Skip to main content

Advertisement

Log in

Fungal symbionts of marine sponges from Rameswaram, southern India: species composition and bioactive metabolites

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Ten marine sponge species from Rameswaram, southern India were studied for their filamentous fungal symbionts. The results suggest that fungal symbionts of marine sponges are hyperdiverse. Genera such as Acremonium, Alternaria, Aspergillus, Cladosporium, Fusarium and Penicillium were frequently isolated; no true marine fungal species were present. Species of Aspergillus were dominant and co-dominant in all the sponges screened. The fungal isolates produced antialgal, antifungal, antioxidant, antibiotic, antiinsect metabolites. A few fungi produced acetylcholinesterase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akello JT, Dubois T, Gold CS, Coyne D, Nakavuma J, Paparu P (2007) Beauveria bassiana (Balsamo) Vuillemin as an endophyte in tissue culture banana (Musa spp.). J Invert Pathol 96:34–42

    Article  Google Scholar 

  • Almeida AP, Dethoup T, Singburaudom N, Lima R, Vasconcelos MH, Pinto M, Kijjoa A (2010) The in vitro anticancer activity of the crude extract of the sponge-associated fungus Eurotium cristatum and its secondary metabolites. J Nat Pharm 1:25–29

    Article  Google Scholar 

  • Almeida C, Part N, Bouhired S, Kehraus S, König GM (2011) Stachylines A–D from the sponge-derived fungus Stachylidium sp. J Nat Prod 74:21–25

    Article  PubMed  CAS  Google Scholar 

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16

    Article  Google Scholar 

  • Aquino R, Morelli S, Lauro MR, Abdo S, Saija A, Tomaino A (2001) Phenolic constituents and antioxidant activity of an extract of Anthurium versicolor leaves. J Nat Prod 64:1019–1023

    Article  PubMed  CAS  Google Scholar 

  • Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci, USA 100:15649–15654

    Article  PubMed  CAS  Google Scholar 

  • Arora DS, Chandra P (2010) Assay of antioxidant potential of two Aspergillus isolates by different methods under various physio-chemical conditions. Braz J Microbiol 41:765–777

    Article  CAS  Google Scholar 

  • Baker PW, Kennedy J, Dobson ADW, Marchesi JR (2009) Phylogenetic diversity and antimicrobial activities of fungi associated with Haliclona simulans isolated from Irish Coastal Waters. Mar Biotechnol 11:540–547

    Article  PubMed  CAS  Google Scholar 

  • Blunt JW, Brent RC, Hu W-P, Munro MHG, Northcote PT, Prinsep MR (2007) Marine natural products. Nat Prod Rep 24:31–86

    Article  PubMed  CAS  Google Scholar 

  • Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163

    Article  PubMed  CAS  Google Scholar 

  • Bustamam A, Ibrahim S, Al-Zubairi AS, Met M, Syam MM (2008) Zerumbone: a natural compound with anti-cholinesterase activity. Am J Pharmacol Toxicol 3:209–211

    Article  CAS  Google Scholar 

  • Chu D, Peng C, Ding B, Liu F, Zhang F, Lin H, Li Z (2011) Biological active metabolite cyclo (L-Trp-L-Phe) produced by South China Sea sponge Holoxea sp. associated fungus Aspergillus versicolor strain TS08. Bioprocess Biosyst Eng 34:223–229

    Article  PubMed  CAS  Google Scholar 

  • Debbab A, Aly AH, Lin WH, Proksch P (2010) Bioactive compounds from marine bacteria and fungi. Microb Biotechnol 3:544–563

    Article  PubMed  CAS  Google Scholar 

  • Debbab A, Aly AH, Proksch P (2011) Bioactive secondary metabolites from endophytes and associated marine derived fungi. Fungal Divers 49:1–12

    Article  Google Scholar 

  • Devarajan PT, Suryanarayanan TS, Geetha V (2002) Endophytic fungi associated with the tropical seagrass Halophila ovalis (Hydrocharitaceae). Indian J Mar Sci 31:73–74

    Google Scholar 

  • Ding B, Yin Y, Zhang F, Li Z (2011) Recovery and phylogenetic diversity of culturable fungi associated with marine sponges Clathrina luteoculcitella and Holoxea sp. in the South China Sea. Mar Biotechnol 13:713–721

  • Dobranic JK, Johnson JA, Alikhan QR (1995) Isolation of endophytic fungi from eastern larch (Larix laricina) leaves from New Brunswick, Canada. Can J Microbiol 41:194–198

    Article  CAS  Google Scholar 

  • Dorman HJD, Hiltunen R (2004) Fe (III) reductive and free radical-scavenging properties of summer savory (Satureja hortensis L.) extract and subfractions. Food Chem 88:193–199

    Article  CAS  Google Scholar 

  • Fischbach MA, Walsh CT (2009) Antibiotics for emerging pathogens. Science 325:1089–1093

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Li B, Zheng C, Wang G (2008) Molecular detection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata. Appl Environ Microbiol 74:6091–6101

