Skip to main content

Genetic Engineering and Genome Editing Strategies to Enhance Diseases Resistance of Rice Plants: A Review of Progress and Future Prospects

  • Chapter
  • First Online:
Rice Research for Quality Improvement: Genomics and Genetic Engineering

Abstract

The occurrence of rice diseases threatens food production worldwide. Developing host resistance is considered as the most efficient and environment-friendly method to reduce yield losses due to the diverse group of pathogens. Disease-resistant quantitative trait loci (QTLs) are a valuable resource for rice crop improvement program. Advanced molecular biology and biotechnological tools accelerated the study of host-pathogen interactions and have resulted in the identification, cloning, and characterization of many genes involved in the plant defense responses. The extent of disease reduction varies with the strategy employed as well as with the characteristics of the pathogen. Manipulation of different hormone levels in transgenic rice plants has provided interesting findings with regard to enhanced disease tolerance or susceptibility. The knowledge is being utilized to modify rice genome to develop disease resistance by means of genetic engineering and CRISPR/Cas9-mediated genome editing technologies. Combinatorial effects of more than one defense genes have been proved to be more promising in conferring disease resistance than single-transgene introduction. The use of tissue-specific or pathogen-inducible promoters and the engineered expression of resistant or susceptibility genes that induce defense responses have the potential to provide commercially useful broad-spectrum resistance in the distant future. The issues and challenges of genetic engineering and genome editing to engineer rice disease resistance that need to be addressed are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn IP, Kim S, Kang S, Suh SC, Lee YH (2005) Rice defense mechanisms against Cochliobolus miyabeanus and Magnaporthe grisea are distinct. Phytopathology 95(11):1248–1255

    Article  CAS  PubMed  Google Scholar 

  • Amante-Bordeos A, Sitch LA, Nelson R, Dalmacio RD, Oliva NP, Aswidinnoor H, Leung H (1992) Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice, Oryza sativa. Theor Appl Genet 84:345–354

    Article  CAS  PubMed  Google Scholar 

  • Anzalone AV, Randolph PB, Davis JR (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):149–157. https://doi.org/10.1038/s41586-019-1711-4

  • Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M (2008) Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180:2267–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballini E, Morel JB, Droc G, Price A, Courtois B, Notteghem JL, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant-Microbe Interact 21(7):859–868

    Article  CAS  PubMed  Google Scholar 

  • Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300(5620):764

    Article  CAS  PubMed  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Bohlmann H, Broekaert W (1994) The role of thionins in plant protection. Crit Rev Plant Sci 13(1):1–6

    Article  CAS  Google Scholar 

  • Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033–2046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Busungu C, Taura S, Sakagami JI, Ichitani K (2016) Identification and linkage analysis of a new rice bacterial blight resistance gene from XM14, a mutant line from IR24. Breed Sci 66:636–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai L, Cao Y, Xu Z, Ma W, Zakria M, Zou L, Cheng Z, Chen G (2017) A transcription activator-like effector Tal7 of Xanthomonas oryzae pv. oryzicola activates rice gene Os09g29100 to suppress rice immunity. Sci Rep 7(1):5089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci 95(11):6531–6536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Jean-Benoit-Morel Fournier E, Tharreau D, Terauchi R, Kroja T (2013) The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 25:1463–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheema KK, Grewal NK, Vikal Y, Sharma R, Lore JS, Das A, Bhatia D, Mahajan R, Gupta V, Bharaj TS, Singh K (2008) A novel bacterial blight resistance gene from Oryza nivara mapped to 38 kb region on chromosome 4L and transferred to Oryza sativa L. Genet Res (Camb) 90:397–407

    Article  CAS  Google Scholar 

  • Chen J, Peng P, Tian J, He Y, Zhang L, Liu Z, Yin D, Zhang Z (2015) Pike, a rice blast resistance allele consisting of two adjacent NBS-LRR genes, was identified as a novel allele at the Pik locus. Mol Breed 35:117

    Article  CAS  Google Scholar 

  • Chen J, Shi YF, Liu W, Chai R, Fu Y, Zhuang J, Wu J (2011) APid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. J Genet Genomics 38:209–216

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46:794–804

    Article  CAS  PubMed  Google Scholar 

  • Chern M, Canlas PE, Fitzgerald HA, Ronald PC (2005) Rice NRR, a negative regulator of disease resistance, interacts with Arabidopsis NPR1 and rice NH1. Plant J 43(5):623–635

