Skip to main content
Log in

Role of polyamines and ethylene as modulators of plant senescence

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Under optimal conditions of growth, senescence, a terminal phase of development, sets in after a certain physiological age. It is a dynamic and closely regulated developmental process which involves an array of changes at both physiological and biochemical levels including gene expression. A large number of biotic and abiotic factors accelerate the process. Convincing evidence suggests the involvement of polyamines (PAs) and ethylene in this process. Although the biosynthetic pathways of both PAs and ethylene are interrelated, S-adenosylmethionine (SAM) being a common precursor, their physiological functions are distinct and at times antagonistic, particularly during leaf and flower senescence and also during fruit ripening. This provides an effective means for regulation of their biosynthesis and also to understand the mechanism by which the balance between the two can be established for manipulating the senescence process. The present article deals with current advances in the knowledge of the interrelationship between ethylene and PAs during senescence which may open up new vistas of investigation for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PAs:

polyamines

PAO:

polyamine oxidase

PCA:

perchloric acid

Put:

putrescine

Spm:

spermine

Spd:

sper-midine

ODC:

ornithine decarboxylase

SAM:

S-adenosylmethionine

SAMDC:

S-adenosylmethionine decarboxylase

ACC:

1-amino-cyclopropane-1-carboxylic acid

EFE:

ethylene forming enzyme

AOA:

aminooxyacetic acid

AVG:

aminoethoxyvinyl glycine

MGBG:

methylglyoxal-bis-(guanylhydrazone)

ADC:

arginine decarboxylase

DFMA:

DL-difluoromethyl arginine

DFMO:

DL-difluoromethyl ornithine

References

  • Abeles F B, Morgan P W and Saltveit M E Jr (eds) 1992Ethylene in plant biology (New York: Academic Press)

    Google Scholar 

  • Aharoni N 1989 Interrelationship between ethylene and plant growth regulator in the senescence of lettuce leaf discs;J. Plant Growth Regul. 8 307–317

    Article  Google Scholar 

  • Apelbaum A, Burgoon A C, Anderson J D and Lieberman M 1981 Polyamines inhibit biosynthesis of ethylene in higher plant tissue and fruit protoplasts;Plant Physiol. 68 239–247

    Google Scholar 

  • Ayub R, Guis M, Ben Amor M, Gillot L, Roustan J P, Latche A, Bouzayen M and Pech J C 1996 Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits;Nature Biotechnol. 14 862–866

    Article  Google Scholar 

  • Bolitho K M, Lay-Yee M, Knighton M L and Rose G S 1997 Antisense apple ACC-oxidase RNA reduces ethylene production in transgenic tomato fruits;Plant Sci. 122 91–99

    Article  CAS  Google Scholar 

  • Borochov A and Woodson W R 1989 Physiology and biochemistry of flower petal senescence;Hortic. Rev. 11 15–43

    CAS  Google Scholar 

  • Borochov A, Spiegelstein H and Philosoph-Hadas S 1997 Ethylene and flower petal senescence: Interrelationship with membrane lipid catabolism;Physiol. Plant. 100 606–612

    Article  CAS  Google Scholar 

  • Botha M L and Whitehead C S 1992 The effect of polyamines on ethylene synthesis during normal and pollination-induced senescence ofPetunia hybrida L. flower;Planta 188 478–483

    Article  CAS  Google Scholar 

  • Buchanan-Wollaston V 1994 Isolation of cDNA clones for genes that are expressed during leaf senescence inBrassica napus. Identification of a gene encoding a senescence-specific metallothionein-like protein;Plant Physiol. 105 839–846

    Article  PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston V 1997 The molecular biology of leaf senescence;J. Exp. Bot. 48 181–199

    Article  Google Scholar 

  • Burtin D, Martin-Tanguy J and Topfer D 1991 α-DL-difluoromethyl-ornithine, a specific, irreversible inhibitor of putrescine biosynthesis induces a phenotype in tobacco similar to that ascribed to the root inducing left hand transferred DNA ofAgrobacterium rhizogenes;Plant Physiol. 95 461–468

    PubMed  CAS  Google Scholar 

  • Celikel F G and van Doorn W G 1995 Solute leakage, lipid peroxidation and protein degradation during the senescence of Iris petals;Physiol. Plant 94 515–521

