Skip to main content

Microbial Production of Functional Organic Acids

  • Chapter
  • First Online:
Systems and Synthetic Biotechnology for Production of Nutraceuticals
  • 641 Accesses

Abstract

As the low-molecular-weight organic compounds, organic acids, such as malate, alpha-ketoglutaric acid, citrate, and so on, have been applied in a wide range of industries, including food, cosmetic, detergent, pharmaceutical, polymer, and textile. Throughout the past century, a variety of valuable chemicals derived mainly from fossil resources have been introduced, and the market for these products continues to grow. However, public concerns over environmental pollution, greenhouse gas emissions, and the shortage of raw oils are increasing, and attention is turning to alternative, renewable sources of chemical products to reduce both dependency on oil reserves and carbon dioxide emissions into the environment. Most organic acids are intermediates in the metabolic pathways that occur naturally in microorganisms, can be used as substitutes for these products. This chapter mainly introduces the synthesis methods, strategies and research progress of citric acid, alpha-ketoglutaric acid, succinic acid, malic acid and other organic acids, especially the application of metabolic engineering, microbial fermentation and biotransformation in the synthesis of various organic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeoye AO, Lateef A, Gueguim-Kana EB. Optimization of citric acid production using a mutant strain of Aspergillus niger on cassava peel substrate. Biocatal Agric Biotechnol. 2015;4:568–74.

    Article  Google Scholar 

  • Ahn JH, Jang YS, Lee SY. Production of succinic acid by metabolically engineered microorganisms. Curr Opin Biotechnol. 2016;42:54–66.

    Article  CAS  PubMed  Google Scholar 

  • Andersen MR, Lehmann L, Nielsen J. Systemic analysis of the response of Aspergillus niger to ambient pH. Genome Biol. 2009;10:R47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen MR, Salazar MP, Schaap PJ, van de Vondervoort PJ, Culley D, Thykaer J, et al. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res. 2011;21:885–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aramaki K, Ogawa A, Tsukahara M, Kunieda H. Formation of microemulsions in aqueous NaCl/sodium (3-dodecanoyloxy-2-hydroxy-propyl) succinate/glycerol mono (2-ethylhexyl) ether/oil systems. J Dispers Sci Technol. 2002;23:29–36.

    Article  Google Scholar 

  • Arisan-Atac I, Wolschek MF, Kubicek CP. Trehalose-6-phosphate synthase A affects citrate accumulation by Aspergillus niger under conditions of high glycolytic flux. FEMS Microbiol Lett. 1996;140:77–83.

    Article  CAS  PubMed  Google Scholar 

  • Arslan D, Steinbusch KJJ, Diels L, De Wever H, Buisman CJN, Hamelers HVM. Effect of hydrogen and carbon dioxide on carboxylic acids patterns in mixed culture fermentation. Bioresour Technol. 2012;118:227–34.

    Article  CAS  PubMed  Google Scholar 

  • Asai T, Aida K, Sugisaki Z, Yakeishi N. On α-ketoglutaric acid fermentation. J Gen Appl Microbiol. 1955;1(4):308–46.

    Article  CAS  Google Scholar 

  • Bari MN, Alam MZ, Muyibi SA, Jamal P, Abdullah AM. Improvement of production of citric acid from oil palm empty fruit bunches: optimization of media by statistical experimental designs. Bioresour Technol. 2009;100:3113–20.

    Article  CAS  PubMed  Google Scholar 

  • Barrett DG, Yousaf MN. Poly (triol alpha-ketoglutarate) as biodegradable, chemoselective, and mechanically tunable elastomers. Macromolecules. 2008;41(17):6347–52.

    Article  CAS  Google Scholar 

  • Battat E, Peleg Y, Bercovitz A, Rokem JS, Goldberg I. Optimization of L-malic acid production by Aspergillus flavus in a stirred fermentor. Biotechnol Bioeng. 1991;37:1108–16.

    Article  CAS  PubMed  Google Scholar 

  • Becker J, Wittmann C. Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem Int Ed. 2015;54(11):3328–50.

