, pp 49–67

  • Schilingham G, Milne L, Williams DR, Carter GT (1998) Cell wall active antifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15G256. II. Isolation and structure determination. J Antibiot 51:303–316

    Google Scholar 

  • Schliephake K, Lonergan T (1996) Laccase variation during dye declorization in a 200 L packed bed bioreactor. Biotechnol Lett 18:881–886

    CAS  Google Scholar 

  • Schmidt I (1969) Corollospora intermedia, nov. spec., Carbosphaerella leptosphaeriodes, nov. spec., und Crinigera maritima, nov. gen., nov. spec., 3 neue marine Pilzarten von der Ostseeküste. Nat Naturschutz Mecklenburg 7:5–14

    Google Scholar 

  • Schmidt I (1974) Höhere meerspilze de Ostsee. Biol Runds 12:96–112

    Google Scholar 

  • Schmit JP, Shearer CA (2003) A checklist of mangrove associated fungi. Mycotaxon 8:423–477

    Google Scholar 

  • Schmit JP, Shearer CA (2004) Geographical and host distribution of lignicolous mangrove microfungi. Bot Mar 47:496–500

    Google Scholar 

  • Schoch CL, Sung GH, Volkmann-Kohlmeyer B, Kohlmeyer J, Spatafora JW (2006a) Marine fungal lineages in the Hypocreomycetidae. Mycol Res 110:257–263

    PubMed  CAS  Google Scholar 

  • Schoch CL, Kohlmeyer J, Volkmann-Kohlmeyer B, Tsui CKM, Sparafora JW (2006b) The halotolerant fungus Glomerobolus gelineus is a member of the Ostropales. Mycol Res 110:257–263

    PubMed  CAS  Google Scholar 

  • Schoch CL, Sung GH, López-Giráldez F, Towsend JP, Miadlikowska J, Hofstetter V, Robbertse B, Matheny PB, Kauff F, Wang Z, Gueidan C, Andrie RM, Trippe K, Ciufetti LM, Wynns A, Fraker E, Hodkinson BP, Bonito G, Groenewald JZ, Arzanlou M, de Hoog GS, Crous PW, Hewitt D, Pfister DH, Peterson K, Gryenhout M, Wingfield MJ, Aptroot A, Suh SO, Blackwell M, Hillis DM, Griffith GW, Castlebury LA, Rossman AY, Lumbusch HT, Lückunbg R, Büdel B, Rauht A, Diederich P, Erta D, Geiser DM, Hosaka K, Inderbitzin P, Kohlmeyer J, Volkmann-Kohlmeyer B, Mostert L, O’Donnell K, Sipman J, Rogers JD, Shoemaker RA, Sugiyama J, Summmerbell RC, Hohnston PR, Stenroos S, Dyer PS, Crittenden PD, Cole PD, Hansen K, Trappe JM, Yahr R, Lutzoni F, Spatafora JW (2009) The Aascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductgive and ecological traits. Syst Biol 58:211–223

    Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K (2002) Endophytic fungi: a source of biologically active secondary metabolites (Review). Mycol Res 106:996–1004

    CAS  Google Scholar 

  • Schulz B, Draeger S, Del Cruz TE, Rheinheimer J, Siems K, Loesgen S, Bitzer J, Schloerke O, Zeek A, Kock I, Hussain H, Dai J, Krohn K (2008) Screening strategies for obtaining novel, biologically active, fungal secondary metabolites from marine habitats. Bot Mar 51:219–234

    CAS  Google Scholar 

  • Seena S, Wynberg N, Bärlocher F (2008) Fungal diversity during leaf decomposition in a stream assessed through clone libraries. Fungal Divers 30:1–14

    Google Scholar 

  • Seifert KA (2009) Progress towards DNA barcoding of fungi. Molc Ecol Res 9:83–89

    CAS  Google Scholar 

  • Sekimoto S, Hatai K, Honda D (2007) Moleuclar phylogeny of an unidentified Haliphthoros-like marine oomycete and Haliphthoros milfordensis inferred from nuclear-encoded small and large rRNA genes and mitochondrial-encoded cox2 gene. Mycoscience 48:212–221

    Google Scholar 

  • Sekimoto S, Yoko K, Kawamura Y, Honda D (2008a) Taxonomy, molecular phylogeny, and ultrastructure of Olpidiopsis porphyrae sp. nov. (Oomycetes, straminipiles), a unicellular obligate endoparasite of Bangia and Porphyra spp. Bangiales, Rhodophyta). Mycol Res 12:361–374