    Article  CAS  Google Scholar 

  • Chae Y, Lee Y and Son K C 1995 Changes in ethylene production, polyamine levels and activities of SAM decarboxylase, ACC synthase and EFE during flower senescence ofHibiscus syriacus L. cv. Yeonggwang;J. Korean Soc. Hortic. Sci. 36 113–120

    CAS  Google Scholar 

  • Chang K S, Nam K H, Lee M M, Lee S H and Park K Y 1996 Nucleotide sequence of cDNA (Accession no. U 63832) encoding arginine decarboxylase from carnation flowers;Plant Physiol. 112 863

    Google Scholar 

  • Chattopadhyay M K, Gupta S, Sengupta D N and Ghosh B 1997 Expression of arginine decarboxylase in seedlings of indica rice (Oryza sativa L.) cultivars as affected by salinity stress;Plant Mol. Biol. 34 477–483

    Article  PubMed  CAS  Google Scholar 

  • Crisosto C H, Lombard P B, Richardson D G and Tetley R 1992 Putrescine extends effective pollination period in ‘Comice’ pear (Pyrus communis L.).Sci. Hortic. 49 211–221

    Article  CAS  Google Scholar 

  • Dilley D R 1977 The hypobaric concept for controlled atmospheric storage;Mich. State Hortic. Rep. 28 2937

    Google Scholar 

  • D'Orazi D and Bagni N 1987 In vitro interactions between PAs and pectic substances;Biochem. Biophys. Res. Commun. 148 1159–1163

    Article  Google Scholar 

  • Downs C G and Lovell P H 1986 The effect of spermidine and putresine on the senescence of cut carnations;Plant Physiol. 66 679–684

    Article  CAS  Google Scholar 

  • Drake R, John I, Farrol A, Cooper W, Schuch W and Grierson D 1996 Isolation and analysis of cDNAs encoding tomato cysteine proteases expressed during leaf senescence;Plant Mol. Biol. 30 755–767

    Article  Google Scholar 

  • Escribano M I, Aguado P, Reguera R M and Merodio C1 1996 Conjugated polyamine levels and putrescine synthesis in cherimoya fruit during storage at different temperatures;J. Plant Physiol. 147 736–742

    Google Scholar 

  • Escribano M I and Merodio C 1994 The relevance of polyamine levels in cherimoya (Annona cherimola Mill.) fruit ripening;J. Plant Physiol. 143 207–212

    CAS  Google Scholar 

  • Espartero J, Pintor-Toro J A and Pardo J M 1994 Differential accumulation of S-adenosyl methionine synthetase transcripts in response to salt stress;Plant Mol. Biol. 25 217–227

    Article  PubMed  CAS  Google Scholar 

  • Evans P T and Malmberg R L 1989 Do polyamines have role in plant development?;Annu. Rev. Plant Physiol. Plant Mol. Biol. 40 235–269

    CAS  Google Scholar 

  • Galston A W 1983 Polyamines as modulators of plant development;BioScience 33 382–388

    Article  CAS  Google Scholar 

  • Galston A W and Kaur-Sawhney R 1987 Polyamines as endogenous growth regulators; inPlant hormones and their role in plant growth and development (ed.) P J Davies (Dordrecht: Martinus Nijhoff) pp 280–295

    Google Scholar 

  • Galston A W and Kaur-Sawhney R 1995 Polyamines as endogenous growth regulators; inPlant hormones: Physiology, biochemistry and molecular biology (ed.) P J Davies 2nd edition (Dordrecht: Kluwer Acad. Press) pp 158–178

    Google Scholar 

  • Gan S and Amasino R M 1995 Inhibition of leaf senescence by autoregulated production of cytokinin;Science 270 1986–1988

    Article  PubMed  CAS  Google Scholar 

  • Gan S and Amasino R M 1997 Making sense of senescence. Molecular genetic regulation and manipulation of leaf senescence;Plant Physiol. 113 313–319

    PubMed  CAS  Google Scholar 

  • Gray J E, Picton S, Fray R, Hamilton A J, Smith H, Barton S, Grierson D, Peach J C, Latche A and Balague- C 1993 Cellular and molecular aspects of the plant hormone ethylene;Proc. Int. Symp., Agen, France, pp 82–89