    Article  CAS  PubMed  Google Scholar 

  • Chern MS, Fitzgerald HA, Yadav RC, Canlas PE, Dong X, Ronald PC (2001) Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J 27(2):101–113

    Article  CAS  PubMed  Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu Z, Fu B, Yang H, Xu C, Li Z, Sanchez A, Park YJ, Bennetzen JL, Zhang Q, Wang S (2006) Targeting xa13, a recessive gene for bacterial blight resistance in rice. Theor Appl Genet 112:455–461

    Article  CAS  PubMed  Google Scholar 

  • Coca M, Bortolotti C, Rufat M, Penas G, Eritja R, Tharreau D, Del Pozo AM, Messeguer J, San Segundo B (2004) Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol Biol 54(2):245–259

    Article  CAS  PubMed  Google Scholar 

  • Coca M, Peñas G, Gómez J, Campo S, Bortolotti C, Messeguer J, San Segundo B (2006) Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta 223(3):392–406

    Article  CAS  PubMed  Google Scholar 

  • Das A, Soubam D, Singh PK, Thakur S, Singh NK, Sharma TR (2012) A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae. Funct Integr Genomics 12:215–228

    Article  CAS  PubMed  Google Scholar 

  • Datta K, Baisakh N, Thet KM, Tu J, Datta S (2002) Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. Theor Appl Genet 106(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Datta, K., Velazhahan, R., Oliva, N., Ona, I., Mew, T. et al., (1999): Overexpression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor Appl Genet., 98: 1138-1145

    Google Scholar 

  • Datta K, Koukolikova-Nicola Z, Baisakh N, Oliva N, Datta SK (2000) Agrobacterium-mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems. Theor Appl Genet 100(6):832–839

    Article  CAS  Google Scholar 

  • Datta K, Tu J, Oliva N, Ona I, Velazhahan R, Mew TW, Muthukrishnan S, Datta SK (2001) Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci 160(3):405–414

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y, Zhang G, Li Q, Zhang J, Wu S, Milazzo J, Mao B, Wang E, Xie H, Tharreau D, He Z (2017) Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355:962–965

    Article  CAS  PubMed  Google Scholar 

  • Devanna NB, Vijayan J, Sharma TR (2014) The blast resistance gene Pi54of cloned from Oryza officinalis interacts with Avr-Pi54 through its novel non-LRR domains. PLoS One 9:e104840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci 10(2):71–78

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald HA, Chern MS, Navarre R, Ronald PC (2004) Overexpression of (At)NPR1 in rice leads to a BTH-and environment-induced lesion-mimic/cell death phenotype. Mol Plant-Microbe Interact 17(2):140–151

    Article  CAS  PubMed  Google Scholar 

  • Flor HH (1942) Inheritance of pathogenicity in Melampsora lini. Phytopathology 32:653–669

    Google Scholar 

  • Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka S, Yamamoto SI, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, Yasuda N, Fujita Y, Nguyen TT, Koizumi S, Sugimoto K, Matsumoto T, Yano M (2014) Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast. Sci Rep 4:1–7

    Google Scholar 

  • Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glazebrook J (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205–227.

    Google Scholar 

  • Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant–pathogen interactions. Cell Microbiol 6(3):201–211

    Article  CAS  PubMed  Google Scholar 

  • Gu K, Tian D, Yang F, Wu L, Sreekala C, Wang D, Wang GL, Yin Z (2004) High-resolution genetic mapping of Xa27(t), a new bacterial blight resistance gene in rice, Oryza sativa L. Theor Appl Genet 108:800–807

    Article  CAS  PubMed  Google Scholar 

  • Guo SB, Zhang DP, Lin XH (2010) Identification and mapping of a novel bacterial blight resistance gene Xa35(t) originated from Oryza minuta. Sci Agric Sin 43(13):2611–2618

    CAS  Google Scholar 

  • Hagen S, Marx F, Ram AF, Meyer V (2007) The antifungal protein AFP from Aspergillus giganteus inhibits chitin synthesis in sensitive fungi. Appl Environ Microbiol 73:2128–2134

    Google Scholar 

  • Hammond-Kosack KE, Parker JE (2003) Deciphering plant–pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14(2):177–193

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Yoshida H (2009) Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J 57:413–425

    Article  CAS  PubMed  Google Scholar 

  • Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H (2010) Durable panicle blast resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J 64:498–510