    Article  CAS  Google Scholar 

  • Becker J, Lange A, Fabarius J, Wittmann C. Top value platform chemicals: bio-based production of organic acids. Curr Opin Biotechnol. 2015;36:168–75.

    Article  CAS  PubMed  Google Scholar 

  • Betiku E, Adesina OA. Statistical approach to the optimization of citric acid production using filamentous fungus Aspergillus niger grown on sweet potato starch hydrolyzate. Biomass Bioenergy. 2013;55:350–4.

    Article  CAS  Google Scholar 

  • Bradfield MF, Nicol W. Continuous succinic acid production from xylose by Actinobacillus succinogenes. Bioprocess Biosyst Eng. 2016;39(2):233–44.

    Article  CAS  PubMed  Google Scholar 

  • Bradfield MFA, Mohagheghi A, Salvachúa D, Smith H, Black BA, Dowe N, Beckham GT, Nicol W. Continuous succinic acid production by Actinobacillus succinogenes on xylose-enriched hydrolysate. Biotechnol Biofuels. 2015;8(1):181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown SH, Bashkirova L, Berka R, Chandler T, Doty T, McCall K, McCulloch M, McFarland S, Thompson S, Yaver D, Berry A. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid. Appl Microbiol Biotechnol. 2013;97(20):8903–12.

    Article  CAS  PubMed  Google Scholar 

  • Brunhuber NMW, Thoden JB, Blanchard JS, Vanhooke JL. Rhodococcus L-phenylalanine dehydrogenase: kinetics, mechanism, and structural basis for catalytic specifity. Biochemistry. 2000;39(31):9174–87.

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Wang Y, Luo J, Yin J, Xing J, Wan Y. Succinic acid biosynthesis from cane molasses under low pH by Actinobacillus succinogenes immobilized in luffa sponge matrices. Bioresour Technol. 2018;268:45–51.

    Article  CAS  PubMed  Google Scholar 

  • Capuder M, Solar T, Bencina M, Legisa M. Highly active, citrate inhibition resistant form of Aspergillus niger 6-phosphofructo-1-kinase encoded by a modified pfkA gene. J Biotechnol. 2009;144:51–7.

    Article  CAS  PubMed  Google Scholar 

  • Carsanba E, Papanikolaou S, Fickers P, Erten H. Screening various Yarrowia lipolytica strains for citric acid production. Yeast. 2019; https://doi.org/10.1002/yea.3389.

  • Carvalho M, Roca C, Reis MAM. Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods. Bioresour Technol. 2016;218:491–7.

    Article  CAS  PubMed  Google Scholar 

  • Cavallo E, Charreau H, Cerrutti P, Foresti ML. Yarrowia lipolytica: a model yeast for citric acid production. FEMS Yeast Res. 2017;17(8)

    Google Scholar 

  • Chen X, Xu G, Xua N, Zou W, Zhu P, Liu L, Chen J. Metabolic engineering of Torulopsis glabrata for malateproduction. Metab Eng. 2013;19:10–6.

    Article  CAS  PubMed  Google Scholar 

  • Chen H, He X, Geng H, Liu H. Physiological characterization of ATP-citrate lyase in Aspergillus niger. J Ind Microbiol Biotechnol. 2014a;41:721–31.

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Ding S, Wang D, Li Z, Ye Q. Simultaneous saccharification and fermentation of cassava to succinic acid by Escherichia coli NZN111. Bioresour Technol. 2014b;163:100–5.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wu J, Song W, Zhang L, Wang H, Liu L. Fumaric acid production by Torulopsis glabrata: engineering the urea cycle and the purine nucleotide cycle. Biotechnol Bioeng. 2015;112(1):156–67.

    Article  CAS  PubMed  Google Scholar 

  • Chen PC, Zheng P, Ye XY, Ji F. Preparation of a. succinogenes immobilized microfiber membrane for repeated production of succinic acid. Enzym Microb Technol. 2017a;98:34–42.