  • Grbic V and Bleecker A B 1995 Ethylene regulates the timing of leaf senescence inArabidopsis;Plant J. 8 595–602

    Article  CAS  Google Scholar 

  • Hamana K and Matsuzaki S 1982 Widespread occurrence of norspermidine and norspermine in eukaryotic algae;J. Biochem. 91 1321–1324

    PubMed  CAS  Google Scholar 

  • Hamana K and Matsuzaki S 1985 Distribution of polyamines in prokaryotes, algae, plants and fungi; inPolyamines: Basic and clinical aspects (eds) K Imahori, F Suzuki, O Suzuki and U Bacharach (VNU Sci. Press) pp 105–112

  • Hamilton A J, Lycett G W and Grierson D 1990 Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants;Nature (London) 346 284–287

    Article  CAS  Google Scholar 

  • Han Frey C, Fife M and Buchanan-Wollaston V 1996 Leaf senescence inBrassica napus: expression of genes encoding pathogenesis related proteins;Plant Mol. Biol. 30 597–609

    Google Scholar 

  • Havelange A, Lejeune P, Bernier P, Kaur-Sawhney R, Galston A W 1996 Putrescine export from leaves in relation to floral transition inSinapis alba;Physiol. Plant 96 59–65

    Article  Google Scholar 

  • Heby O and Persson L 1990 Molecular genetics of polyamine synthesis in eukaryotic cells;Trends Biochem. Sci. 15 153–158

    Article  PubMed  CAS  Google Scholar 

  • Hensel L, Grbic V, Baumgartner D and Blecker A B 1993 Developmental and age related processes that influence the longivity and senescence of photosynthetic tissues inArabidopsis;Plant Cell 5 553–564

    Article  PubMed  CAS  Google Scholar 

  • Hobson G E, Nichol S R, Davies J N and Atkey P T 1984 The inhibition of tomato fruit ripening by silver;J. Plant Physiol. 116 21–29

    CAS  Google Scholar 

  • Hong S J and Lee S K 1996 Changes in endogenous putrescine and the relationship to the ripening of tomato fruits;J. Korean Soc. Hortic. Sci. 37 369–373

    Google Scholar 

  • Horton R F and Bourguoin N 1992 Leaf senescence in juvenile ivy;Plant Physiol. Biochem. 30 119–122

    CAS  Google Scholar 

  • Humbeck K, Quast S and Krupinska K 1996 Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants;Plant Cell Environ. 19 337–344

    Article  Google Scholar 

  • John I, Drake R, Farrel A, Cooper W, Lee P, Horton P and Grierson D 1995 Delayed leaf senescence in ethylene deficient ACC-oxidase antisense tomato plants: Molecular and physiological analysis;Plant J. 7 483–490

    Article  CAS  Google Scholar 

  • Jones M L and Woodson W R 1999 Differential expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in carnation;Plant Physiol. 119 755–764

    Article  PubMed  CAS  Google Scholar 

  • Kakkar R K and Rai V K 1993 Plant polyamines in flowering and fruit ripening;Phytochemistry 33 1281–1288

    Article  CAS  Google Scholar 

  • Kakkar R K, Rai V K and Nagar P K 1998 Polyamine uptake and translocation in plants;Biol. Plant. 40 481–491

    Article  Google Scholar 

  • Katoh Y, Hasegawa T, Suzuki T and Fujii T 1987 Effect of 1-aminocyclopropane-1-carboxylic acid production on the changes in the ployamine levels in Hiproly barley callus after auxin withdrawal;Agric. Biol. Chem. 51 2457–2463

    CAS  Google Scholar 

  • Kaur-Sawhney R and Galston A W 1991 Physiological and biochemical studies on antisenescence properties of polyamines in plants; inBiochemistry and physiology of polyamines in plants (eds) R D Slocum and H E Florse (Boca Raton: CRC Press) pp 201–211

    Google Scholar 

  • Kumar A, Altabella T, Taylor M A and Tiburcio A F 1997 Recent advances in polyamine research;Trends Plant Sci. 2 124–130

    Article  Google Scholar 

  • Lee M M, Lee S H and Park K Y 1997 Effects of spermine on ethylene biosynthesis in cut carnation (Dianthus caryophyllus L.) flowers during senescence;J. Plant Physiol. 151 68–73

