Skip to main content

Advertisement

Log in

Diversity and potential antifungal properties of fungi associated with a Mediterranean sponge

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Fungi that inhabit marine sponges occupy an ecological niche that has recently attracted great attention due to the potential in either ecological or pharmaceutical advances. The ecological interaction between marine sponges and fungi is, however, only poorly understood. Eighty five fungal taxa were isolated from the marine sponge Psammocinia sp. from the Mediterranean Sea. The majority (89%) of these taxa were isolated using a `sample compressing` method, in combination with the use of fungicides-amended medium. Abundant `terrestrial` taxa such as Acremonium, Penicillium and Trichoderma were found along with potentially undescribed Phoma and Trichoderma species. Several of these taxa exhibited in vitro anti-fungal properties as determined against four test fungi. Even though a significant number of fungal taxa were isolated during this study, we estimate that the diversity of fungi that are associated with Psammocinia sp. is higher than reported here. It is advocated that Psammocinia, and other sponge genera, may be a prime niche for discovering new fungal species as well as novel anti-fungal compounds from fungal sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4

Similar content being viewed by others

References

  • Barghoorn ES, Linder DH (1944) Marine fungi: their taxonomy and biology. Farlowia 1:395–467

    Google Scholar 

  • Bergquist PR (1978) Sponges. University of California Press, Berkeley, pp 181–185

  • Bhadury P, Mohammad BT, Wright PC (2006) The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol 33:325–337

    Article  PubMed  CAS  Google Scholar 

  • Bridge PD (2002) The history and application of molecular mycology. Mycologist 16:90–99

    Article  Google Scholar 

  • Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163

    Article  PubMed  CAS  Google Scholar 

  • Druzhinina IS, Kopchinskiy AG, Komoń M, Bissett J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42:813–828

    Article  PubMed  CAS  Google Scholar 

  • Druzhinina IS, Komoń-Zelazowska M, Kredics L, Hatvani L, Antal Z, Belayneh T, Kubicek CP (2008) Alternative reproductive strategies of Hypocrea orientalis and genetically close but clonal Trichoderma longibrachiatum, both capable to cause invasive mycoses of humans. Microbiology SGM 154:3447–3459

    Article  CAS  Google Scholar 

  • Duong LM, Jeewon R, Lumyong S, Hyde KD (2006) DGGE coupled with ribosomal DNA gene phylogenies reveal uncharacterized fungal phylotypes. Fungal Divers 23:121–138

    Google Scholar 

  • Ein-Gil N, Ilan M, Carmeli S, Smith GW, Pawlik JR, Yarden O (2009) Presence of Aspergillus sydowii, a pathogen of gorgonian sea-fans in the marine sponge Spongia obscura. The ISME Journal 3:752–755

    Google Scholar 

  • Gao Z, Li B, Chengchao Z, Wang G (2008) Molecular detection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata. Appl Environ Microbiol 74:6091–6101

    Article  PubMed  CAS  Google Scholar 

  • Geiser DM, Taylor JW, Ritchie KB, Smith GW (1998) Cause of sea-fan death in the West Indies. Nature 394:137–138

    Article  CAS  Google Scholar 

  • Geiser DM, del Mar Jiménez-Gasco M, Kang SC, Makalowska I, Veeraraghavan N, Ward TJ, Zhang N, Kuldau GA, O’Donnell K (2004) FUSARIUM-ID v; 1;0: a DNA sequence database for identifying Fusarium. Eur J Plant Pathol 110:473–479

    Article  CAS  Google Scholar 

  • Gomez-Guinan Y, Hidalgo J, Jimenez M, Salcedo J (2003) Organic extracts with antimicrobian activity from Penicillium sp (Moniliales) isolated from the sponge ircinia felix (Porifera: Demospongiae). Rev Biol Trop 51:141–147

    PubMed  Google Scholar 

  • Guo LD, Hyde KD, Liew ECY (2001) Detection and taxonomic placement of endophytic fungi within frond tissues of Livistona chinensis based on rDNA sequences. Mol Phylogenet Evol 19:1–13