    Article  CAS  Google Scholar 

  • Chen X, Wang Y, Dong X, Hu G, Liu L. Engineering rTCA pathway and C4-dicarboxylate transporter for l-malic acid production. Appl Environ Microbiol. 2017b;101:4041–52.

    CAS  Google Scholar 

  • Chernyavskaya OG, Shishkanova NV, Finogenova TV. Biosynthesis of α-ketoglutaric acid from ethanol by yeasts. Appl Microbiol Biotechnol. 1997;33(2):261–5.

    Google Scholar 

  • Chernyavskaya O, Shishkanova N, Il’chenko A, Finogenova T. Synthesis of α-ketoglutaric acid by Yarrowia lipolytica yeast grown on ethanol. Appl Microbiol Biotechnol. 2000;53(2):152–8.

    Article  CAS  PubMed  Google Scholar 

  • Chi Z, Wang ZP, Wang GY, Khan I, Chi ZM. Microbial biosynthesis and secretion of l-malic acid and its applications. Crit Rev Biotechnol. 2016a;36(1):99–107.

    Article  CAS  PubMed  Google Scholar 

  • Chi Z, Liu GL, Liu CG, Chi ZM. Poly (β-l-malic acid) (PMLA) from Aureobasidium spp. and its current proceedings. Appl Environ Microbiol. 2016b;100:3841–51.

    CAS  Google Scholar 

  • Dai Z, Mao X, Magnuson JK, Lasure LL. Identification of genes associated with morphology in Aspergillus niger by using suppression subtractive hybridization. Appl Environ Microbiol. 2004;70:2474–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta R, Henry M. Lactic acid: recent advances in products, processes and technologies—a review. J Chem Technol Biotechnol. 2006;81(7):1119–29.

    Article  CAS  Google Scholar 

  • de Jongh WA, Nielsen J. Enhanced citrate production through gene insertion in Aspergillus niger. Metab Eng. 2008;10:87–96.

    Article  CAS  PubMed  Google Scholar 

  • Demirel G, YaykaÅŸlı KO, YaÅŸar A. The production of citric acid by using immobilized Aspergillus niger A-9 and investigation of its various effects. Food Chem. 2005;89:393–6.

    Article  CAS  Google Scholar 

  • Dessie W, Xin F, Zhang W, Jiang Y, Wu H, Ma J, Jiang M. Opportunities, challenges, and future perspectives of succinic acid production by Actinobacillus succinogenes. Appl Microbiol Biotechnol. 2018;102(23):9893–910.

    Article  CAS  PubMed  Google Scholar 

  • Dhillon GS, Brar SK, Verma M, Tyagi RD. Apple pomace ultrafiltration sludge – a novel substrate for fungal bioproduction of citric acid: optimisation studies. Food Chem. 2011;128:864–71.

    Article  CAS  Google Scholar 

  • Dong X, Chen X, Qian Y, Wang Y, Wang L, Qiao W, Liu L. Metabolic engineering of Escherichia coli W3110 to produce L-malate. Biotechnol Bioeng. 2017;114:656–64.

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Yang J, Li X, Guo M, Wang B, Yang ST, Zou X. Reconstruction of a genome-scale metabolic model and in silico analysis of the polymalic acid producer Aureobasidium pullulans CCTCC M2012223. Gene. 2017;607:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Finogenova TV, Morgunov IG, Kamzolova SV, Chernyavskaya OG. Organic acid production by the yeast Yarrowia lipolytica: a review of prospects. Appl Biochem Microbiol. 2005;41(5):418–25.

    Article  CAS  Google Scholar 

  • Förster A, Jacobs K, Juretzek T, Mauersberger S, Barth G. Overexpression of the ICL1 gene changes the product ratio of citric acid production by Yarrowia lipolytica. Appl Microbiol Biotechnol. 2017;77:861–9.

    Article  CAS  Google Scholar 

  • Fu GY, Lu Y, Chi Z, Liu GL, Zhao SF, Jiang H, et al. Cloning and characterization of a pyruvate carboxylase gene from Penicillium rubens and overexpression of the genein the yeast Yarrowia lipolytica for enhanced citric acid production. Mar Biotechnol (NY). 2016;18:1–14.

