Skip to main content

Polyamines: Metabolism, Regulation, and Functions in Crop Abiotic Stress Tolerance

  • Chapter
  • First Online:
Augmenting Crop Productivity in Stress Environment

Abstract

Polyamines are small, positively charged, organic compounds containing more than two amino groups. They are omnipresent in plants and produced during various metabolic processes. Environmental fluctuations owing to greenhouse gases, pollution, deforestation, and global warming are known to hamper plants’ normal growth, production, and developmental processes causing various forms of abiotic stresses such as drought, salinity, heat, cold, osmolarity, etc. Polyamines are considered important to plants as they provide support in maintaining normal growth and development of plants even during stressed conditions. They play crucial role whether present at endogenous levels or fortified exogenously to plants utilizing plant tissue culture or genetic transformation techniques. Although they are regarded important for plants, still their mode of action and regulation during plant stress conditions is still not well understood. In this chapter, their endogenous production, mode of action and regulation is described at length so as to facilitate a broader and clearer picture to the researchers to understand the importance of them in combating various abiotic stresses in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51:167–173

    Article  CAS  Google Scholar 

  • Alcazar R, Altabella T, Marco F et al (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Springer, New York

    Google Scholar 

  • Alcázar R et al (2006a) Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiol Plant 128:448–455

    Article  CAS  Google Scholar 

  • Alcázar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006b) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    Article  PubMed  CAS  Google Scholar 

  • Alcazar R, Cuevas JC, Planas J, Zarza X, Bortolotti C, Carrasco P, Salinas J, Tiburcio AF, Altabella T (2011a) Integration of polyamines in the cold acclimation response. Plant Sci 180:31–38

    Article  CAS  PubMed  Google Scholar 

  • Alcazar R, Bitrian M, Bartels D, Koncz C, Altabella T, Tiburcio AF (2011b) Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum. Plant Signal Behav 6(2):243–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alcázar R et al (2006) Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiol Plant 128:448–455

    Article  CAS  Google Scholar 

  • Alet A, Sánchez D, Ferrando A, Fernandez-Tiburcio A, Alcazar R, Cuevas JC, Altabella T, Pico FM, Carrasco P, Menéndez AB, Ruiz OA (2011) Homeostatic control of polyamine levels under long-term salt stress in Arabidopsis. Changes in putrescine content do not alleviate ionic toxicity. Plant Signal Behav 6:1–6

    Article  CAS  Google Scholar 

  • Alet AI, Sánchez DH, Cuevas JC, Marina M, Carrasco P, Altabella T, Tiburcio AF, Ruiz OA (2012) New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress. Plant Sci 182:94–100

    Article  CAS  PubMed  Google Scholar 

  • Anwar R, Mattoo AK, Handa AK (2015) Polyamine interactions with plant hormones: crosstalk at several levels. Int J Hydrogen Energy 38:1039–1051

    Google Scholar 

  • Asaoka M et al (2010) Effect of environmental temperature during development of rice plants on some properties of endosperm starch. Starch-Starke 36:189–193

    Article  Google Scholar 

  • Bae H, Kim SH, Kim MS, Sicher RC, Lary D, Stream MD, Natarajan S, Bailey BA (2008) The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses. Plant Physiol Biochem 46:174–188

    Article  CAS  PubMed  Google Scholar 

  • Bagni N, Tassoni A (2006) The role of polyamines in relation to flower senescence. Floricult Ornament Plant Biotechnol 1536:855–856

    Google Scholar 

  • Bais HP, Ravishankar GA (2002) Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tiss Org Cult 69:1–34

    Article  CAS  Google Scholar 

  • Basu HS, Schwietert HCA, Feuerstein BG, Marton LJ (1990) Effect of variation in the structure of spermine on the association with DNA and the induction of DNA conformational changes. Biochem J 269:329–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu R, Maitra N, Ghosh B (1988) Salinity results in polyamine accumulation in early rice (Oryza sativa L.) seedlings. Aust J Plant Physiol 15:777–786

    CAS  Google Scholar 

  • Basu S, Roychoudhury A, Saha PP, Sengupta DN (2010) Comparative analysis of some biochemical responses of three indica rice varieties during polyethylene glycol-mediated water stress exhibits distinct varietal differences. Acta Physiol Plant 32:551–563

    Article  CAS  Google Scholar 

  • Beigbeder AR (1995) Influence of polyamine inhibitors on light independent and light dependent chlorophyll biosynthesis and on the photosyntetic rate. J Photochem Photobiol 28:235–242

    Article  CAS  Google Scholar 

  • Beninati S, Piacentini M, Argento-Ceru MP, Russo-Caia S, Autuori F (1985) Presence of di- and polyamines covalently bound to protein in rat liver. BBA-Gen Sub 841(1):120–126