    Google Scholar 

  • Sekimoto S, Beakes W, Gachon CMM, Müller DG, Küpper FC, Honda D (2008b) The deveopmental, utrastructural cytology, and molecular phylogeny of the basal Oomycete Eurychasma dicksonii, infecting the filamentous Phaeophyta aglae Ectocarpus siliculosus and Pylaiella littoralis. Protist 159:299–318

    PubMed  CAS  Google Scholar 

  • Shao ZY, Lin YC, Jiang GC, Zhou SN, Vrijmoed LLP, Jones EBG (1999) The novel compound with the skeleton of furanopyran from marine fungus from the South China Sea. J Sun Yat-sen Univ (Nat Sci) 38:131–132

    CAS  Google Scholar 

  • Shao ZY, She ZG, Guo ZY, Peng H, Cai XL, Zhiu SN, Gu YC, Lin YC (2007) ¹H and ¹³C NMR assignments for two anthraquinones and twoxanthones from the mangrove fungus 9ZSUH-36). Magn Reson Chem 45:434–438

    PubMed  CAS  Google Scholar 

  • Shearer CA (1995) Fungal competition. Can J Bot 73(Suppl):S1259–S1264

    Google Scholar 

  • Shearer CA, Burgos J (1987) Lignicolous marine fungi from Chile. Bot Mar 30:455–458

    Google Scholar 

  • Shearer CA, Raja HA, Miller AN, Nelson P, Tanaka K, Hirayama K, Marvanová L, Hyde KD, Zhang Y (2009) The molecular phylogeny of freshwater Dothideomycetes. Studies Mycol 64:145–153

    CAS  Google Scholar 

  • Singh A, Wilson S, Ward OP (1996) Docosahexaenoic acid (DHA) production by Thraustochytrium sp. ATCC 20892. World Microbiol Biotechnol 12:76–81

    CAS  Google Scholar 

  • Singh P, Raghukujmar C, Verma P, Scouche Y (2010) Phylogenetic diversity of culturable fungi from the deep-sea sediments of the Central Indian Basin and their growth characteristics. Fungal Diver 40:89–102

    Google Scholar 

  • Sohn CH (1998) The seaweed resources of Korea. In: Critchley AT, Ohno M (eds) Seaweed resources of the world. Japan Inter Coop Agency pp 15–33

  • Sparks AK (1982) Observations on the histopathology and possible progression of the disease caused by Trichomaris invadens, an invasive ascomycete, in the tanner crab, Chionoecetes bairdi. J Invert Path 40:242–254

    Google Scholar 

  • Sparrow FK (1934) Observations on marine Phycomycetes collected in Denmark. Dansk Bot Ark 8:1–24

    Google Scholar 

  • Sparrow FK (1936) Biological observations on the marine fungi of Woods Hole waters. Biol Bull Mar biol Lab Woods Hole 70:236–263

    Google Scholar 

  • Sparrow FK (1969) Zoosporic marine fungi from the Pacific Northwest (USA). Arch Mikrobiol 66:129–146

    Google Scholar 

  • Spatafora JW, Blackwell M (1994) The polyphyletic origins of ophiostomatoid fungi. Mycol Res 98:1–9

    Google Scholar 

  • Spatafora JW, Volkmann-Kohlmeyer B, Kohlmeyer J (1998) Independent terrestrial origins of the Halosphaeriales (marine Ascomycota). Amer J Bot 85:1569–1998

    CAS  Google Scholar 

  • Sridhar KR, Maria GL (2006) Fungal diversity on mangrove wood litter Rhizophora mucronata (Rhizophoraceae). Ind J Mar Sci 35:318–325

    Google Scholar 

  • Sridhar KR, Karamchand KS, Sumathi P (2010) Fungal colonization and breakdown of sedge (Cyperus malaccensis Lam.) in an Indian mangrove. Bot Mar 53:525–534

    Google Scholar 

  • Stadler M, Hellwig V (2005) Chemotaxonomy of the Xylariaceae and remarkable bioactive compopunds from Xylariales and their associated asexual stages. Recent Res Dev Phytochem 9:41–93

    CAS  Google Scholar 

  • Stanley SJ (1992) Observations on the seasonal occurrence of marine endophytic and parasitic fungi. Can J Bot 70:2089–2096