    Article  CAS  Google Scholar 

  • Guo LD, Huang GR, Wang Y, He WH, Zheng WH, Hyde KD (2003) Molecular identification of white morphotype strains of endophytic fungi from Pinus tabulaeformis. Mycol Res 107:680–688

    Article  PubMed  CAS  Google Scholar 

  • Hay ME (1996) Marine chemical ecology: what’s known and what’s next? J Exp Mar Biol Ecol 200:103–134

    Article  CAS  Google Scholar 

  • Hentschel U, Fieseler L, Wehrl M, Gernert C, Steinert M, Hacker J, Horn M (2003) Microbial diversity of marine sponges. In: Müller WEG (ed) Molecular marine biology of sponges. Springer-Verlag, Heidelberg, pp 60–88

    Google Scholar 

  • Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177

    Article  PubMed  CAS  Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192

    Google Scholar 

  • Höller H, Wright AD, Matthhee GF, Konig G, Draeger MS, Aust HJ, Schulz B (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104:1354–1365

    Article  Google Scholar 

  • Huang WY, Cai YZ, Hyde KD, Corke H, Sun M (2008) Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Divers 33:61–75

    Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Hyde KD, Jones EBG, Leano E, Pointing SB, Poonyth AD, Vrijmoed LLP (1998) Role of fungi in marine ecosystems. Biodivers Conserv 7:1147–1161

    Article  Google Scholar 

  • Hyde KD, Sarma VV, Jones EBG (2000) Morphology and taxonomy of higher marine fungi. In: Hyde KD, Pointing SB (eds) Marine mycology: a practical approach. Fungal Diversity Press, The University of Hong Kong, Hong Kong, pp 172–204

    Google Scholar 

  • Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187

    Google Scholar 

  • Kemp PF, Aller JY (2004) Estimating prokaryotic diversity: when 16s rDNA libraries large enough? Limnol Oceanogr: Methods 2:114–125

    Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic Press, New York

    Google Scholar 

  • Kumar DSS, Hyde KD (2004) Biodiversity and tissue-recurrence of enduphytic fungi from Tripterygium wilfordii. Fungal Divers 17:69–90

    CAS  Google Scholar 

  • Lopanik N, Lindquist N, Targett N (2004) Potent cytotoxins produced by a microbial symbiont protect host larvae from predation. Oecologia 139:131–139

    Article  PubMed  Google Scholar 

  • Maldonado M, Young CM (1998) Limits of the bathymetric distribution of keratose sponges: a field test in deep water. Mar Ecol Prog Ser 174:123–139

    Article  Google Scholar 

  • Mitchell AM, Strobel GA, Hess WM, Vargas PN, Ezra D (2008) Muscodor crispans, a novel endophyte from Ananas ananassoides in the Bolivian Amazon. Fungal Divers 31:37–43

    Google Scholar 

  • Morrison-Gardiner S (2002) Dominant fungi from Australian reefs. Fungal Divers 9:105–121

    Google Scholar 

  • Morton DJ, Stroube WH (1955) Antagonistic and stimulatory effects of soil microorganisms upon Sclerotium rolfsii. Phytopathology 45:417–420

    Google Scholar 

  • Paz Z, Burdman S, Gerson U, Sztejnberg A (2007) Antagonistic effects of the endophytic fungus Meira geulakonigii on the citrus rust mite Phyllocoptruta oleivora. J Appl Microbiol 103:2570–2579

    Article  PubMed  CAS  Google Scholar 

  • Proksch P, Ebel R, Edrada R, Riebe F, Liu H, Diesel A, Bayer M, Li X, Lin WH, Grebenyuk V, Mueller WEG, Draeger S, Zuccaro AA, Schulz B (2008) Sponge-associated fungi and their bioactive compounds: the Suberites case. Bot Mar 51:209–218

    Article  CAS  Google Scholar 

  • Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35

    Google Scholar 

  • Rungjindamai N, Pinruan U, Choeyklin R, Hattori T, Jones EBG (2008) Molecular characterization of basidiomycetous endophytes isolated from leaves, rachis and petioles of the oil palm, Elaeis guineensis, in Thailand. Fungal Divers 33:139–162