    Article  CAS  Google Scholar 

  • Bergmann H, Machelett B, Lippmann B, Friedrich Y (2001) Influence of heavy metals on the accumulation of trimethylglycine, putrescine and spermine in food plants. Amino Acids 20:325–329

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27(3):411–424

    Article  CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  • Cai G, Sobieszczuknowicka E, Aloisi I, Al E (2015) Polyamines are common players in different facets of plant programmed cell death. Amino Acids 47:27–44

    Article  CAS  PubMed  Google Scholar 

  • Cai Q (2009) Progress in physiology of plant polyamines. Fujian Sci Technol Rice Wheat 27:37–40

    Google Scholar 

  • Camacho-Cristobal JJ, Maldonado JM, Gonzales-Fontes A (2005) Boron deficiency increases putrescine levels in tobacco plants. J Plant Physiol 162:921–928

    Article  CAS  PubMed  Google Scholar 

  • Cao D (2010) Effects of polyamines on seed quality and germination of super sweet corn seeds during development. Zhejiang University, Hangzhou

    Google Scholar 

  • Cao YY et al (2016) Growth characteristics and endosperm structure of superior and inferior spikelets of indica rice under high-temperature stress. Biol Plant 60:532–542

    Article  CAS  Google Scholar 

  • Choudhary A, Singh R (2000) Cadmium-induced changes in diamine oxidase activity and polyamine levels in Vigna radiata wilczek seedlings. J Plant Physiol 156:704–710

    Article  CAS  Google Scholar 

  • Choudhary S, Bhardway R, Gupta B, Dutt P, Kanwar M, Arora P (2009) Epibrassinolide regulated synthesis of polyamines and auxins in Raphanus sativus L. seedlings under cu metal stress. Braz J Plant Physiol 21(1):25–32

    Article  Google Scholar 

  • Choudhary SP, Kanwar M, Bhardwaj R, Yu JQ, Tran LP (2012b) Chromium stress mitigation by polyamine brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS One 7(3):e33210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary SP, Oral HV, Bhardwaj R, Yu J, Tran LP (2012a) Interaction of brassinosteroids and polyamines enhances copper stress tolerance in Raphanus sativus. Oxford University Press, Oxford

    Book  Google Scholar 

  • Coleman RG, Hegarty MP (1957) Metabolism of dl-ornithine-2-14C in normal and potassium-deficient barley. Nature 179:376

    Article  Google Scholar 

  • Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88

    Article  CAS  PubMed  Google Scholar 

  • Cuevas J, Lopez-Cobollo R, Alcazar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio A, Ferrando A (2009) Putrescine as a signal to modulate the indispensable ABA increase under cold stress. Plant Signal Behav 4:219–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuevas JC, Lopez-Cobollo R, Alcazar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuevas JC, Sánchez DH, Marina M, Ruiz OA (2004) Do polyamines modulate the Lotus glaber NADPH oxidation activity induced by the herbicide methyl viologen? Funct Plant Biol 31:921–928

    Article  CAS  PubMed  Google Scholar 

  • D’Oraci D, Bagni N (1987) In vitro interactions between polyamines and pectic substances. Biochem Biophys Res Commun 148:1159–1163

    Google Scholar 

  • Deng F (2005) Effects of glyphosate, chlorsulfuron, and methyl jasmonate on growth and alkaloid biosynthesis of jimsonweed (Datura stramonium L.). Pest Biochem Physiol 82:16–26

    Article  CAS  Google Scholar 

  • Duan G (2000) Effect of spermidine on protein contents and protease during senescence of excised wheat leaves. J Sichuan Teach Coll 21:44–47

    Google Scholar 

  • Duan G, Huang Z, Lin H (2006) The role of polyamines in the ontogeny of higher plants. Acta Agric Boreali Occidentalis Sinica 15:190–194

    Google Scholar 

  • Duan JJ, Guo SR, Kang YY, Jiao YS (2007) Effects of exogenous spermidine on polyamine content and antioxidant system in roots of cucumber under salinity stress. J Ecol Rural Environ 4(4):11–17

    Google Scholar 

  • El Ghachtoul N, Martin-Tangu J, Paynot M, Gianinazz S (1996) First report of the inhibition of arbuscular mycorrhizal infection of Pisum sativum by specific and irreversible inhibition of polyamine biosynthesis or by gibberellic treatment. FEBS Lett 385:189–192

    Article  Google Scholar 

  • Evans PT, Malmberg RL (1989) Do polyamines have roles in plant development? Annu Rev Plant Physiol Plant Mol Biol 40:235–269