    Article  CAS  PubMed  Google Scholar 

  • Hua L, Wu J, Chen C, Wu W, He X, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q (2012) The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet 125:1047–1055

    Article  CAS  PubMed  Google Scholar 

  • Hückelhoven R (2007) Cell wall–associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45:101–127

    Article  PubMed  CAS  Google Scholar 

  • Hutin M, Sabot F, Ghesquière A, Koebnik R, Szurek B (2015) A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J 84:694–703

    Article  CAS  PubMed  Google Scholar 

  • Itoh Y, Takahashi K, Takizawa H, Nikaidou N, Tanaka H, Nishihashi H, Watanabe T, Nishizawa Y (2003) Family 19 chitinase of Streptomyces griseus HUT6037 increases plant resistance to the fungal disease. Biosci Biotechnol Biochem 67(4):847–855

    Article  CAS  PubMed  Google Scholar 

  • Iwai T, Kaku H, Honkura R, Nakamura S, Ochiai H, Sasaki T, Ohashi Y (2002) Enhanced resistance to seed-transmitted bacterial diseases in transgenic rice plants overproducing an oat cell-wall-bound thionin. Mol Plant-Microbe Interact 15(6):515–521

    Article  CAS  PubMed  Google Scholar 

  • Iyer AS, McCouch SR (2004) The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol Plant-Microbe Interact 17:1348–1354

    Article  CAS  PubMed  Google Scholar 

  • Jankele R, Svoboda P (2014) TAL effectors: tools for DNA targeting. Brief Funct Genomics 13(5):409–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha S, Tank HG, Prasad BD, Chattoo BB (2009) Expression of Dm-AMP1 in rice confers resistance to Magnaporthe oryzae and Rhizoctonia solani. Transgenic Res 18(1):59–69

    Article  CAS  PubMed  Google Scholar 

  • Jin XW, Wang CL, Yang Q, Jiang QX, Fan YL, Liu GC, Zhao KJ (2007) Breeding of near-isogenic line CBB30 and molecular mapping of Xa30 (t), a new resistance gene to bacterial blight in rice. Sci Agric Sin 40:1094–1100

    CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323

    Article  CAS  PubMed  Google Scholar 

  • Jung YJ, Nogoy FM, Lee SK, Cho YG, Kang KK (2018) Application of ZFN for site directed mutagenesis of rice SSIVa gene. Biotechnology and Bioprocess Engineering 23:108–115

    Google Scholar 

  • Kachroo A, He Z, Patkar R, Zhu Q, Zhong J, Li D, Ronald P, Lamb C, Chattoo BB (2003) Induction of H2O2 in transgenic rice leads to cell death and enhanced resistance to both bacterial and fungal pathogens. Transgenic Res 12(5):577–586

    Article  CAS  PubMed  Google Scholar 

  • Kalpana K, Maruthasalam S, Rajesh T, Poovannan K, Kumar KK, Kokiladevi E, Raja JA, Sudhakar D, Velazhahan R, Samiyappan R, Balasubramanian P (2006) Engineering sheath blight resistance in elite indica rice cultivars using genes encoding defense proteins. Plant Sci 170(2):203–215

    Article  CAS  Google Scholar 

  • Kanzaki H, Nirasawa S, Saitoh H, Ito M, Nishihara M, Terauchi R, Nakamura I (2002) Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theor Appl Genet 105(6–7):809–814

    Article  CAS  PubMed  Google Scholar 

  • Karmakar S, Molla KA, Chanda PK, Sarkar SN, Datta SK, Datta K (2016) Green tissue-specific co-expression of chitinase and oxalate oxidase 4 genes in rice for enhanced resistance against sheath blight. Planta 243(1):115–130

    Article  CAS  PubMed  Google Scholar 

  • Karmakar S, Molla KA, Das K, Sarkar SN, Datta SK, Datta K (2017) Dual gene expression cassette is superior than single gene cassette for enhancing sheath blight tolerance in transgenic rice. Sci Rep 7(1):7900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kawata M, Nakajima T, Yamamoto T, Mori K, Oikawa T, Fukumoto F, Kuroda S (2003) Genetic engineering for disease resistance in rice (Oryza sativa L.) using antimicrobial peptides. Jpn Agr Res Q: JARQ 37(2):71–76