    Article  CAS  Google Scholar 

  • Fu H, Yang ST, Wang M, Wang J, Tang IC. Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing xylose catabolism genes for glucose and xylose co-utilization. Bioresour Technol. 2017;234:389–96.

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Yang X, Wang H, Rivero CP, Li C, Cui Z, et al. Robust succinic acid production from crude glycerol using engineered yarrowia lipolytica. Biotechnol Biofuels. 2016;9(1):179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grobler J, Bauer F, Subden RE, Van Vuuren HJ. The mae1 gene of Schizosaccharomyces pombe encodes apermease for malate and other C4 dicarboxylicacids. Yeast. 1995;11:1485–91.

    Article  CAS  PubMed  Google Scholar 

  • Guarnieri MT, Chou YC, Salvachúa D, Mohagheghi A, St. John PC, Peterson DJ, Bomble YJ, Beckham GT. Metabolic engineering of Actinobacillus succinogenes provides insights into succinic acid biosynthesis. Appl Environ Microbiol. 2017;83(17):e00996–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guettler MV, Rumler D, Jain MK. Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. Int J Syst Evol Microbiol. 1999;49:207–16.

    CAS  Google Scholar 

  • Hattori T, Kino K, Kirimura K. Regulation of alternative oxidase at the transcription stage in Aspergillus niger under the conditions of citric acid production. Curr Microbiol. 2009;58:321–5.

    Article  CAS  PubMed  Google Scholar 

  • Holz M, André F, Mauersberger S, Barth G. Aconitase overexpression changes the product ratio of citric acid production by Yarrowia lipolytica. Appl Microbiol Biotechnol. 2009;81:1087–96.

    Article  CAS  PubMed  Google Scholar 

  • Hossain GS, Li J, Shin HD, Liu L, Wang M, Du G, Chen J. Improved production of α-ketoglutaric acid (α-KG) by a Bacillus subtilis whole-cell biocatalyst via engineering of l-amino acid deaminase and deletion of the α-KG utilization pathway. J Biotechnol. 2014;187:71–7.

    Article  CAS  PubMed  Google Scholar 

  • Hossain GS, Shin HD, Li J, Wang M, Du G, Liu L, Chen J. Integrating error-prone PCR and DNA shuffling as an effective molecular evolution strategy for the production of α-ketoglutaric acid by l-amino acid deaminase. RSC Adv. 2016;6(52):46149–58.

    Article  CAS  Google Scholar 

  • Hou L, Liu L, Zhang H, Zhang L, Zhang L, Zhang J, et al. Functional analysis of the mitochondrial alternative oxidase gene (aox1) from Aspergillus niger CGMCC 10142 and its effects on citric acid production. Appl Microbiol Biotechnol. 2018;102:7981–95.

    Article  CAS  PubMed  Google Scholar 

  • Il’Chenko AP, Chernyavskaya OG, Shishkanova NV, Finogenova TV. Metabolism of Yarrowia lipolytica grown on ethanol under conditions promoting the production of α-ketoglutaric and citric acids: a comparative study of the central metabolism enzymes. Microbiology. 2002;71(3):269–74.

    Article  Google Scholar 

  • Imandi SB, Bandaru VV, Somalanka SR, Bandaru SR, Garapati HR. Application of statistical experimental designs for the optimization of medium constituents for the production of citric acid from pineapple waste. Bioresour Technol. 2008;99:4445–50.

    Article  CAS  PubMed  Google Scholar 

  • Isar J, Agarwal L, Saran S, Saxena RK. A statistical method for enhancing the production of succinic acid from Escherichia coli under anaerobic conditions. Bioresour Technol. 2006;97(13):1443–8.

    Article  CAS  PubMed  Google Scholar 

  • Jamalzadeh E, Verheijen PJ, Heijnen JJ, Van Gulik WM. pH-dependent uptake of fumaric acid in Saccharomyces cerevisiae under anaerobic conditions. Appl Environ Microbiol. 2012;78:705–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang YS, Sang YL. Metabolic engineering of Clostridium acetobutylicum, for highly selective butyric acid production. New Biotechnol. 2014;31(11):S161.