    Article  CAS  Google Scholar 

  • Ferrando A, Carrasco P, Cuevas JC, Altabella T, Tiburcio AF (2004) Integrated molecular analysis of the polyamine pathway in abiotic stress signaling. In: Amancio S, Stulen I (eds) Nitrogen acquisition and assimilation in higher plants. Kluwer Academic Publishers, London, pp 207–230

    Chapter  Google Scholar 

  • Flores HE, Galston AW (1984) Osmotic stress-induced polyamine accumulation in cereal leaves: I. physiological parameters of the response. Plant Physiol 75:102–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folk JE (1980) Transglutaminases. Annu Rev Biochem 49:517–531

    Article  CAS  PubMed  Google Scholar 

  • Fu Y et al (2019) Spermidine enhances heat tolerance of rice seeds by modulating endogenous starch and polyamine metabolism. Molecules 24:1395

    Article  CAS  PubMed Central  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Galston AW, Kaur-Sawhney R (1995) Polyamines as endogenous growth regulators. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology, 2nd edn. Kluwer Academic Publishers, Dordrecht, pp 158–178

    Chapter  Google Scholar 

  • Galston AW, Kaur-Sawhney RK (1990) Polyamines in plant physiology. Plant Physiol 94:406–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh N, Adak MK, Ghosh PD, Gupta S, Sen Gupta DN, Mandal C (2011) Differential responses of two rice varieties to salt stress. Plant Biotechnol Rep 5:89–103

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010a) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010b) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gong XQ, Zhang JY, Hu JB, Wang W, Wu H, Zhang QH, Liu JH (2015) FcWRKY70, a WRKY protein of Fortunella crassifolia, functions in drought tolerance and modulates putrescine synthesis by regulating arginine decarboxylase gene. Plant Cell Environ 38:2248–2262

    Article  CAS  PubMed  Google Scholar 

  • Groppa MD, Ianuzzo MP, Tomaro ML, Benavides MP (2007b) Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. Amino Acids 32:265–275

    Article  CAS  PubMed  Google Scholar 

  • Groppa MD, Tomaro ML, Benavides MP (2007a) Polyamines and heavy metal stress: the antioxidant behavior of spermine in cadmium- and copper-treated wheat leaves. Biometals 20:185–195

    Article  CAS  PubMed  Google Scholar 

  • Groppa MD, Zawoznik MS, Tomaro ML, Benavides MP (2008) Inhibition of root growth and polyamine metabolism in sunflower (Helianthus annuus) seedlings under cadmium and copper stress. Biol Trace Elem Res 126:246–256

    Article  CAS  PubMed  Google Scholar 

  • Gupta B, Gupta K, Sengupta DN (2012a) Spermidine-mediated in vitro phosphorylation of transcriptional regulator OSBZ8 by SNF1-type serine/threonine protein kinase SAPK4 homolog in indica rice. Acta Physiol Plant 34:1321

    Article  CAS  Google Scholar 

  • Gupta K, Gupta B, Ghosh B, Sengupta DN (2012b) Spermidine and abscisic acid-mediated phosphorylation of a cytoplasmic protein from rice root in response to salinity stress. Acta Physiol Plant 34:29–40

    Article  CAS  Google Scholar 

  • Han L (2016) Studies on mechanism of low temperature storage and polyamine impact in cut flowers of herbaceous peony postharvest senescence. Shandong Agricultural University, Shandong

    Google Scholar 

  • Heby O, Persson L (1990) Molecular genetics of polyamine synthesis in eukaryotic cells. Trends Biochem Sci 15:153–158

    Article  CAS  PubMed  Google Scholar 

  • Hummel I, Gouesbet G, El Amrani A, Aïnouche A, Couée I (2004) Characterization of the two arginine decarboxylase (polyamine biosynthesis) paralogues of the endemic subantarctic cruciferous species Pringlea antiscorbutica and analysis of their differential expression during development and response to environmental stress. Gene 342:199–209

    Article  CAS  PubMed  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KHM (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    Article  CAS  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2000) Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun 271(3):559–564

    Article  CAS  PubMed  Google Scholar 

  • Imai R, Ali A, Pramanik HR, Nakaminami K, Sentoku N, Kato H (2004) A distinctive class of spermidine synthase is involved in chilling response in rice. J Plant Physiol 161:883–886

    Article  CAS  PubMed  Google Scholar 

  • Inouchi N et al (2000) The effect of environmental temperature on distribution of unit chains of rice amylopectin. Starch-Starke 52:8–12

    Article  CAS  Google Scholar 

  • Janicka-Russak M, KabaŁa K, Mlodzińska E, Klobus G (2010) The role of polyamines in the regulation of the plasma membrane and the tonoplast proton pumps under salt stress. J Plant Physiol 167:261–269

