Skip to main content
Log in

Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Cecropins are a family of antimicrobial peptides, which constitute an important key component of the immune response in insects. Here, we demonstrate that transgenic rice (Oryza sativa L.) plants expressing the cecropin A gene from the giant silk moth Hyalophora cecropia show enhanced resistance to Magnaporthe grisea, the causal agent of the rice blast disease. Two plant codon-optimized synthetic cecropin A genes, which were designed either to retain the cecropin A peptide in the endoplasmic reticulum, the ER-CecA gene, or to secrete cecropin A to the extracellular space, the Ap-CecA gene, were prepared. Both cecropin A genes were efficiently expressed in transgenic rice. The inhibitory activity of protein extracts prepared from leaves of cecropin A-expressing plants on the in vitro growth of M. grisea indicated that the cecropin A protein produced by the transgenic rice plants was biologically active. Whereas no effect on plant phenotype was observed in ER-CecA plants, most of the rice lines expressing the Ap-CecA gene were non-fertile. Cecropin A rice plants exhibited resistance to rice blast at various levels. Transgene expression of cecropin A genes was not accompanied by an induction of pathogenesis-related (PR) gene expression supporting that the transgene product itself is directly active against the pathogen. Taken together, the results presented in this study suggest that the cecropin A gene, when designed for retention of cecropin A into the endoplasmic reticulum, could be a useful candidate for protection of rice plants against the rice blast fungus M. grisea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ER:

endoplasmic reticulum

ICF:

intercellular fluid

PR:

pathogenesis related

References

  • Alberola J, Rodrigued A, Francino O, Roura X, Rivas L, Andreu D (2004) Safety and efficacy of antimicrobial peptides against naturally acquired leishmaniasis. Antimicrob Agents Chemother 48:641–643

    Article  PubMed  CAS  Google Scholar 

  • Allefs S, Florack DEA, Hoogendoorn C, Stiekema WJ (1995) Erwinia soft rot resistance of potato cultivars transformed with a gene construct coding for antimicrobial peptide cecropin B is not altered. Am Potato J 72:437–445

    CAS  Google Scholar 

  • Bohlmann H (1999) The role of thionins in the resistance of plants. In: Datta SK, Muthudrishan S (eds) Pathogenesis-related proteins in plants. CRC Press, New York, pp 207–234

    Google Scholar 

  • Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13:61–92

    Article  PubMed  CAS  Google Scholar 

  • Boman HG, Steiner H (1981) Humoral immunity in Cecropia pupae. Curr Topics Microbiol Immunol 94:75–91

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quentification of microgram quantities utilizing the principle of protein-dye binding. Ann Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Broekaert WF, Terras FRG, Cammue BP, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108:1353–1358

    Article  PubMed  CAS  Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressman R, Riddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA 95:6532–6536

    Google Scholar 

  • Castro MS, Fontes W (2005) Plant defense and antimicrobial peptides. Protein and Peptide Lett 12:13–18

    CAS  Google Scholar 

  • Cavallarin L, Andreu D, San Segundo B (1998) Cecropin A-derived peptides are potent inhibitors of fungal plant pathogens. Mol Plant-Microbe Interact 11:218–227

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Scharrock RA, Quail PJ (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter based vectors for high level expression of selectable and/or screenable marker genes in monocotyledoneus plants. Transgenic Res 5:216–218

    Article  Google Scholar 

  • Christensen B, Fink J, Merrifield RB, Mauzerall D (1988) Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc Natl Acad Sci USA 85:5072–5076

    Article  PubMed  CAS  Google Scholar 

  • Coca M, Bortolotti C, Rufat M, Peñas G, Eritja R, Tharreau D, Martinez del Pozo A, Messeguer J, San Segundo B (2004) Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol Biol 54:245–259

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen BJC, Horowitz J, van Kan JAL, Goldberg RB, Bol JF (1987) Structure of tobacco genes encoding pathogenesis-related proteins from the PR-1 group. Nucl Acid Res 15:6799–6811

    Article  CAS  Google Scholar 

  • Datta S, Muthukrisnan S, Datta SK (1999) Expression and function of PR proteins in transgenic plants. In: Datta SK, Muthudrishan S (eds) Pathogenesis-related proteins in plants. CRC Press, New York, pp 261–277