    Article  Google Scholar 

  • Jantama K, Haupt MJ, Svoronos SA, Zhang X, Moore JC, Shanmugam KT, Ingram LO. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol Bioeng. 2008;99:1140–53.

    Article  CAS  PubMed  Google Scholar 

  • Kadooka C, Izumitsu K, Onoue M, Okutsu K, Yoshizaki Y, Takamine K, et al. Mitochondrial citrate transporters CtpA and YhmA are required for extracellular citric acid accumulation and contribute to cytosolic acetyl coenzyme a generation in Aspergillus luchuensis mut. kawachii. Appl Environ Microbiol. 2019;85(8)

    Google Scholar 

  • Karthikeyan A, Sivakumar N. Citric acid production by Koji fermentation using banana peel as a novel substrate. Bioresour Technol. 2010;101:5552–6.

    Article  CAS  PubMed  Google Scholar 

  • Kirimura K, Kobayashi K, Ueda Y, Hattori T. Phenotypes of gene disruptants in relation to a putative mitochondrial malate-citrate shuttle protein in citric acid-producing Aspergillus niger. Biosci Biotechnol Biochem. 2016;80:1737–46.

    Article  CAS  PubMed  Google Scholar 

  • Knuf C, Nookaew I, Remmers I, Khoomrung S, Brown S, Berry A, Nielsen J. Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68. Appl Microbiol Biotechnol. 2014;98(8):3517–27.

    Article  CAS  PubMed  Google Scholar 

  • Koepsell HJ, Stodola FH, Sharpe ES. Production of α-Ketoglutarate in glucose oxidation by Pseudomonas fluorescens. J Am Chem Soc. 1952;74(20):5142–4.

    Article  CAS  Google Scholar 

  • Kumar Gupta G, De S, Franco A, Balu AM, Luque R. Sustainable biomaterials: current trends, challenges and applications. Molecules. 2015;21:E48.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Liu Y, Yang Y, Zhang H, Wang H, Wu Y, Zhang M, Sun T, Cheng J, Wu X, Pan L, Jiang S, Wu H. High levels of malic acid production by the bioconversion of corn straw hydrolyte using an isolated Rhizopus delemar strain. Biotechnol Bioprocess Eng. 2014;19:478–92.

    Article  CAS  Google Scholar 

  • Liang L, Liu R, Li F, Wu M, Chen K, Ma J, Jiang M, Wei P, Ouyang P. Repetitive succinic acid production from lignocellulose hydrolysates by enhancement of ATP supply in metabolically engineered Escherichia coli. Bioresour Technol. 2013;143:405–12.

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Li Y, Zhu Y, Du G, Chen J. Redistribution of carbon flux in Torulopsis glabrata by altering vitamin and calcium level. Metab Eng. 2007;9(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  • Liu YP, Zheng P, Sun ZH, Ni Y, Dong JJ, Zhu LL. Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Bioresour Technol. 2008;99(6):1736–42.

    Article  CAS  PubMed  Google Scholar 

  • Liu XY, Chi Z, Liu GL, Wang F, Madzak C, Chi ZM. Inulin hydrolysis and citric acid production from inulin using the surface-engineered Yarrowia lipolytica displaying inulinase. Metab Eng. 2010a;12:469–76.

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhu Y, Yang ST. Construction and characterization of ack, deleted mutant of Clostridium tyrobutyricum, for enhanced butyric acid and hydrogen production. Biotechnol Prog. 2010b;22(5):1265–75.

    Article  CAS  Google Scholar 

  • Liu XY, Chi Z, Liu GL, Madzak C, Chi ZM. Both decrease in ACL1 gene expression and increase in ICL1 gene expression in marine-derived yeast Yarrowia lipolytica expressing INU1 gene enhance citric acid production from inulin. Mar Biotechnol (NY). 2013a;15:26–36.