    Article  CAS  PubMed  Google Scholar 

  • Jiuju D, Shirong G (2005) Effects of exogenous spermidine on salt tolerance of cucumber seedlings under NaCl stress. China Veg 12:8–10

    Google Scholar 

  • Jouve L, Hoffmann L, Hausman J-F (2004) Polyamine, carbohydrate, and proline content changes during salt stress exposure of aspen (Populus tremula L.): involvement of oxidation and osmoregulation metabolism. Plant Biol 6:74–80

    Article  CAS  PubMed  Google Scholar 

  • Kakkar R, Rai V, Nagar P (1998) Polyamine uptake and translocation in plants. Biología Plantarum 40(4):481–491

    Google Scholar 

  • Katiyar SA, Agarwal M, Grover A (1999) Emerging trends in agricultural biotechnology research: use of abiotic stress-induced promoter to drive expression of a stress resistance gene in the transgenic system leads to high level stress. Curr Sci 77(12):1577

    Google Scholar 

  • Kielak E, Sempruch C, Mioduszewska H, Klocek J, Leszczynski B (2011) Phytotoxicity of roundup ultra 360 SL in aquatic ecosystems: biochemical evaluation with duckweed (Lemna minor L.) as a model plant. Pestic Biochem Physiol 99:237–243

    Article  CAS  Google Scholar 

  • Kim JC, Lee SH, Cheong YH, Yoo CM, Lee SI, Chun HJ, Yun DJ, Hong JC, Lee SY, Lim CO, Cho MJ (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J 25:247–259

    Article  CAS  PubMed  Google Scholar 

  • Kim TE, Kim SK, Han TJ, Lee JS, Chang SC (2002) ABA and polyamines act independently in primary leaves of cold-stressed tomato (Lycopersicon esculentum). Physiol Plant 115:370–376

    Article  CAS  PubMed  Google Scholar 

  • Koc E, Islek C, Kasko Arici Y (2017) Spermine and its interaction with proline induce resistance to the root rot pathogen Phytophthora capsici in pepper (Capsicum annuum). Hortic Environ Biotechnol 58:254–267

    Article  CAS  Google Scholar 

  • Krishnan P, Ramakrishnan BJ (2011) Chapter three-high-temperature effects on rice growth, yield, and grain quality. Adv Agron 111:87–206

    Article  CAS  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  CAS  PubMed  Google Scholar 

  • Kusano T, Yamaguchi K, Berberich T, Takahashi Y (2007) The polyamine spermine rescues Arabidopsis from salinity and drought stresses. Plant Signal Behav 2:251–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuthanová A, Gemperlová L, Zelenková S, Eder J, Macháˇcková I, Opatrny Z, Cvikrová M (2004) Cytological changes and alterations in polyamine contents induced by cadmium in tobacco BY-2 cells. Plant Physiol Biochem 42(2):149–156

    Article  PubMed  CAS  Google Scholar 

  • Lee T, Liu JJ, Pua EC (1997) Molecular cloning of two cDNAs (accession Nos. X95729 and U80916) encoding S-adenosyl-L methionine decarboxylase in mustard (Brassica juncea [L.] Czern & Coss). Plant Physiol 115:1287

    Google Scholar 

  • Lefèvre I, Gratia E, Lutts S (2001) Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice (Oryza sativa). Plant Sci 16:943–952

    Article  Google Scholar 

  • Lefevre I, Marchal G, Meerts P, Correal E, Lutts S (2009) Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environ Exp Bot 65:142–152

    Article  CAS  Google Scholar 

  • Legocka J, Sobieszczuk-Nowicka E (2012) Sorbitol and NaCl stresses affect free, microsome associated and thylakoid-associated polyamine content in Zea mays and Phaseolus vulgaris. Acta Physiol Plant 34:1145–1151

    Article  CAS  Google Scholar 

  • Lei Y (2008) Physiological responses of Populus przewalskii to oxidative burst caused by drought stress. Russ J Plant Physiol 55:857–864

    Article  CAS  Google Scholar 

  • Liu H, Liu Y, Yu B, Liu Z, Zhang W (2004a) Increased polyamines conjugated to tonoplast vesicles correlate with maintenance of the H+-ATPase and H+-PPase activities and enhanced osmotic stress tolerance in wheat. J Plant Growth Regul 23:156–165

    Article  CAS  Google Scholar 

  • Liu HP, Dong BH, Zhang YY, Liu ZP, Liu YL (2004b) Relationship between osmotic stress and the levels of free, conjugated and bound polyamines in leaves of wheat seedlings. Plant Sci 166:1261–1267