    Google Scholar 

  • Samson RA, Seifert KA, Kuijpers AFA, Houbraken JAMP, Frisvad JC (2004) Phylogenetic analysis of Penicillium subgenus Penicillium using partial β-tubulin sequences. Stud Mycol 49:175–200

    Google Scholar 

  • Sánchez Márquez S, Bills GF, Zabalgogeazcoa I (2008) Diversity and structure of the fungal endophytic assemblages from two sympatric coastal grasses. Fungal Divers 33:87–100

    Google Scholar 

  • Seena S, Wynberg N, Bärlocher F (2008) Fungal diversity during leaf decomposition in a stream assessed through clone libraries. Fungal Divers 30:1–14

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tao G, Liu ZY, Hyde KD, Lui XZ, Yu ZN (2008) Whole rDNA analysis reveals novel and endophytic fungi in Bletilla ochracea (Orchidaceae). Fungal Divers 33:101–122

    Google Scholar 

  • Taylor MW, Schupp PJ, Kjelleberg DS, Steinberg PD (2004) Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6:121–130

    Article  PubMed  Google Scholar 

  • Taylor MW, Hill RT, Piel J, Thacker RW, Hentschel U (2007a) Soaking it up: the complex lives of marine sponges and their microbial associates. ISME J 1:187–190

    Article  PubMed  Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007b) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

    Article  PubMed  CAS  Google Scholar 

  • Thakur NL, Anil AC, Muller WEG (2004) Culturable epibacteria of the marine sponge Ircinia fusca: temporal variations and their possible role in the epibacterial defense of the host. Aquat Microb Ecol 37:295–304

    Article  Google Scholar 

  • Tsoukatou M, Hellio C, Vagias C, Harvala C, Roussis V (2002) Chemical defense and antifouling activity of three Mediterranean sponges of the genus Ircinia. Z Naturforsch 57:161–171

    CAS  Google Scholar 

  • Vijaykrishna D, Jeewon R, Hyde KD (2006) Molecular taxonomy, origins and evolution of freshwater ascomycetes. Fungal Divers 23:351–390

    Google Scholar 

  • Wang G (2006) Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotech 33:545–551

    Article  CAS  Google Scholar 

  • Wang Y, Guo LD, Hyde KD (2005) Taxonomic placement of sterile morphotypes of endophytic fungi from Pinus tabulaeformis (Pinaceae) in northeast China based on rDNA sequences. Fungal Divers 20:235–260

    CAS  Google Scholar 

  • Wang G, Li Q, Zhu P (2008) Phylogenetic diversity of culturable fungi associated with the Hawaiian sponges Suberites zeteki and Gelliodes fibrosa. Antonie van Leeuwenhoek 93:163–174

    Article  PubMed  Google Scholar 

  • Weisz JB, Hentschel U, Lindquist N, Martens CS (2007) Linking abundance and diversity of sponge-associated microbial communities to metabolic differences in host sponges. Mar Biol 152:475–483

    Article  CAS  Google Scholar 

  • Weisz JB, Lindquist N, Martens CS (2008) Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia 155:367–376

    Article  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gellfand DH, Sninisky JJ, White TJ (eds) PCR protocol: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Wirsel SGR, Runge-Froböse C, Ahrén DG, Kemen E, Oliver RP, Mendgen KW (2002) Four or more species of Cladosporium sympatrically colonize Phragmites australis. Fungal Genet Biol 35:99–113

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Keith Seifert for his comments and advice on identification of Penicillium sp, Bente Kopeliovitch for technical assistance and R. Hefetz from Makhteshim- Agan Industries Ltd. for providing the fungicides used for this study. This study was supported by the Israel Science Foundation (ISF 996/06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yarden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paz, Z., Komon-Zelazowska, M., Druzhinina, I.S. et al. Diversity and potential antifungal properties of fungi associated with a Mediterranean sponge. Fungal Diversity 42, 17–26 (2010). https://doi.org/10.1007/s13225-010-0020-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-010-0020-x

Keywords

Navigation