    Article  CAS  Google Scholar 

  • Liu L, Hossain GS, Shin HD, Li J, Du G, Chen J. One-step production of α-ketoglutaric acid from glutamic acid with an engineered l-amino acid deaminase from Proteus mirabilis. J Biotechnol. 2013b;164(1):97–104.

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Liang L, Li F, Wu M, Chen K, Ma J, Jiang M, Wei P, Ouyang P. Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineered Escherichia coli. Bioresour Technol. 2013c;149:84–91.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Xie Z, Shin HD, Li J, Du G, Chen J, Liu L. Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate. J Biotechnol. 2017a;253:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Li J, Shin HD, Liu L, Du G, Chen J. Protein and metabolic engineering for the production of organic acids. Bioresour Technol. 2017b;239:412–21.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Li J, Liu Y, Shin H-d, Ledesma-Amaro R, Du G, Chen J, Liu L. Synergistic rewiring of carbon metabolism and redox metabolism in cytoplasm and mitochondria of Aspergillus oryzae forincreased L-malate production. ACS Synth Biol. 2018;7(9):2139–47.

    Article  CAS  PubMed  Google Scholar 

  • Lockwood LB, Stodola FH. Preliminary studies on the production of alpha-ketoglutaric acid by Pseudomonas fluorescens. J Biol Chem. 1946;164:81–3.

    CAS  PubMed  Google Scholar 

  • Maharaj K, Bradfield MF, Nicol W. Succinic acid-producing biofilms of Actinobacillus succinogenes: reproducibility, stability and productivity. Appl Microbiol Biotechnol. 2014;98(17):7379–86.

    Article  CAS  PubMed  Google Scholar 

  • Meijer S, Nielsen ML, Olsson L, Nielsen J. Gene deletion of cytosolic ATP: citrate lyase leads to altered organic acid production in Aspergillus niger. J Ind Microbiol Biotechnol. 2009;36:1275–80.

    Article  CAS  PubMed  Google Scholar 

  • Mirbagheri M, Nahvi I, Emtiazi G, Darvishi F. Enhanced production of citric acid in Yarrowia lipolytica by Triton X-100. Appl Biochem Biotechnol. 2011;165:1068–74.

    Article  CAS  PubMed  Google Scholar 

  • Molla G, Melis R, Pollegioni L. Breaking the mirror: l-amino acid deaminase, a novel stereoselective biocatalyst. Biotechnol Adv. 2017;35(6):657–68.

    Article  CAS  PubMed  Google Scholar 

  • Moon SY, Hong SH, Kim TY, Lee SY. Metabolic engineering of Escherichia coli for the production of malic acid. Biochem Eng J. 2008;40(2):312–20.

    Article  CAS  Google Scholar 

  • Moon S, Wee Y, Choi G. A novel lactic acid bacterium for the production of high purity L-lactic acid, Lactobacillus paracasei subsp. paracasei CHB2121. J Biosci Bioeng. 2012;114(2):155–9.

    Article  CAS  PubMed  Google Scholar 

  • Morimoto Y, Honda K, Ye X, Okano K, Ohtake H. Directed evolution of thermotolerant malic enzyme for improved malate production. J Biosci Bioeng. 2014;117(2):147–52.

    Article  CAS  PubMed  Google Scholar 

  • Niu P, Dong X, Wang Y, Liu L. Enzymatic production of α-ketoglutaric acid from l-glutamic acid via l-glutamate oxidase. J Biotechnol. 2014;179:56–62.

    Article  CAS  PubMed  Google Scholar 

  • Niu J, Arentshorst M, Nair PD, Dai Z, Baker SE, Frisvad JC, et al. Identification of a classical mutant in the industrial host Aspergillus niger by systems genetics: laea is required for citric acid production and regulates the formation of some secondary metabolites. Genes Genomes Genet. 2015;6:193–204.

    Google Scholar 

  • Ochoa-Estopier A, Guillouet SE. D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica. J Biotechnol. 2014;170:35–41.