    Article  CAS  Google Scholar 

  • Liu HP, Dong BH, Zhang YY, Liu ZP, Liu YL (2004c) Relationship between osmotic stress and the levels of free, conjugated, and alterations in polyamine contents induced by cadmium in tobacco BY-2 cells. Plant Physiol Biochem 42(2):149–156

    Article  CAS  Google Scholar 

  • Liu J, Yu B-J, Liu Y-L (2006a) Effects of spermidine and spermine levels on salt tolerance associated with tonoplast H + -ATPase and H + -PPase activities in barley roots. Plant Growth Regul 49:119–126

    Article  CAS  Google Scholar 

  • Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126

    Article  CAS  Google Scholar 

  • Liu JH, Nada K, Honda C, Kitashiba H, Wen XP, Pang XM, Moriguchi T (2006) Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response. J Exp Bot 57:2589–2599

    Article  CAS  PubMed  Google Scholar 

  • Lomozik L, Gasowska A, Bregier-Jarzebowska R, Jastrzab R (2005) Coordination chemistry of polyamines and their interactions in ternary systems including metal ions, nucleosides and nucleotides. Coord Chem Rev 249:2335–2350

    Article  CAS  Google Scholar 

  • Lovaas E (1997) Antioxidant and metal-chelating effects of polyamines. In: Sies H (ed) Advances in pharmacology, Vol. 38: antioxidants in disease mechanisms and therapy. Academic Press, Amsterdam, pp 119–149

    Google Scholar 

  • Malmberg RL, Watson MB, Galloway GL, Yu W (1998) Molecular genetic analysis of plant polyamines. Crit Rev Plant Sci 17:5

    Article  Google Scholar 

  • Martin-Tanguy J (1987) Hydroxycinnamic acid amides, hypersensitivity, flowering and sexual organogenesis in plants. In: Von Wettstein D, Chua DN (eds) Plant molecular biology. Plenum Publishing Corporation, New York, pp 253–263

    Chapter  Google Scholar 

  • Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth 34:135

    Article  CAS  Google Scholar 

  • Mascher R, Lippmann B, Holzinger S, Bergmann H (2002) Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci 163:961–969

    Article  CAS  Google Scholar 

  • Mehta HS, Saftner RA, Mehta RA, Davies PJ (1994) Identification of post transcriptionally modified 18-kilodalton protein from rice as eukaryotic translocation initiation factor 5A. Plant Physiol 106:1413–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Minocha R, Long S, Thangavel P, Minocha SC, Eagar C, Driscoll CT (2010) Elevation dependent sensitivity of northern hardwoods to Ca addition at Hubbard Brook Experimental Forest, NH, USA. For Ecol Manage 260:2115–2124

    Article  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mo H, Pua EC (2002) Up-regulation of arginine decarboxylase gene expression and accumulation of polyamines in mustard (Brassica juncea) in response to stress. Physiol Plant 114:439–449

    Article  CAS  PubMed  Google Scholar 

  • Moschou PN, Paschalidis KA, Delis ID et al (2008) Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20(6):1708–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutlu F, Bozcuk S (2007) Salinity-induced changes of free and bound polyamine levels in sunflower (Helianthus annuus L.) roots differing in salt tolerance. Pak J Bot 39:1097–1102

    Google Scholar 

  • Nayyar H (2005) Putrescine increases floral retention, pod set and seed yield in cold stressed chickpea. J Agron Crop Sci 191:340–345

    Article  CAS  Google Scholar 

  • Nayyar H, Kaur S, Singh S, Kumar S, Singh KJ, Dhir KK (2005) Involvement of polyamines in the contrasting sensitivity of chickpea (Cicer arietinum L.) and soybean (Glycine max (L.) Merrill.) to water deficit stress. Bot Bull Acad Sin 46:333–338

    CAS  Google Scholar 

  • Nishi A et al (2001) Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. J Plant Physiol 127:459

    Article  CAS  Google Scholar 

  • Orsini F, Accorsi M, Gianquinto G, Dinelli G, Antognoni F, Ruiz Carrasco KB, Martinez EA, Alnayef M, Marotti I, Bosi S, Biondi S (2011) Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Funct Plant Biol 38(10):818–831

    Article  CAS  PubMed  Google Scholar 

  • Oshima T (2007) Unique polyamines produced by an extreme thermophile, Thermus thermophilus. Amino Acids 33:2

    Article  CAS  Google Scholar 

  • Pandey S, Ranade S, Nagar P, Nikhil K (2000) Role of polyamines and ethylene as modulators of plant senescence. J Biosci 25(3):291–299

    Article  CAS  PubMed  Google Scholar 

  • Paradi I, Bratek Z, Lang F (2003) Influence of arbuscular miccorhiza and phosphorus supply on polyamine content, growth and photosynthesis of Plantago lanceolata. Biologia Plantarum 46(4):563–569