    Google Scholar 

  • Statzell-Tallman A, Belloch C, Fell JW (2008) Kwoniella mangroviensis gen. nov., sp. nov. (Tremellales, Basidiomycota), a teleomorphic yeast from mangrove habitats in the Florida Everglades and Bahamas. FEMS Yeast Res 8:103–113

    PubMed  CAS  Google Scholar 

  • Statzell-Tallman A, Scorzetti G, Fell JW (2010) Candida spencermartinsiae sp. nov., Candida taylorii sp. nov. and Pseudozyma abaconensis sp. nov., novel yeasts from mangrove and coral reef ecosystems. Inter J Syst Evol Microbiol 60:1978–1984

    CAS  Google Scholar 

  • Steinke TD, Jones EBG (1993) Marine and mangrove fungi from the Indian Ocean coast of South Africa. South Afric J Bot 59:385–390

    Google Scholar 

  • Strittmatter M, Gachon CMM, Küpper FC (2009) Ecology of lower Oomycetes. In: Lamour K, Kamoun S (eds) Oomycete genetics and genomics: Diversity, interactions and research tools. Wiley, pp 25–46

  • Strongman D, Miller JD, Calhoun L, Findaly JA, Whitney NJ (1987) The biochemical basis of interference competition among some lignicolous marine fungi. Bot Mar 30:21–26

    Google Scholar 

  • Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkmann-Kohlmeyer B, Sakayaroj J, Phongpaicht S, Tanaka K, Hairayama K, Jones EBG (2009a) Molecular systematics of the marine Dothideomycetes. Studies Mycol 64:155–173

    CAS  Google Scholar 

  • Suetrong S, Sakayroj J, Phongpaichit S, Jones EBG (2009b) Morphological and molecular characteristics of a poorly known marine ascomycete, Manglicola guatemalensis. Mycologia 102:83–92

    Google Scholar 

  • Suetrong S, Hyde KD, Zhang Y, Bahkali AH, Jones EBG (2011) Trematosphaeriaceae fam. nov. Mycology (in press)

  • Sugano M, Sato A, Iijima Y, Furuya K, Kuwano H, Hata T (1995) Phomactin E, F and G new phomactin-group PAF antagonsists froma marine fungus Phoma sp. J Antibiot 48:1188–1190

    PubMed  CAS  Google Scholar 

  • Sundari R, Vikineswary S (2002) The effect of agitation on ascomata formation of the marine ascomycete Corollospora gracilis. In: Hyde KD (ed) Fungi in marine environments. Fungal Divers Res Ser 7:213–233

  • Sundari R, Vikyneswary S, Yusoff M, Jones EBG (1996a) Corollospora besarispora, a new arenicolous marine fungus from Malaysia. Mycol Res 100:1259–1262

    Google Scholar 

  • Sundari R, Vikineswary S, Yusoff M, Jones EBG (1996b) Observations on tropical arenicolous marine fungi on driftwood from Malaysia and Singapore. Bot Mar 39:327–334

    Google Scholar 

  • Suryanarayanan TS, Kumaresan V, Johnson JA (1998) Foliar fungal endophytes from two species of the mangrove Rhizophora. Can J Bot 44:1003–1006

    CAS  Google Scholar 

  • Sutherland GK (1915) New marine fungi on Pelvetia. New Phytol 14:33–42

    Google Scholar 

  • Sutherland GK (1916a) Marine Fungi Imperfecti. New Phytol 15:35–48

    Google Scholar 

  • Sutherland GK (1916b) Additional notes on marine pyrenomycetes. Trans Br Mycol Soc 5:257–263

    Google Scholar 

  • Swart HJ (1958) An investigation of the mycoflora in the soil of some mangrove swamps. Acta Bot Neerland 7:741–768

    Google Scholar 

  • Swart HJ (1963) Further investigations of the mycoflora in the soil of some mangrove swamps. Acta Bot Neerland 12:98–111

    Google Scholar 

  • Szaniszlo PJ, Wirsen C, Mitchell R (1968) Production of a capsular polysaccharide by a marine fungus. J Bact 96:1474–1483

    PubMed  CAS  Google Scholar 

  • Takishita K, Tsuchiya M, Reimer JD, Maruyama T (2006) Molecular evidence demonstrating the basidiomycetous fungus Cryptococcus curvatus is the dominant microbial eukaryote in sediment at the Kuroshima Knoll methan seep. Extremophiles 10:165–169

    PubMed  CAS  Google Scholar 

  • Takuma D, Sano A, Wada S, Kurata O, Hatai K (2011) Aphanomyces sinensis sp. nov., isolated from juvenile soft-shelled turtle, Pelodiscus sinensis, in Japan. Mycoscience 52:119–131