    Article  CAS  Google Scholar 

  • Khush G (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59:1–6

    Article  CAS  PubMed  Google Scholar 

  • Kim JK, Jang IC, Wu R, Zuo WN, Boston RS, Lee YH, Ahn IP, Nahm BH (2003) Co-expression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight. Transgenic Res 12(4):475–484

    Article  CAS  PubMed  Google Scholar 

  • Kim SM, Suh JP, Qin Y, Noh TH, Reinke RF, Jena KK (2015) Identification and fine-mapping of a new resistance gene, Xa40, conferring resistance to bacterial blight races in rice (Oryza sativa L.). Theor Appl Genet 128:1933–1943

    Article  CAS  PubMed  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci 93(3):1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korinsak S, Sriprakhon S, Sirithanya P, Jairin J, Korinsak S, Vanavichit A, Toojinda T (2009) Identification of microsatellite markers (SSR) linked to a new bacterial blight resistance gene xa33(t) in rice cultivar ‘Ba7’. Maejo Int J Sci Tech 3:235–247

    CAS  Google Scholar 

  • Krishnamurthy K, Balconi C, Sherwood JE, Giroux MJ (2001) Wheat puroindolines enhance fungal disease resistance in transgenic rice. Mol Plant-Microbe Interact 14(10):1255–1260

    Article  CAS  PubMed  Google Scholar 

  • Lee KS, Rasabandith S, Angeles ER, Khush GS (2003) Inheritance of resistance to bacterial blight in 21 cultivars of rice. Phytopathology 93:147–152

    Article  CAS  PubMed  Google Scholar 

  • Lee SK, Song MY, Seo YS, Kim HK, Ko S, Cao PJ, Suh JP, Yi G, Roh JH, Lee S, An G (2009) Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil–nucleotide-binding–leucine-rich repeat genes. Genetics 181(4):1627–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30(5):390

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Chen S, Que Z, Wang L, Liu X, Pan Q (2007) The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics 177:1871–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin XH, Zhang DP, Xie YF, Gao HP, Zhang Q (1996) Identification and mapping of a new gene for bacterial blight resistance in rice based on RFLP markers. Phytopathology 86:1156–1159

    Article  CAS  Google Scholar 

  • Liu M, Sun ZX, Zhu J, Xu T, Harman GE, Lorito M (2004) Enhancing rice resistance to fungal pathogens by transformation with cell wall degrading enzyme genes from Trichoderma atroviride. J Zhejiang Univ Sci 5(2):133–136

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Lin F, Wang L, Pan Q (2007) The in silico map-based cloning of Pi36, a rice coiled-coil-nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics 176:2541–2549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Liu B, Zhu X, Yang J, Bordeos A, Wang G, Leach JE, Leung H (2013) Fine-mapping and molecular marker development for Pi56(t), a NBS-LRR gene conferring broad-spectrum resistance to Magnaporthe oryzae in rice. Theor Appl Genet 126:985–998

    Article  CAS  PubMed  Google Scholar 

  • Lü Q, Xu X, Shang J, Jiang G, Pang Z, Zhou Z, Wang J, Liu Y, Li T, Li X, Xu J, Cheng Z, Zhao X, Li S, Zhu L (2013) Functional analysis of Pid3-A4, an ortholog of rice blast resistance gene Pid3 revealed by allele mining in common wild rice. Phytopathology 103:594–599

    Article  CAS  Google Scholar 

  • Ma J, Chen J, Wang M, Ren Y, Wang S, Lei C, Cheng Z (2018) Corrigendum: disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. J Exp Bot 69(7):1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Lei C, Xu X, Hao K, Wang J, Cheng Z, Ma X, Ma J, Zhou K, Zhang X, Guo X, Wu F, Lin Q, Wang C, Zhai H, Wang H, Wan J (2015) Pi64, encoding a novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice. Mol Plant-Microbe Interact 28:558–568

    Article  CAS  PubMed  Google Scholar 

  • Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet-Loedin I, ÄŒermák T, Voytas DF, Choi IR, Chadha-Mohanty P (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to rice tungro spherical virus. Plant Biotechnol J 16(11):1918–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malehorn DE, Borgmeyer JR, Smith CE, Shah DM (1994) Characterization and expression of an antifungal zeamatin-like protein (Zlp) gene from Zea mays. Plant Physiol 106(4):1471–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruthasalam S, Kalpana K, Kumar KK, Loganathan M, Poovannan K, Raja JA, Kokiladevi E, Samiyappan R, Sudhakar D, Balasubramanian P (2007) Pyramiding transgenic resistance in elite indica rice cultivars against the sheath blight and bacterial blight. Plant Cell Rep 26(6):791–804