    Article  CAS  Google Scholar 

  • Peremarti A, Bassie L, Christou P, Capell T (2009) Spermine facilitates recovery from drought but does not confer drought tolerance in transgenic rice plants expressing Datura stramonium S-adenozylmethionine decarboxylase. Plant Mol Biol 70:253–264

    Article  CAS  PubMed  Google Scholar 

  • Perez-Amador MA, Leon J, Green PJ, Carbonel lJ. (2002) Induction of the arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis. Plant Physiol 130:1454–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peter GJ (2011) Regulation of starch biosynthesis in response to a fluctuating environment. Plant Physiol 155:1566–1577

    Article  CAS  Google Scholar 

  • Pillai MA, Akiyama T (2004) Differential expression of an S-adenosyl-L-methionine decarboxylase gene involved in polyamine biosynthesis under low temperature stress in japonica and indica rice genotypes. Mol Genet Genomics 271:141–149

    Article  CAS  PubMed  Google Scholar 

  • Pohjanpelto P, Höltta E (1996) Phosphorylation of Okazaki-like DNA fragments in mammalian cells and role of polyamines in the processing of this DNA. EMBO J 15:1193–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potters G, Horemans N, Jansen MAK (2010) The cellular redox state in plant stress biology – a charging concept. Plant Physiol Biochem 48:292–300

    Article  CAS  PubMed  Google Scholar 

  • Prakash L, Prathapasenan G (1988) Effect of NaCl salinity and putrescine on shoot growth, tissue ion concentration and yield of rice (Oryza sativa L. GR3). J. Agric Crop Sci 160:325–334

    Article  CAS  Google Scholar 

  • Prasad M, Rengel Z (1998) Plant Acclimation and adaptation to natural and anthropogenic stress. Ann N Y Acad Sci 851(1):216–223

    Article  CAS  Google Scholar 

  • Renaut J, Hoffmann L, Hausman JF (2005) Biochemical and physiological mechanisms related to cold acclimation and enhanced freezing tolerance in poplar plantlets. Physiol Plant 125:82–94

    Article  CAS  Google Scholar 

  • Richards FJ, Coleman RG (1952) Occurrence of putrescine in potassium-deficient barley. Nature 170:460

    Article  CAS  PubMed  Google Scholar 

  • Rossini Oliva S, Mingorance MD, Valdes B, Leidi EO (2010) Uptake, localisation and physiological changes in response to copper excess in Erica andevalensis. Plant and Soil 328:411–420

    Article  CAS  Google Scholar 

  • Roy P, Niyogi K, Sengupta DN, Ghosh B (2005) Spermidine treatment to rice seedlings recovers salinity stress-induced damage of plasma membrane and PM-bound H + -ATPase in salt-tolerant and salt-sensitive rice cultivars. Plant Sci 168:583–591

    Article  CAS  Google Scholar 

  • Roychoudhury A, Basu S, Sarkar SN, Sengupta DN (2008) Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic indica rice cultivars. Plant Cell Rep 27:1395–1410

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury A, Basu S, Sengupta DN (2011) Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of Indica rice differing in their level of salt tolerance. J Plant Physiol 168:317–328

    Article  CAS  PubMed  Google Scholar 

  • Saha J, Giri K (2017) Molecular phylogenomic study and the role of exogenous spermidine in the metabolic adjustment of endogenous polyamine in two rice cultivars under salt stress. Gene 609:88–103

    Article  CAS  PubMed  Google Scholar 

  • Sang QQ, Shan X, An YH, Shu S, Sun J, Guo SR (2017) Proteomic analysis reveals the positive effect of exogenous spermidine in tomato seedlings’ response to high-temperature stress. Front Plant Sci 8:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Santa-Cruz A, Acosta M, Perez-Alfocea F, Bolarin MC (1997) Changes in free polyamine levels induced by salt stress in leaves of cultivated and wild tomato species. Physiol Plant 101:341–346

    Article  CAS  Google Scholar 

  • Sarjala T, Kaunisto S (2002) Potassium nutrition and free polyamines of Betula pendula Roth and Betula pubescens Ehrh. Plant and Soil 238:141–149

    Article  Google Scholar 

  • Schraudner M, Trost M, Kerner K, Heller W, Leonardi S, Langebartels C, Sanderman H Jr (1990) Ozone induction and function of polyamines in ozone-tolerant and ozone-sensitive tobacco cultivars. In: Flores HE, Arteca RN, Shannon JC (eds) Polyamines and ethylene: biochemistry, physiology and interactions. American Society of Plant Physiologists, Rockville, pp 394–396

    Google Scholar 

  • Šebela M, Radová A, Angelini R, Tavladoraki P, Frébort I, Pec P (2001) FAD-containing polyamine oxidases: a timely challenge for researchers in biochemistry and physiology of plants. Plant Sci 160:197–207