    Google Scholar 

  • Florack D, Allefs S, Bollen R, Bosch D, Visser B, Stiekema W (1995) Expression of giant silkmoth cecropin B genes in tobacco. Transgenic Res 4:132–141

    Article  PubMed  CAS  Google Scholar 

  • Hightower R, Baden C, Penzes E, Dunsmuir P (1994) The expression of cecropin peptide in transgenic tobacco does not confer resistance to Pseudomonas syringae pv tabaci. Plant Cell Rep 13:295–299

    Article  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Huang Y, Nordeen RO, Di M, Owens LD, McBeath JH (1997) Expression of an engineered cecropin gene cassette in transgenic tobacco plants confers disease resistance to Pseudomonas syringae pv. tabaci. Phytopathology 87:494–499

    Article  CAS  PubMed  Google Scholar 

  • Iwai H, Nakajima Y, Natori S, Arata Y, Shimada I (1993) Solution conformation of an antibacterial peptide, sarcotoxin IA, as determined by 1H-NMR. Eur J Biochem 217:639–644

    Article  PubMed  CAS  Google Scholar 

  • Jach G, Gornhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8:97–103

    Article  PubMed  CAS  Google Scholar 

  • Jaynes JM, Burton CA, Barr SB, Jeffers GW, Julian GR, White KL, Enright FM, Klei TR, Laine RA (1988) In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum and Trypanosoma cruzi. FASEB J 2:2878–2883

    PubMed  CAS  Google Scholar 

  • Jaynes JM, Nagpala P, Destéfano-Beltrán L, Huang J-H, Kim J, Denny T, Cetiner S (1993) Expression of a cecropin B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas solanacearum. Plant Sci 89:43–53

    Article  CAS  Google Scholar 

  • Liu Q, Feng Y, Zhao X, Dong H, Xue Q (2004) Synonymous codon usage bias in Oryza sativa. Plant Sci 167:101–105

    Article  CAS  Google Scholar 

  • Logeman J, Schell J, Willmitzer L (1987) Improved method for the isolation of RNA from plant tissues. Ann Biochem 163:16–20

    Article  Google Scholar 

  • Lorito M, Woo SL, García-Fernandez I, Colucci G, Harman GE, Pintor-Toro JA, Filippone E, Muccifora S, Lawrence CB, Zoina A, Tuzun S, Scala F (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA 95:7860–7865

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Shulaev V, Lam E (1995) Coordinated activation of programmed cell death and defense mechanisms in transgenic tobacco platns expressing a bacterial proton pump. Plant Cell 7:29–42

    Article  PubMed  CAS  Google Scholar 

  • Mills D, Hammerschlag FA (1993) Effect of cecropin B on peach pathogens, protoplasts, and cells. Plant Sci 93:143–150

    Article  CAS  Google Scholar 

  • Mills D, Hammerschlag FA, Nordeen RO, Owens LD (1994) Evidence for the breakdown of cecropin B by proteinases in the intercellular fluid of peach leaves. Plant Sci 104:17–22

    Article  CAS  Google Scholar 

  • Mitsuhara I, Matsufuru H, Ohshima M, Kaku H, Nakajima Y, Murai N, Natori S, Ohashi Y (2000) Induced expression of sarcotoxin IA enhanced host resistance against both bacterial and fungal pathogens in transgenic tobacco. Mol Plant-Microbe Interact 13:860–868

    Article  PubMed  CAS  Google Scholar 

  • Molina A, Ahl Goy P, Fraile A, Sánchez-Monje R, García-Olmedo F (1993) Inhibition of bacterial and fungal plant pathogens by thionins types I and II. Plant Sci 92:169–177

    Article  CAS  Google Scholar 

  • Moreno AB, Martinez del Pozo A, Borja M, San Segundo B (2003) Activity of the antifungal protein from Aspergillus giganteus against Botrytis cinerea. Phytopathology 93:1344–1353

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acid Res 8:4321–4325

    Article  CAS  Google Scholar 

  • Nordeen RO, Sinden SL, Jaynes JM, Owens LD (1992) Activity of cecropin SB37 against protoplasts from several plant species and their bacterial pathogens. Plant Sci 82:101–107