    Article  CAS  PubMed  Google Scholar 

  • Mei C, Qi M, Sheng G, Yang Y (2006) Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol Plant-Microbe Interact 19(10):1127–1137

    Article  CAS  PubMed  Google Scholar 

  • Mew TW, Vera Cruz CM, Reyes RC (1982) Interaction of Xanthomonas campestris pv. oryzae and a resistant rice cultivar. Phytopathology 72:786–789

    Article  Google Scholar 

  • Miao LL, Wang CL, Zheng CK, Che JY, Gao Y, Wen YC, Li GQ, Zhao KJ (2010) Molecular mapping of a new gene for resistance to rice bacterial blight. Sci Agric Sin 43(15):3051–3058

    CAS  Google Scholar 

  • Mir GN, Khush GS (1990) Genetics of resistance to bacterial blight in rice cultivar DV86. Crop Res 3:194–198

    Google Scholar 

  • Mishra NS, Tuteja R, Tuteja N (2006) Signaling through MAP kinase networks in plants. Arch Biochem Biophys 452(1):55–68

    Article  CAS  PubMed  Google Scholar 

  • Molla KA, Karmakar S, Chanda PK, Ghosh S, Sarkar SN, Datta SK, Datta K (2013) Rice oxalate oxidase gene driven by green tissue-specific promoter increases tolerance to sheath blight pathogen (Rhizoctonia solani) in transgenic rice. Mol Plant Pathol 14(9):910–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molla KA, Karmakar S, Chanda PK, Sarkar SN, Datta SK, Datta K (2016) Tissue-specific expression of Arabidopsis NPR1 gene in rice for sheath blight resistance without compromising phenotypic cost. Plant Sci 250:105–114

    Article  CAS  PubMed  Google Scholar 

  • Molla KA, Yang Y (2019) CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends Biotechnol 37(10):1121–1142

    Article  CAS  PubMed  Google Scholar 

  • Molla KA, Azharudheen MTP, Ray S, Sarkar S, Swain A, Chakraborti M, Vijayan J, Singh ON, Baig MJ, Mukherjee AK (2019a) Novel biotic stress responsive candidate gene based SSR (cgSSR) markers from rice. Euphytica 215 (2). https://doi.org/10.1007/s10681-018-2329-6

  • Molla KA, Karmakar S, Molla J, Bajaj P, Varshney RK, Datta SK, Datta K (2019b) Understanding sheath blight resistance in rice: the road behind and the road ahead. Plant Biotechnol J 18 (4):895–915

    Google Scholar 

  • Molla KA, Shih J, Yang Y, (2020) Single-nucleotide editing for zebra3 and wsl5 phenotypes in rice using CRISPR/Cas9-mediated adenine base editors. aBIOTECH 1 (2):106–118

    Google Scholar 

  • Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326(5959):1501

    Article  CAS  PubMed  Google Scholar 

  • Nakai H, Nakamura K, Kuwahara S, Saito M (1998) Genetic studies of an induced rice mutant resistant to multiple races of bacterial leaf blight. Rice Genetics Newsletter 5:101–103

    Google Scholar 

  • Narayanan NN, Baisakh N, Oliva NP, VeraCruz CM, Gnanamanickam SS, Datta K, Datta SK (2004) Molecular breeding: marker-assisted selection combined with biolistic transformation for blast and bacterial blight resistance in Indica rice (cv. CO39). Mol Breed 14(1):61–71

    Article  CAS  Google Scholar 

  • Natarajkumar P, Sujatha K, Laha GS, Viraktamath BC, Reddy CS, Mishra B, Balachandran SM, Ram T, Srinivasarao K, Hari Y, Sundaram RM (2010) Identification of a dominant bacterial blight resistance gene from Oryza nivara and its molecular mapping. Rice Genetics Newsletter 25:54–56

    Google Scholar 

  • Noda T, Ohuchi A (1989) A new pathogenic race of Xanthomonas campestris pv. oryzae and inheritance of resistance of differential rice variety, Tetep to it. Ann Phytopathol Soc Jpn 55:201–207

    Article  Google Scholar 

  • Ogawa T, Kaku H, Yamamoto T (1989) Resistance gene of rice cultivar, Asaminori to bacterial blight of rice. Jpn J Breed 39(Suppl. 1):196–197