    Google Scholar 

  • Tan TK, Leong WF, Jones EBG (1989a) Succession of fungi on wood of Avicennia alba and A. lanata in Singapore. Can J Bot 67:2686–2691

    Google Scholar 

  • Tan TK, Leong WF, Mouzouras R, Jones EBG (1989b) Occurrence of fungi on mangrove wood and its decomposition. In: Hattori T, Ishida Y, Maruyama Y, Morita RY, Uchida A (eds) Recent advances in microbial ecology. Japan Sci Soc Press, Tokyo, pp 307–310

    Google Scholar 

  • Tan TK, Teng CL, Jones EBG (1995) Substrate type and microbial interactions as factors affecting ascocarp formation by mangrove fungi. Hydrobiol 295:127–134

    Google Scholar 

  • Tao G, Liu ZY, Hyde KD, Lui XN, Yu ZN (2008) Whole DNA analysis reveals novel and endophytic fungi in Bletilla ochracea (Orchidaceae). Fungl Divers 33:101–122

    Google Scholar 

  • Tarman K, Lindequist U, Wende K, Porzel A, Arnold N, Wessjohann LA (2011) Isolation of a new natural product and cytotoxic and antimicrobial activities of extracts from fungi of Indoenesian marine habitats. Mar Drugs 9:294–306

    PubMed  CAS  Google Scholar 

  • Thongkantha S, Jeewon R, Vijaykrishna D, Lumyong S, McKenize EHC, Hyde KD (2008) Molecular phylogeny of Magnoporthaceae (Sordariomycetes) with a new species Ophioceras chinadoensis from Dracaena loueroi in Thailand. Fungal Divers 34:155–171

    Google Scholar 

  • Tillmann U, Hesse KJ, Tillmann A (1999) Large-scale parasitic infection of diatoms in the Northfrisian Wadden Sea. J Sea Res 42:255–261

    Google Scholar 

  • Tokura R (1982) Arenicolous marine fungi from Japanese beaches. Trans Mycol Soc Japan 23:423–433

    Google Scholar 

  • Trisuwan K, Rukachaisirkul C, Sukpondma Y, Preedanon S, Phongpaichit S, Rungjindfamai N, Sakayaroj J (2008) Epoxydons and pyrone from the marine-derived fungus Nigrospora sp. PSU-F5. J Nat Prod 71:1323–1326

    PubMed  CAS  Google Scholar 

  • Trisuwan K, Khamthong N, Rukachaisirkul C, Phongpaichit S, Preedanon S, Sakayaroj J (2010) Anthraquinone, cyclopentanone, and naphthoquinone derivatives from the Sea Fan-derived fungi Fusarium sp. PSU-F14 and PSU-F135. J Nat Prod 73:1507–1511

    PubMed  CAS  Google Scholar 

  • Tsui CKM, Fan KW, Chow RKK, Jones EBG, Vrijomed LLP (2011) Zoospore production and motility of mangrove thraustochytrids from Hong Kong under various salinities. Mycoscience. doi:10.1007/s10267-011-0127-2

  • Udea S (1980) A mycoflora study on brackish water sediments in Nagasaki, Japan. Trans Mycol Soc Japan 21:103–112

    Google Scholar 

  • Udea S, Udagawa SI (1983) A new Japaneses species of Neocospora from marine sludges. Mycotaxon 16:387–395

    Google Scholar 

  • Ulken A (1967) Einige beobachtungen über das Vorkommen von Phycomycete aus der Reihe der Chytridiales im brackigen und marinen Wasser. Veröff Inst Meeresforsch Bremerh 10:167–172

    Google Scholar 

  • Ulken A (1968) Einige beobachtungen über das Vorkommen von uniflagellaten Phycomycete (Chytridiales) in der Wesermündung. Veröff Inst Meeresforsch Bremerh 3:59–66

    Google Scholar 

  • Ulken A (1969) Űber das Vorkommen niederer saprophytischer Phycomycete (Chytridiales) im Bassin d’Arcachon (Frankreich). Veröff Inst Meeresforsch Bremerh 11:303–308

    Google Scholar 

  • Ulken A (1974) Chytridineen im Küstenbereich. Veröff Inst Meeresforsch Bremerh Suppl 5:27–36

    Google Scholar 

  • van Uden N, Casttelo-Branco R (1963) Distribution and population densities of yeast species in Pacific water, air, animals, and kelp off southern California. Limnol Oceanogr 8:323–329