    Article  PubMed  CAS  Google Scholar 

  • Hiort J, Maksimenka K, Reichert M, Perović-Ottstadt S, Lin WH, Wray V, Steube K, Schaumann K, Weber H, Proksch P, Ebel R, Müller WEG, Bringmann G (2004) New natural products from the sponge-derived fungus Aspergillus niger. J Nat Prod 67:1532–1543

    Article  PubMed  CAS  Google Scholar 

  • Höller U, Wright AD, Matthee GF, König GM, Draeger S, Aust HJ, Schulz B (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104:1354–1365

    Article  Google Scholar 

  • Kim K, Harvell CD (2004) The rise and fall of a six-year coral-fungal epizootic. Am Nat 164:S52–S63

    Article  PubMed  Google Scholar 

  • Kjer J, Debbab A, Aly AH, Proksch P (2010) Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protocols 5:479–490

    Article  CAS  Google Scholar 

  • Kohlmeyer J, Kohlmeyer BV (1990) Illustrated key to the filamentous higher marine fungi. Bot Mar 34:1–61

    Article  Google Scholar 

  • Kwong TFN, Miao L, Li X, Qian PY (2006) Novel antifouling and antimicrobial compound from a marine-derived fungus Ampelomyces sp. Mar Biotechnol 8:634–640

    Article  PubMed  CAS  Google Scholar 

  • Lee YM, Dang HT, Hong J, Lee CO, Bae KS, Kim DK, Jung JH (2010) A Cytotoxic lipopeptide from the sponge-derived fungus Aspergillus versicolor. Bull Korean Chem Soc 31:205–208

    Article  CAS  Google Scholar 

  • Li Q, Wang G (2009) Diversity of fungal isolates from three Hawaiian marine sponges. Microbiol Res 164:233–241

    Article  PubMed  CAS  Google Scholar 

  • Liu WC, Li CQ, Zhu P, Yang JL, Cheng KD (2010) Phylogenetic diversity of culturable fungi associated with two marine sponges: Haliclona simulans and Gelliodes carnosa, collected from the Hainan Island coastal waters of the South China Sea. Fungal Divers 42:1–15

    Article  Google Scholar 

  • Liu H-B, Ebel RE, Ebel R, Wang R, Schulz B, Draeger S, Müller WEG, Wray V, Lin W-H, Proksch P (2011) Ophiobolin sesterterpenoids and pyrrolidine alkaloids from the sponge-derived fungus Aspergillus ustus. Helv Chim Acta 94:623–631

    Article  CAS  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell, USA

    Google Scholar 

  • Morris PJ, Johnson WR, Pisanic J, Bossart GD, Adams J, Reif JS, Fair PA (2011) Isolation of culturable microorganisms from free-ranging bottle nose dolphins (Tursiops truncatus) from the southeastern United States. Vet Microbiol 148:440–447

    Google Scholar 

  • Morrison-Gardiner S (2002) Dominant fungi from Australian coral reefs. Fungal Divers 9:105–121

    Google Scholar 

  • Nishimura S, Arita Y, Honda M, Iwamoto K, Matsuyama A, Shirai A, Kawasaki H, Kakeya H, Kobayashi T, Matsunaga S, Yoshida M (2010) Marine antifungal theonellamides target 3beta-hydroxysterol to activate Rho1 signaling. Nat Chem Biol 6:519–526

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by Thio-Barbituric acid reaction. Anal Biochem 95:357–358

    Article  Google Scholar 

  • Parvatkar RR, D’Souza C, Tripathi A, Naik CG (2009) Aspernolides A and B, butenolides from marine-derived fungus Aspergillus terreus. Phytochemistry 70:128–132

    Article  PubMed  CAS  Google Scholar 

  • Paz Z, Komon-Zelazowska M, Druzhinina IS, Aveskamp MM, Shnaiderman A, Aluma Y, Carmeli S, Ilan M, Yarden O (2010) Diversity and potential antifungal properties of fungi associated with a Mediterranean sponge. Fungal Divers 42:17–26

    Article  Google Scholar 

  • Perez C, Pauli M, Bazerque P (1990) An antibiotic assay by the agar well diffusion method. Acta Biol Med Exper 15:113–115

    Google Scholar 

  • Proksch P, Ebel R, Edrada R, Riebe F, Liu H, Diesel A, Bayer M, Li X, Lin WH, Grebenyuk V, Müller WEG, Draeger S, Zuccaro A, Schulz B (2008) Sponge associated fungi and their bioactive compounds - The Suberites case. Bot Mar 51:209–218

    Article  CAS  Google Scholar 

  • Purahong W, Hyde KD (2011) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 47:1–7

    Article  Google Scholar 

  • Rateb ME, Ebel R (2011) Secondary metabolites of fungi from marine habitats. Nat Prod Rep 28:290–344

    Article  PubMed  CAS  Google Scholar 

  • Rateb ME, Houssen WE, Legrave NM, Clements C, Jaspars M, Ebel R (2010) Dibenzofurans from the marine sponge-derived ascomycete Super1F1-09. Bot Mar 53:499–506