    Google Scholar 

  • Ogawa T, Morinaka T, Fujii K, Kimura T (1974) Inheritance of resistance of rice varieties of Kogyoku and Java14 to bacterial group V of Xanthomonas oryzae. Ann Phytopathol Soc Jpn 84:137–141

    Google Scholar 

  • Ogawa T, Yamamoto T (1986) Inheritance of resistance to bacterial blight in rice. In: Rice genetics. Proceedings of international rice genetics symposium. IRRI, Manila, Philippines, pp 471–480

    Google Scholar 

  • Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam DC, Undan J, Ito A, Sone T, Terauchi R (2011) A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J 66:467–479

    Article  CAS  PubMed  Google Scholar 

  • Oliva R, Ji C, Atienza-Grande G et al (2019) Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol 37(11):1344–1350. https://doi.org/10.1038/s41587-019-0267-z

  • Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252(5007):809–817

    Article  CAS  PubMed  Google Scholar 

  • Peters RJ (2006) Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynthesis in rice and other cereal crop plants. Phytochemistry 67(21):2307–2317

    Article  CAS  PubMed  Google Scholar 

  • Punja ZK (2006) Recent developments towards achieving fungal disease resistance in transgenic plants. Canadian Journal of Plant Pathology 28: S298-S308

    Google Scholar 

  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu SH, Liu GF, Zhou B, Bellizzi M, Zeng LR, Dai LY, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172:1901–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quilis J, Peñas G, Messeguer J, Brugidou C, Segundo BS (2008) The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice. Mol Plant-Microbe Interact 21(9):1215–1231

    Article  CAS  PubMed  Google Scholar 

  • Ram T, Laha GS, Gautam SK, Deen R, Madhav MS, Brar DS, Viraktamath BC (2010) Identification of a new gene introgressed from Oryza brachyantha with broad-spectrum resistance to bacterial blight of rice in India. Rice Genetics Newsletter 2(5):57

    Google Scholar 

  • Sakaguchi S (1967) Linkage studies on the resistance to bacterial leaf blight, Xanthomonas oryzae (Uyeda et Ishiyama) Dowson, in rice (in Japanese. English summary). Bull Natl Inst Agric Sci Ser D16:1–18

    Google Scholar 

  • Savary S, Willocquet L, Elazegui FA, Castilla NP, Teng PS (2000) Rice pest constraints in tropical Asia: quantification of yield losses due to rice pests in a range of production situations. Plant Dis 84(3):357–369

    Article  PubMed  Google Scholar 

  • Shang J, Tao Y, Chen X, Zou Y, Lei C, Wang J, Li X, Zhao X, Zhang M, Lu Z, Xu J, Cheng Z, Wan J, Zhu L (2009) Identification of a new rice blast resistance gene, Pid3, by genome wide comparison of paired nucleotide-binding site-leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics 182:1303–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao GN, Xie LH, Jiao GA, Wei XJ, Sheng ZH, Tang SQ, Hu PS (2017) CRISPR/CAS9-mediated editing of the fragrant gene Badh2 in rice. Chin J Rice Sci 31(2):216–222

    CAS  Google Scholar 

  • Shao M, Wang J, Dean RA, Lin Y, Gao X, Hu S (2008) Expression of a harpin-encoding gene in rice confers durable nonspecific resistance to Magnaporthe grisea. Plant Biotechnol J 6(1):73–81

    CAS  PubMed  Google Scholar 

  • Sharma A, Sharma R, Imamura M, Yamakawa M, Machii H (2000) Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice. FEBS Lett 484(1):7–11

    Article  CAS  PubMed  Google Scholar 

  • Sharma TR, Madhav MS, Singh BK, Shanker P, Jana TK, Dalal V, Pandit A, Singh A, Gaikwad K, Upreti HC, Singh NK (2005) High-resolution mapping, cloning and molecular characterization of the Pi-kh gene of rice, which confers resistance to Magnaporthe grisea. Mol Gen Genomics 274:569–578

    Article  CAS  Google Scholar 

  • Sharma TR, Rai AK, Gupta SK, Singh NK (2010) Broad spectrum blast resistance gene Pi-kh cloned from rice line Tetep designated as Pi54. J Plant Biochem Biotechnol 19:87–89