    Google Scholar 

  • van Uden N, Fell FW (1968) Marine yeasts. Adv Microbiol Sea 1:167–201

    Google Scholar 

  • van Uden N, ZoBell CE (1962) Candida marina nov. spec., Torulopsis torresii nov. spec. and T. maris nov. spec., three yeasts from the Torres Strait. Antonie van Leeuenhoek 28:275–283

    Google Scholar 

  • Velmurugan N, Kalpana D, Han JH, Cha HC, Lee YS (2011) A novel low temperature chitinase from the marine fungus Plectosphaerella sp. strain MF-1. Bot Mar 554:75–81

    Google Scholar 

  • Verbist J-F, Sallenave C, Pouchus Y-F (2000) Marine fungal substances. In: Rahman A (ed) Studies in natural products chemistry. Elsevier Sci 24:979–109

  • Vittal BPR, Sarma VV (2006) Diversity and ecology of fugi on mangroves of Bay of Bengal region-An Overview. Ind J Mar Sci 35:308–317

    Google Scholar 

  • Vrijmoed LLP, Hodgkiss J, Thrower LB (1986) Occurrence of fungi on submerged pine and teak blocks in Hong Kong coastal waters. Hydrobiol 135:109–122

    Google Scholar 

  • Walsh JJ (1983) Death in the sea—Enigmatic phytoplankton losses. Prog Ocenanog 12:1–86

    Google Scholar 

  • Wang G, Li Q, Zhu P (2008a) Phylogenetic diversity of culturable fungi associated with the Hawaiian sponges Suberites zeteki and Gelliodes fibrosa. Antonie Van Leeuwenhoek 93:163–174

    PubMed  Google Scholar 

  • Wang FZ, Fang YC, Zhu TJ, Zhang M, Lin AQ, Gu QQ, Zhu WM (2008b) Tetahedron 64:7986–7991

    CAS  Google Scholar 

  • Webber FC (1967) Observations on the structure, life history and biology of Mycosphaerella ascophylli. Trans Br Mycol Soc 50:583–601

    Google Scholar 

  • Wen L, Du DS, Fan L, She ZG, Lin YC, Zheng ZH (2007) Studies on the secondary metabolites of a marine mangrove fungus Paecilomyces sp. tree 1–7. J Sub Yat-Sen Univ (Nat Sci) 46:105–107

    Google Scholar 

  • Wen L, Chen G, She Z, Yan C, Cai J, Mu L (2010) Two new paeciloxocins from a mangrove endophyte fungus Paecilomyces sp. Russ Chem Bull Int Ed 59:1656–1659

    CAS  Google Scholar 

  • Wethered JM, Jennings DH (1985) The major solutes contributing to the solute potential of Thraustochytrium aureum and T. roseum after growth in media of different slainities. Trans Br Mycol Soc 85:439–446

    CAS  Google Scholar 

  • Wethered JM, Metcalf EC, Jennings DH (1985) Carbohydrate metabolism in the fungus Dendrythiella salina. VIII. The contribution of polyols and ions to the mycelium solute potential in relation to the external osmoticum. New Phytol 101:631–649

    CAS  Google Scholar 

  • Wilson IM (1951) Notes on some marine fungi. Tran Br Myol Soc 34:540–543

    Google Scholar 

  • Wilson IM (1954) Ceriosporopsis halima Linder and Ceriosporopsis cambrensis sp. nov.: two Pyrenomycetes on wood. Trans Br Mycol Soc 37:272–285

    Google Scholar 

  • Wilson IM (1956) Some new marine Pyrenomycetes on wood and rope: Halophiobolus and Lindra. Trans Br Mycol Soc 39:401–415

    Google Scholar 

  • Wilson WL (1998) Isolation of endophytes from seagrassses from Bermuda. The University of New Brunswick, Canada MSc Thesis

  • Wong MKM, Poon MOK, Hyde KD (1998) Phragmitensis marina gen. et sp. nov., an intertidal saprotroph from Phragmites australis in Hong Kong. Bot Mar 41:379–382

    Google Scholar 

  • Wu QX, Crews MS, Draskovic M, Sohn J, Johnson TA, Tenney K, Valeriote FA, Yao XJ, Bjeldanes LF, Crews P (2010) Azonazine, a novel dipeptide from a Hawaiian marine sediment-derived fungus, Aspergilllus insulicola. Org Lett 12:4458–4461