    Article  CAS  Google Scholar 

  • Rot C, Goldfarb I, Ilan M, Huchon D (2006) Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria. BMC Evol Biol 6:71

    Article  PubMed  Google Scholar 

  • Sakayaroj J, Preedanon S, Supaphon O, Jones EBG, Phongpaichit S (2010) Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Divers 42:27–45

    Article  Google Scholar 

  • Schulz B, Sucker J, Aust HJ, Krohn K, Ludewig K, Jones PG, Doring D (1995) Biologically active secondary metabolites of endophytic Pezicula species. Mycol Res 99:1007–1015

    Article  CAS  Google Scholar 

  • Schulz B, Draeger S, Cruz TE, Rheinheimer J, Siems K, Loesgen S, Bitzer J, Schloerke O, Zeeck A, Kock I, Hussain H, Dai J, Krohn K (2008) Screening strategies for obtaining novel, biologically active, fungal secondary metabolites from marine habitats. Bot Mar 51:219–234

    Article  CAS  Google Scholar 

  • Shi DH, Wu JH, Ge HM, Tan R-X (2009) Protective effect of hopeahainol A, a novel acetylcholinesterase inhibitor, on hydrogen peroxide-induced injury in PC12 cells. Environ Toxicol Pharmacol 28:30–36

    Article  Google Scholar 

  • Smith CJ, Abbanat C, Bernan VS, Maiese WM, Greenstein M, Jompa J, Tahir A, Ireland CM (2000) Novel Polyketide metabolites from a species of marine fungi. J Nat Prod 63:142–145

    Article  PubMed  CAS  Google Scholar 

  • Suryanarayanan TS (1992) Light-incubation: a neglected procedure in mycology. Mycologist 6:144

    Article  Google Scholar 

  • Suryanarayanan TS, Kumaresan V, Johnson JA (1998) Foliar fungal endophytes from two species of the mangrove Rhizophora. Can J Microbiol 44:1003–1006

    CAS  Google Scholar 

  • Suryanarayanan TS, Venkatachalam A, Thirunavukkarasu N, Ravishankar JP, Doble M, Geetha V (2010) Internal mycobiota of marine macroalgae from the Tamilnadu coast: distribution, diversity and biotechnological potential. Bot Mar 53:456–468

    Article  Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

    Article  PubMed  CAS  Google Scholar 

  • Trimmer C, Sotgia F, Whitaker-Menezes D, Balliet RM, Eaton G, Martinez-Outschoorn UE, Pavlides S, Howell A, Iozzo RV, Pestell RG, Scherer PE, Capozza F, Lisanti MP (2011) Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment: A new genetically tractable model for human cancer associated fibroblasts. Canc Biol Ther 11:383–394

    Article  CAS  Google Scholar 

  • Vesterlund S-R, Helander M, Faeth SH, Hyvönen T, Saikkonen K (2010) Environmental conditions and host plant origin override endophyte effects on invertebrate communities. Fungal Divers. doi:10.1007/s13225-011-0089-x

  • Wang G, Li Q, Zhu P (2008) Phylogenetic diversity of culturable fungi associated with the Hawaiian sponges Suberites zeteki and Gelliodes fibrosa. Antonie Leeuwenhoek 93:163–174

    Article  PubMed  Google Scholar 

  • Webster NS, Taylor MW (2011) Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol. doi:10.1111/j.1462-2920.2011.02460.x

  • Xu J, Ebada SS, Proksch P (2010) Pestalotiopsis a highly creative genus: chemistry and bioactivity of secondary metabolites. Fungal Divers 44:15–31

    Article  Google Scholar 

  • Zhou K, Zhang H, Zhang F, Li Z (2011) Phylogenetically diverse cultivable fungal community and polyketide synthase (PKS), non-ribosomal peptide synthase (NRPS) genes associated with the South China sea sponges. Microb Ecol. April 26

  • Zuccaro A, Schoch CL, Spatafora JW, Kohlmeyer J, Draeger S, Mitchell JI (2008) Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Appl Environ Microbiol 74:931–941

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

TSS and MD acknowledge the financial assistance by Department of Biotechnology (BT/PR10169/AAQ/03/376/2007), New Delhi, Government of India and Dr. G. Sivaleela, Zoological Survey of India, Chennai for identifying the sponge species. TSS thanks Prof. Felix Baerlocher, Department of Biology, Mt. Allison University, Sackville, New Brunswick, Canada for reading a draft of this paper and Swami Abhiramananda, Chairman, VINSTROM for facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trichur S. Suryanarayanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thirunavukkarasu, N., Suryanarayanan, T.S., Girivasan, K.P. et al. Fungal symbionts of marine sponges from Rameswaram, southern India: species composition and bioactive metabolites. Fungal Diversity 55, 37–46 (2012). https://doi.org/10.1007/s13225-011-0137-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-011-0137-6

Keywords

Navigation