    CAS  Google Scholar 

  • Lelievre J M, Latche A, Jones B, Bouzayen M and Pech J C 1997 Ethylene and fruit ripening;Physiol. Plant 101 727–739

    Article  CAS  Google Scholar 

  • Li N, Parsons B L, Liu D and Mattoo A K 1992 Accumulation of wound inducible ACC synthase transcripts in tomato fruit is inhibited by salicylic acid and polyamines;Plant Mol. Biol. 18 477–487

    Article  PubMed  CAS  Google Scholar 

  • MadArif S A, Taylor M A, George L A, Butler A R, Burch L R, Davies H V, Stark M J R and Kumar A 1994 Characterization of S-adenosyl methionine decarboxylase (SAMDC) gene of potato;Plant Mol. Biol. 26 327–338

    Article  CAS  Google Scholar 

  • Martin-Tanguy J 1985 The occurrence and possible function of hydroxycinnamoyl acid amides in plants;Plant Growth Regul. 3 381–399

    Article  CAS  Google Scholar 

  • Martin-Tanguy J 1997 Conjugated polyamines and reproductive development: Biochemical, molecular and physiological approaches;Physiol. Plant. 100 675–688

    Article  CAS  Google Scholar 

  • Messiaen J, Cambier P and Cutsem P V 1997 Polyamines and pectins. 1. Ion exchange and selectivity;Plant Physiol. 113 387–395

    PubMed  CAS  Google Scholar 

  • Michael A J, Furze J M, Rhodes M J C and Burtin D 1996 Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA;Biochem. J. 314 241–248

    Google Scholar 

  • Mizrahi Y, Applewhite P B and Galston A W 1989 Polyamine binding to proteins in oat and petunia protoplasts;Plant Physiol. 91 738–743

    PubMed  CAS  Google Scholar 

  • Nam H G 1997 The molecular genetic analysis of leaf senescence;Curr. Opin. Res. Commun. 199 525–530

    Google Scholar 

  • Nichols R, Bufler G, Mor Y, Fujino D W and Reid M S 1983 Changes in ethylene production and 1-aminocyclopropane-1-carboxylic acid content of pollinated Carnation flowers;J. Plant Growth Regul. 2 1–8

    Article  CAS  Google Scholar 

  • Nichols R and Frost C E 1985 Wound induced production of 1-aminocyclopropane-1-carboxylic acid and accelerated senescence ofPetunia corollas;Sci. Hortic. 26 47–55

    Article  CAS  Google Scholar 

  • Nooden L D 1988 Whole plant senescence; inSenescence induced aging in plants (eds) L D Nooden and A C Leopold (New York: Academic Press) pp 391–439

    Google Scholar 

  • Oeller P W, Wong L M, Taylor L P, Pilce D A and Theologis A 1991 Reversible inhibition of tomato fruit senescence by antisense RNA;Science 254 437–439

    Article  PubMed  CAS  Google Scholar 

  • Paliyath G and Droillard M J 1992 The mechanism of membrane deterioration and disassembly during senescence;Plant Physiol. Biochem. 30 789–812

    CAS  Google Scholar 

  • Pennazio S and Roggero P 1990 Exogenous polyamines stimulate ethylene synthesis by soybean leaf tissue;Ann. Bot. 65 45–50

    CAS  Google Scholar 

  • Perez-Amador M A, Carbonell J and Granell A 1995 Expression of arginine decarboxylase is induced during early fruit development and in young tissues ofPisum sativum (L.);Plant Mol. Biol. 28 997–1009

    Article  PubMed  CAS  Google Scholar 

  • Philosoph-Hadas S, Meir S and Aharoni N 1991 Effect of wounding on ethylene biosynthesis and senescence of detached spinach leaves;Physiol. Plant 83 241–246

    Article  CAS  Google Scholar 

  • Reid M S and Wu M J 1992 Ethylene and flower senescence;J. Plant Growth Regul. 11 37–43

    Article  CAS  Google Scholar 

  • Roberts D R, Dumbroff E B and Thompson J E 1986 Exogenous polyamines alter membrane fluidity in bean leaves a basis for potential misinterpretation of their physiological role;Planta 167 395–401

    Article  CAS  Google Scholar 

  • Roberts D R, Walker M A, Thompson J E and Dumbroff E B 1984 The effect of inhibitors of polyamine and ethylene biosynthesis on senescence, ethylene production and polyamine levels in cut carnation flowers;Plant Cell Physiol. 25 315–322