    Article  CAS  Google Scholar 

  • Shen L, Hua Y, Fu Y, Li J, Liu Q, Jiao X, Xin G, Wang J, Wang X, Yan C, Wang K (2017) Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Sci China Life Sci 60(5):506–515

    Article  CAS  PubMed  Google Scholar 

  • Sidhu GS, Khush GS, Mew TW (1978) Genetic analysis of bacterial blight resistance to seventy-four cultivars of rice Oryza sativa L. Theor Appl Genet 53:105–111

    Article  CAS  PubMed  Google Scholar 

  • Singh RJ, Khush GS, Mew TW (1983) A new gene for resistance to bacterial blight in rice. Crop Sci 23:558–560

    Article  Google Scholar 

  • Song WY, Wang GL, Chen L, Kim HS, Holsten T, Wang B, Zhai W, Zhu LH, Fauquet C, Ronald PC (1995) The rice disease resistance gene, Xa-21, encodes a receptor kinase-like protein. Science 270:1804–1806

    Article  CAS  PubMed  Google Scholar 

  • Sridevi G, Parameswari C, Sabapathi N, Raghupathy V, Veluthambi K (2008) Combined expression of chitinase and β-1, 3-glucanase genes in indica rice (Oryza sativa L.) enhances resistance against Rhizoctonia solani. Plant Sci 175(3):283–290

    Article  CAS  Google Scholar 

  • Takagi H, Uemura A, Yaegashi H, Tamiru M, Abe A, Mitsuoka C, Utsushi H, Natsume S, Kanzaki H, Matsumura H, Saitoh H, Yoshida K, Cano LM, Kamoun S, Terauchi R (2013) MutMap-gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol 200:276–283

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Hayashi N, Miyao A, Hirochika H (2010) Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol 10:175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takakura Y, Che FS, Ishida Y, Tsutsumi F, Kurotani KI, Usami S, Isogai A, Imaseki H (2008) Expression of a bacterial flagellin gene triggers plant immune responses and confers disease resistance in transgenic rice plants. Mol Plant Pathol 9(4):525–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tam JP, Lu YA, Yang JL, Chiu KW (1999) An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proc Natl Acad Sci 96(16):8913–8918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan GX, Ren X, Weng QM, Shi ZY, Zhu LL, He GC (2004) Mapping of a new resistance gene to bacterial blight in rice line introgressed from O. officinalis. J Genet Genomics = Yi ChuanXue Bao 3(1):724–729

    Google Scholar 

  • Taura S, Ogawa T, Tabien RE, Khush GS, Yoshimura A, Omura T (1987) The specific reaction of Taichung Native 1 to Philippine races of bacterial blight and inheritance of resistance to race 5 (Pxo112). Rice Genetics Newsletter 4:101–102

    Google Scholar 

  • Taura S, Ogawa T, Yoshimura A, Ikeda R, Iwata N (1992) Identification of a recessive resistance gene to rice bacterial blight of mutant line XM6, Oryza sativa L. Jpn J Breed 42(1):7–13

    Article  CAS  Google Scholar 

  • Taura S, Ogawa T, Yoshimura A, Ikeda R, Omura T (1991) Identification of a recessive resistance gene in induced mutant line XM5 of rice to bacterial blight. Jpn J Breed 4:427–432

    Article  Google Scholar 

  • van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  CAS  Google Scholar 

  • Vikal Y, Bhatia D (2017) Genetics and genomics of bacterial blight resistance in rice. In: Li J (ed) Advances in international rice research. INTECH, China, pp 175–213

    Google Scholar 

  • Vikal Y, Chawla H, Sharma R, Lore JS, Singh K (2014) Mapping of bacterial blight resistance gene xa8 in rice (Oryza sativa L.). Indian J Genet Plant Breed 74:589–595

    Article  Google Scholar 

  • Wang B-h, Ebbole DJ, Wang Z-h (2017) The arms race between Magnaporthe oryzae and rice: diversity and interaction of Avr and R genes. J Integr Agric 16(12):2746–2760

    Article  Google Scholar 

  • Wang CT, Wen GS, Lin XH, Liu XQ, Zhang DP (2009) Identification and fine mapping of the new bacterial blight resistance gene, Xa31(t), in rice. Eur J Plant Pathol 23:235–240

    Article  CAS  Google Scholar 

  • Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11(4):e0154027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Z, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19:55–64

    Article  PubMed  Google Scholar 

  • Xiang Y, Cao Y, Xu C, Li X, Wang S (2006) Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theor Appl Genet 113:1347–1355