    Article  CAS  Google Scholar 

  • Osusky M, Zhou G, Osuska L, Hancock E, Kay WW, Misra S (2000) Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nature Biotechnol 18:1162–1166

    Article  CAS  Google Scholar 

  • Osusky M, Osuska L, Hancock RE, Kay WW, Misra S (2004) Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgenic Res 13:181–190

    Article  PubMed  CAS  Google Scholar 

  • Ou SH (1985) Rice Diseases, second edition, Commonwealth Mycological Institute, Kew, England

    Google Scholar 

  • Owens LD, Heutte TM (1997) A single amino acid substitution in the antimicrobial defense protein cecropin B is associated with diminished degradation by leaf intercellular fluid. Mol Plant-Microbe Interact 10:525–528

    Article  PubMed  CAS  Google Scholar 

  • Pons MJ, Marfà V, Melé E, Messeguer J (2000) Regeneration and genetic transformation of Spanish rice cultivars using mature embryos. Euphytica 114:117–122

    Article  Google Scholar 

  • Prodromou Ch, Pearl LH (1992) Recursive PCR: a novel technique for total gene synthesis. Protein Eng 5:827–829

    Article  PubMed  Google Scholar 

  • Rao AG (1995) Antimicrobial peptides. Mol Plant-Microbe Interact 8:6–13

    PubMed  CAS  Google Scholar 

  • Reed WA, Elzer PH, Enright FM, Jaynes JM, Morrey JD, White KL (1997) Interleukin 2 promoter/enhancer controlled expression of a synthetic cecropin-class lytic peptide in transgenic mice and subsequent resistance to Brucella abortus. Transgenic Res 6:337–347

    Article  PubMed  CAS  Google Scholar 

  • Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Ann Biochem 166:368–379

    Article  Google Scholar 

  • Sharma A, Sharma R, Imamura M, Yamakawa M, Machii H (2000) Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice. FEBS Lett 484:7–11

    Article  PubMed  CAS  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion and desestabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochem Biophys Acta 1462:55–70

    Article  PubMed  CAS  Google Scholar 

  • Silvestro L, Axelsen PH (2000) Membrane-induced folding of cecropin A. Biophys J 79:1465–1477

    Article  PubMed  CAS  Google Scholar 

  • Steiner H, Hultmark D, Engström A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248

    Article  PubMed  CAS  Google Scholar 

  • Steiner H, Andreu D, Merrifield RB (1988) Binding and action of cecropin and cecropin analogs: antibacterial peptides from insects. Biochim Biophys Acta 939:260–266

    Article  PubMed  CAS  Google Scholar 

  • Vila L, Lacadena V, Fontanet P, Martinez del Pozo A, San Segundo B (2001) A protein from the mold Aspergillus giganteus is a potent inhibitor of fungal plant pathogens. Mol Plant-Microbe Interact 14:1327–1331

    Article  PubMed  CAS  Google Scholar 

  • Zhu Q, Maher EA, Masoud S, Dixon RA, Lamb CJ (1994) Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/Technology 12:807–812

    Article  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

María Coca is a researcher from the Ministerio de Educación y Ciencia (Ramón y Cajal). Gisela Peñas is a recipient of a predoctoral fellowship from the Generalitat de Catalunya. We thank Dr U. Schaffrath for providing us with the PR1a rice cDNA probe. We are grateful to A.B. Moreno and M. Rufat for their collaboration in parts of this work and to P. Fontanet for taking care of the greenhouse plants. We also acknowledge Dr. R. Eritja for synthesis of oligonucleotides and Dr. D. Tharreau for providing us with the M. grisea PR9 isolate. This research was supported by the European Commission (QLRT-CT99-1484, EURICE) and by the Ministerio de Ciencia y Tecnologia (BIO2003-04936-C02). We also thank the “Centre de Referència en Biotecnología” (CeRBa) for substantial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Coca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coca, M., Peñas, G., Gómez, J. et al. Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta 223, 392–406 (2006). https://doi.org/10.1007/s00425-005-0069-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0069-z

Keywords

Navigation