    PubMed  CAS  Google Scholar 

  • Yaguchi T, Tanaka S, Nakahara T, Higashuhara T (1997) Production of docosahexaenoic acid production by Schizochytrium sp. JAOCS 74:1431–1434

    CAS  Google Scholar 

  • Yang RY, Li CY, Lin YC, Peng GT, She ZG, Zhou SN (2006) Lactones from a brown algal endophytic fungus (no. ZZF36) from the South China Sea. Med Chem Lett 16:4205–4208

    CAS  Google Scholar 

  • Yanna Ho WH, Hyde KD (2003) Can ascospores ultrastructure differentiate the genera Linocarpon and Neolinocarpon and species therein? Mycol Res 107:1305–1313

    PubMed  CAS  Google Scholar 

  • Yu K, Ren B, Wei J, Chen C, Sun J, Song J, Dai H, Zhang L (2010) Verrucisidinol and verrucosidinol acetate, two pyrone-type polyketides from a marine derived fungus, Penicillium aurantiogriseum. Mar Drugs 8:2744–2754

    PubMed  CAS  Google Scholar 

  • Yusoff M, Moss ST, Jones EBG (1994) Ascospore ultrastructure of Pleospora gaudefroyi Patouillard (Pleosporaceae, Loculoascomycetes, Ascomycotina). Can J Bot 72:1–6

    Google Scholar 

  • Yusoff M, Jones EBG, Moss ST (1995) Ascospore ultrastructure in the marine genera Lulworthia Sutherland and Lindra Wilson. Cryptog Bot 5:307–315

    Google Scholar 

  • Zainuddin N, Alias SA, Lee CW, Ebel R, Othman NA, Mukhtar MR, Awang K (2010) Antimicrobial activities of marine fungi from Malaysia. Bot Mar 53:507–514

    CAS  Google Scholar 

  • Zhang Y, Wang S, Li XM, Cui CM, Feng CM, Wang BG (2007) New sphingolipids with a previously unreported 9-Methyl-C^sub 20^-sphingosine moiety from a marine algicolous endophytic fungus Aspergillus niger EN-13. Lipids 42:759–764

    PubMed  CAS  Google Scholar 

  • Zhang Y, Wang HK, Crous PW, Pointing SB, Hyde KD (2009a) Towards a phylogenetic clarification of Lophiostoma/Massarina and morphologically similar genera in the Pleosporales. Fungal Divers 38:225–251

    Google Scholar 

  • Zhang Y, Schoch CL, Fourneir J, Crous PW, de Gruyter J, Woudenberg JHC, Hirayama K, Tanaka K, Pointing SB, Spatafora JW, Hyde KD (2009b) Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation. Studies Mycol 64:85–103

    CAS  Google Scholar 

  • Zhu F, Lin YC, Zhou SN (2004) Anthrquinone derivatives isolated from marine fungus 2526 from the South China Sea. Chin J Org Chem 24:1114–1117

    CAS  Google Scholar 

  • Zuccaro A, Mitchell JI (2005) Fungal communities of seaweeds. In: Deighton J, White JF, Oudemans P (eds) The fungal community. CRC, Taylor and Francis, New York

    Google Scholar 

  • Zuccaro A, Schulz B, Mitchell JI (2003) Molecular detection of ascomycetes associated with Fucus serratus. Mycol Res 107:1451–1466

    PubMed  CAS  Google Scholar 

  • Zuccaro A, Summerbell RC, Gams W, Schroers HF, Mitchell JI (2004) A new Acremonium species associated with Fucus spp., and its affinity with a phylogenetically distinct marine Emericellopsis clade. Stud Mycol 50:283–2

    Google Scholar 

  • Zuccaro A, Schooch CL, Draeger S, Spatafora WJ, Kohlmeyer J, Mitchell JI (2008) Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Appl Eviron Microbiol 74:931–941

    Google Scholar 

Download references

Acknowledgments

I am greatful to Kevin Hyde for inviting me to write this review and for many hours of discussion, Brigitte Volkmann-Kohlmeyer and Jan Kohlmeyer for their help in updating their list of fungi on Juncus roemerianus, Ka-Lai Pang for reading drafts of this manuscript and offering valuable comments, Sitti Aisyah Alias for logistical support and University Malaya for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Gareth Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, E.B.G. Fifty years of marine mycology. Fungal Diversity 50, 73–112 (2011). https://doi.org/10.1007/s13225-011-0119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-011-0119-8

Keywords

Navigation