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Hayashi N, Wang CT, Fukuoka S, Kawasaki S, Takatsuji H, Jiang CJ (2014) Rice blast resistance gene Pikahei-1(t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein. Mol Breed 34:691–700

    Article  CAS  Google Scholar 

  • Yang B, Sugio A, White FF (2006) Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci 103(27):10503–10508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yara A, Yaeno T, Hasegawa M, Seto H, Montillet JL, Kusumi K, Seo S, Iba K (2007) Disease resistance against Magnaporthe grisea is enhanced in transgenic rice with suppression of ω-3 fatty acid desaturases. Plant Cell Physiol 48(9):1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Yara A, Yaeno T, Hasegawa M, Seto H, Seo S, Kusumi K, Iba K (2008) Resistance to Magnaporthe grisea in transgenic rice with suppressed expression of genes encoding allene oxide cyclase and phytodienoic acid reductase. Biochem Biophys Res Commun 376(3):460–465

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z, Kono I, Kurata N, Yano M, Iwata N, Sasaki T (1998) Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA 95:1663–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimura S, Yoshimura A, Iwata N, McCouch S, Abenes M, Baraoidan M, Mew TW, Nelson RJ (1995) Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Mol Breed 1:375–387

    Article  CAS  Google Scholar 

  • Yuan B, Zhai C, Wang WJ, Zeng XS, Xu XK, Hu HQ, Lin F, Wang L, Pan QH (2011) The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet 122:1017–1028

    Article  PubMed  Google Scholar 

  • Yuan Y, Zhong S, Li Q, Zhu Z, Lou Y, Wang L, Wang J, Wang M, Li Q, Yang D, He Z (2007) Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J 5(2):313–324

    Article  CAS  PubMed  Google Scholar 

  • Zhai C, Lin F, Dong ZQ, He XY, Yuan B, Zeng XS, Wang L, Pan QH (2011) The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol 189:321–334

    Article  CAS  PubMed  Google Scholar 

  • Zhai C, Zhang Y, Yao N, Lin F, Liu Z, Dong Z, Wang L, Pan Q (2014) Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance. PLoS One 9:e98067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang F, Zhuoa DL, Zhang F, Huang LY, Wang WS, Xu JL, Vera Cruz C, Li ZK, Zhou YL (2014) Xa39, a novel dominant gene conferring broad-spectrum resistance to Xanthomonas oryzaepv. oryzae in rice. Plant Pathol 64:568–575

    Article  CAS  Google Scholar 

  • Zhang Q, Lin SC, Zhao BY, Wang CL, Yang WC, Zhou YI, Li DY, Chen CB, Zhu LH (1998) Identification and tagging a new gene for resistance to bacterial blight (Xanthomonas oryzae pv. oryzae) from O. rufipogon. Rice Genetics Newsletter 15:138

    Google Scholar 

  • Zheng CK, Wang CL, Yu YJ, Liang YT, Zhao KJ (2009) Identification and molecular mapping of Xa32(t), a novel resistance gene for bacterial blight (Xanthomonas oryzae pv. oryzae) in rice. Acta Agronomica Sinica 35:1173–1180

    CAS  Google Scholar 

  • Zhou B, Qu SH, Liu GF, Dolan M, Sakai H, Lu GD, Bellizzi M, Wang GL (2006) The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant-Microbe Interact 19:1216–1228

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom JS, Huang S, Liu S, Vera Cruz C, Frommer WB, White FF (2015) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J 82(4):632–643

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Xu X, Xiao G, Yuan L, Li B (2007) Enhancing disease resistances of super hybrid rice with four antifungal genes. Sci China Ser C Life Sci 50(1):31–39

    Article  CAS  Google Scholar 

  • Zhu X, Chen S, Yang J, Zhou S, Zeng L, Han J, Su J, Wang L, Pan Q (2012) The identification of Pi50 (t), a new member of the rice blast resistance Pi2/Pi9 multigene family. Theor Appl Genet 124:1295–1304

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karmakar, S., Molla, K.A., Molla, J. (2020). Genetic Engineering and Genome Editing Strategies to Enhance Diseases Resistance of Rice Plants: A Review of Progress and Future Prospects. In: Roychoudhury, A. (eds) Rice Research for Quality Improvement: Genomics and Genetic Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-5337-0_2

Download citation

Publish with us

Policies and ethics