    Article  PubMed  Google Scholar 

  • Serafini-Fracassini D, Sandro AD, Duca SD (2010) Spermine delays leaf senescence in Lactuca sativa and prevents the decay of chloroplast photosystems. Plant Physiol Biochem 48:602–611

    Article  CAS  PubMed  Google Scholar 

  • Shen W, Nada K, Tachibana S (2000) Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiol 124:431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Chan Z (2014) Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J Integr Plant Biol 56:114–121

    Article  CAS  PubMed  Google Scholar 

  • Simões ADN, Diniz NB, Vieira MRDS, Al E (2018) Impact of GA3 and spermine on postharvest quality of anthurium cut flowers (Anthurium andraeanum) cv. Arizona Sci Horticult 241:178–186

    Article  CAS  Google Scholar 

  • Slocum RD (1991) Tissue and subcellular localisation of polyamines and enzymes of polyamine metabolism. In: Slocum RD, Flores HE (eds) Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton, pp 93–105

    Google Scholar 

  • Sobieszczuk-Nowicka E (2017) Polyamine catabolism adds fuel to leaf senescence. Amino Acids 49:49–56

    Article  CAS  PubMed  Google Scholar 

  • Szafranska K, Cvikrova M, Kowalska U, Gorecka K, Gorecki R, Martincova O, Janas KM (2011) Influence of copper ions on growth, lipid peroxidation, and proline and polyamines content in carrot rosettes obtained from anther culture. Acta Physiologiae Plant 33:851–859

    Article  CAS  Google Scholar 

  • Sziderics AH, Oufir M, Trognitz F, Kopecky D, Matušikova I, Hausman JF, Wilhelm E (2010) Organ-specific defence strategies of pepper (Capsicum annuum L.) during early phase of water deficit. Plant Cell Rep 29:295–305

    Article  CAS  PubMed  Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Imamura T, Miyagi A, Uchimiya H (2012) Comparative metabolomics of developmental alterations caused by mineral deficiency during in vitro culture of Gentiana triflora. Metabolomics 8:154–163

    Article  CAS  Google Scholar 

  • Takahashi T, Kakehi J-I (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot 105(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N et al (2010) The structure of starch can be manipulated by changing the expression levels of starch branching enzyme IIb in rice endosperm. J Plant Biol 2:507–516

    Google Scholar 

  • Tassoni A, Antognoni F, Bagni N (1996) Polyamine binding to plasma membrane vesicles from zucchini hypocotyls. Plant Physiol 110:817–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiburcio AF, Besford RT, Borrell A, Mace M (1995) Metabolism and function of polyamines during osmotically induced senescence in oat leaves and protoplasts. In: Wallsgrove RM (ed) Amino acids and their derivatives in higher plants. Cambridge University Press, Cambridge, pp 205–225

    Chapter  Google Scholar 

  • Tiburcio AF, Kaur-Sawhney R, Galston AW (1990) Polyamine metabolism. In: Miflin BJ, Lea PJ (eds) The biochemistry of plants, intermediary nitrogen fixation. Academic Press, New York, pp 283–325

    Google Scholar 

  • Todorova D, Moskova I, Sergiev I, Alexieva V, Mapelli S (2008) Changes in endogenous polyamines and some stress markers content induced by drought, 4PU-30 and abscisic acid in wheat plants. In: Khan N, Singh S (eds) Abiotic stress and plant responses. International Publishing House, New Delhi/Bangalore/Mumbai, pp 205–215

    Google Scholar 

  • Toumi I, Moschou PN, Paschalidis KA, Bouamama B, Salem-Fnayou AB, Ghorbel AW, Mliki A, Roubelakis-Angelakis KA (2010) Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress response via the polyamine exodus pathway in grapevine. J Plant Physiol 167:519–525

    Article  CAS  PubMed  Google Scholar 

  • Uemura T, Tachihara K, Tomitori H, Kashiwagi K, Igarashi K (2005) Characteristics of the polyamine transporter TPO1 and regulation of its activity and cellular localization by phosphorylation. J Biol Chem 280:9646–9652

    Article  CAS  PubMed  Google Scholar 

  • Urano K, Hobo T, Shinozaki K (2005) Arabidopsis ADC genes involved in polyamine biosynthesis are essential for seed development. FEBS Lett 579:1557–1564

    Article  CAS  PubMed  Google Scholar 

  • Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N et al (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57:1065–1078

    Article  CAS  PubMed  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Igarashi Y, Seki M, Sekiguchi F, Yamaguchi-Shinozaki K, Shinozaki K (2003) Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell Environ 26:1917–1926