    CAS  Google Scholar 

  • Rodriguez-Garay B, Phillips G C and Kuehn G D 1989 Detection of norspermidine and norspermine inMedicago sativa L. (alfalfa);Plant Physiol. 89 525–529

    PubMed  CAS  Google Scholar 

  • Saftner R A and Baldi B G 1990 Polyamine levels and tomato fruit development: Possible interaction with ethylene;Plant Physiol. 92 547–550

    Article  PubMed  CAS  Google Scholar 

  • Serrano M, Martinez-Madrid M C and Romojaro F 1999 Ethylene biosynthesis and polyamine and ABA levels in cut carnations treated with aminotriazole;J. Am. Soc. Hortic. Sci. 124 81–85

    CAS  Google Scholar 

  • Serrano M, Romojaro F, Casas J L and Acosta M 1991 Ethylene and polyamine metabolism in climacteric and non-climacteric carnation flowers;HortScience 26 894–896

    CAS  Google Scholar 

  • Sisler E C and Serek M 1997 Inhibitors of ethylene responses in plants at the receptor level: Recent developments;Physiol. Plant. 100 577–582

    Article  CAS  Google Scholar 

  • Slocum R D, Kaur-Sawhney R and Galston A W 1984 The Physiology and biochemistry of Polyamines in Plants;Arch. Biochem. Biophys. 235 283–303

    Article  PubMed  CAS  Google Scholar 

  • Smart C M 1994 Gene expression during leaf senescence;New Phytol. 126 419–448

    Article  CAS  Google Scholar 

  • Smart C M, Hosken S E, Thomas H, Greaves J A, Blair B G and Schuch W 1995 The timing of maize leaf senescence and characterization of senescence related cDNAs;Physiol. Plant. 93 673–682

    Article  CAS  Google Scholar 

  • Smart C M, Scofield S R, Bevan M W and Dyer T A 1991 Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production inAgrobacterium;Plant Cell 3 647–656

    Article  PubMed  CAS  Google Scholar 

  • Smith T A 1985a Polyamines;Annu Rev. Plant Physiol. 36 117–143

    Article  CAS  Google Scholar 

  • Smith T A 1985b The inhibition and activation of polyamine oxidase from oat seedlings;J. Plant Growth Regul. 3 269–275

    Article  CAS  Google Scholar 

  • Tabor C W and Tabor H 1984 Polyamines;Annu. Rev. Biochem. 53 749–790

    Article  PubMed  CAS  Google Scholar 

  • Tait G H 1985 Bacterial polyamines, structure and biosynthesis;Biochem. Soc. Trans. 13 316–318

    PubMed  CAS  Google Scholar 

  • Theologis A 1992 One rotten apple spoils the whole bushel: The role of ethylene in fruit ripening;Cell 70 181–184

    Article  PubMed  CAS  Google Scholar 

  • Walden R, Cordeiro A and Tiburcio A F 1997 Polyamines: Small molecules triggering pathways in plant growth and development;Plant Physiol. 113 1009–1013

    Article  PubMed  CAS  Google Scholar 

  • Watson M B and Malmberg R L 1996 Regulation ofArabidopsis thaliana (L.) Heynh. arginine decarboxylase by potassium deficience stress;Plant Physiol. 111 1077–1083

    Article  Google Scholar 

  • Yang S F and Hoffman N E 1984 Ethylene biosynthesis and its regulation in higher plants;Annu. Rev. Plant Physiol. 35 155–189

    Article  CAS  Google Scholar 

  • Yu Y B, Adams D O and Yang S F 1979 1-aminocyclopropane-1-carboxylate synthase a key enzyme in ethylene biosynthesis;Arch. Biochem. Biophys. 198 280–286

    Article  PubMed  CAS  Google Scholar 

  • Zarembinski T I and Theologis A 1994 Ethylene biosynthesis and action: A case for conservation;Plant Mol. Biol. 26 1579–1597

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, S., Ranade, S.A., Nagar, P.K. et al. Role of polyamines and ethylene as modulators of plant senescence. J Biosci 25, 291–299 (2000). https://doi.org/10.1007/BF02703938

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703938

bdKeywords

Navigation