    Article  CAS  Google Scholar 

  • Vladimir V, Shevyakova N (2007) Polyamines and stress tolerance of plants. Plant Stress 1(1):50–71

    Google Scholar 

  • Wang B-Q, Zhang Q-F, Liu J-H, Li G-H (2011) Overexpression of PtADC confers enhanced dehydration and drought tolerance in transgenic tobacco and tomato: effect on ROS elimination. Biochem Biophys Res Commun 413:10–16

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wen XP, Ban Y, Inoue H, Matsuda N, Moriguchi T (2010) Spermidine levels are implicated in enhanced heavy metal tolerance in a spermidine synthase –overexpressing transgenic European pear by exerting antioxidant activities. Transgenic Res 19:91–103

    Article  CAS  PubMed  Google Scholar 

  • Wen X-P, Ban Y, Inoue H, Matsuda N, Moriguchi T (2009) Aluminum tolerance in a spermidine synthase-overexpressing transgenic European pear is correlated with the enhanced level of spermidine via alleviating oxidative status. Environ Exp Bot 66:471–478

    Article  CAS  Google Scholar 

  • Wen X-P, Pang X-M, Matsuda N, Kita M, Inoue H, Hao Y-J, Honda C, Moriguchi T (2008) Overexpression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263

    Article  CAS  PubMed  Google Scholar 

  • Wimalasekera R, Tebartz F, Scherer GFE (2011) Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci 181:593–603

    Article  CAS  PubMed  Google Scholar 

  • Woo HR, Kim HJ, Nam HG, Lim PO (2013) Plant leaf senescence and death–regulation by multiple layers of control and implications for aging in general. J Cell Sci 126:4823–4833

    CAS  PubMed  Google Scholar 

  • Xu Y, Shi GX, Ding CX, Xu XY (2011) Polyamine metabolism and physiological responses of Potamogeton crispus leaves under lead stress. Russian J Plant Physiol 58(3):460–466

    Article  CAS  Google Scholar 

  • Yamaguchi K, Takahashi I, Berberich T, Imai A, Miyazaki A, Takahashi T, Michael A, Kusano T (2006) The polyamine spermine protect against high salt stress in Arabidopsis thaliana. FEBS Lett 580:6783–6788

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano T (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun 352:486–490

    Article  CAS  PubMed  Google Scholar 

  • Yang C, He S (2001) The relationship between polyamine and membrane lipid peroxidase during the senescence of cut rose flowers. Acta Botanica Boreali Occidentalia Sinica 21:1157–1161

    CAS  Google Scholar 

  • Yang H, Shi G, Wang H, Xu Q (2010) Involvement of polyamines in adaptation of Potamogeton crispus L. to cadmium stress. Aquat Toxicol 100:282–288

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Zhang J, Liu K, Wang Z, Liu L (2007) Involvement of polyamines in the drought resistance of rice. J Exp Bot 58:1545–1555

    Article  CAS  PubMed  Google Scholar 

  • Ye XS, Avdiushko SA, Kuc J (1994) Effect of polyamines on in vitro phosphorylation of soluble and plasma membrane proteins in tobacco, cucumber and Arabidopsis thaliana. Plant Sci 97:109–118

    Article  CAS  Google Scholar 

  • Zacchini M, Iori V, Mugnozza GS, Pietrini F, Massacci A (2011) Cadmium accumulation and tolerance in Populus nigra and Salix alba. Biologia Plantarum 55(2):383–386

    Article  CAS  Google Scholar 

  • Zeid IM (2004) Response of bean (Phaseolus vulgaris) to exogenous putrescine treatment under salinity stress. Pak J Biol Sci 7(2):219–225

    Article  Google Scholar 

  • Zhang Z-K, Liu S-Q, Hao S-S, Liu S-H (2010) Grafting increases the copper tolerance of cucumber seedlings by improvement of polyamine contents and enhancement of antioxidant enzymes activity. Agric Sci China 9(7):985–994

    Article  CAS  Google Scholar 

  • Zhao J, Shi G, Qiuhong Y (2008) Polyamines content and physiological and biochemical responses to ladder concentration of nickel stress in Hydrocharis dubia (Bl.) Backer leaves. Biometals 21:665–674

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Yu B (2010) Changes in content of free, conjugated and bound polyamines and osmotic adjustment in adaptation of vetiver grass to water deficit. Plant Physiol Biochem 48:417–425

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinha, S., Mishra, M. (2022). Polyamines: Metabolism, Regulation, and Functions in Crop Abiotic Stress Tolerance. In: Ansari, S.A., Ansari, M.I., Husen, A. (eds) Augmenting Crop Productivity in Stress Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-6361-1_19

Download citation

Publish with us

Policies and ethics