    Article  CAS  PubMed  Google Scholar 

  • Ohno Y, Nakamori T, Zheng H, Suye S. Reverse reaction of malic enzyme for HCO3− fixation into pyruvic acid to synthesize L-malic acid with enzymatic coenzyme regeneration. Biosci Biotechnol Biochem. 2008;72:1278–82.

    Article  CAS  PubMed  Google Scholar 

  • Okino S, Inui M, Yukawa H. Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol. 2005;68(4):475–80.

    Article  CAS  PubMed  Google Scholar 

  • Okino S, Suda M, Fujikura K, Inui M, Yukawa H. Production of d-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol. 2008;78(3):449–54.

    Article  CAS  PubMed  Google Scholar 

  • Papadaki E, Mantzouridou FT. Citric acid production from the integration of Spanish-style green olive processing wastewaters with white grape pomace by Aspergillus niger. Bioresour Technol. 2019;280:59–69.

    Article  CAS  PubMed  Google Scholar 

  • Papagianni M. Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling. Biotechnol Adv. 2007;25:244–63.

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Galiotou-Panayotou M, Fakas S, Komaitis M, Aggelis G. Citric acid production by Yarrowia lipolytica cultivated on olive-mill wastewater-based media. Bioresour Technol. 2008;99:2419–28.

    Article  CAS  PubMed  Google Scholar 

  • Parimal P, Ramesh K, Subhamay B. Purification and concentration of gluconic acid from an integrated fermentation and membrane process using response surface optimized conditions. Front Chem Sci Eng. 2019;13(1):152–63.

    Article  CAS  Google Scholar 

  • Patel MA, Ou MS, Harbrucker R, Aldrich HC, Buszko ML, Ingram LO, Shanmugam KT. Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid. Appl Environ Microbiol. 2006;72(5):3228–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg Y, Rokem JS, Goldberg I, Pines O. Inducible overexpression of the FUM1 gene in saccharomyces cerevisiae: localization of fumarase and efficient fumaric acid bioconversion to L-malic acid. Appl Environ Microbiol. 1990;56:2777–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poorahong S, Santhosh P, Ramírez GV, Tseng TF, Wong JI, Kanatharana P, Thavarungkul P, Wang J. Development of amperometric α-ketoglutarate biosensor based on ruthenium-rhodium modified carbon fiber enzyme microelectrode. Biosens Bioelectron. 2011;26(8):3670–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin J, Zhou YJ, Krivoruchko A, Huang M, Liu L, Khoomrung S, Siewers V, Jiang B, Nielsen J. Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine. Nat Commun. 2015;6:8224.

    Article  PubMed  Google Scholar 

  • Ramachandran S, Fontanille P, Pandey A, Larroche C. Gluconic acid: properties, applications and microbial production. Food Technol Biotechnol. 2006;44(2):185–95.

    CAS  Google Scholar 

  • Ruijter GJ, Panneman H, Visser J. Overexpression of phosphofructokinase and pyruvate kinase in citric acid-producing Aspergillus niger. Biochim Biophys Acta. 1997;1334:317–26.

    Article  CAS  PubMed  Google Scholar 

  • Ruijter GJ, van de Vondervoort PJ, Visser J. Oxalic acid production by Aspergillus niger: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese. Microbiology. 1999;145:2569–76.

    Article  CAS  PubMed  Google Scholar 

  • Ruijter GJ, Panneman H, Xu D, Visser J. Properties of Aspergillus niger citrate synthase and effects of citA overexpression on citric acid production. FEMS Microbiol Lett. 2000;184:35–40.

    Article  CAS  PubMed  Google Scholar 

  • Rymowicz W, Fatykhova AR, Kamzolova SV, Rywinska A, Morgunov IG. Citric acid production from glycerol-containing waste of biodiesel industry by Yarrowia lipolytica in batch, repeated batch, and cell recycle regimes. Appl Microbiol Biotechnol. 2010;87:971–9.

    Article  CAS  PubMed  Google Scholar 

  • Salvachúa D, Mohagheghi A, Smith H, Bradfield MFA, Nicol W, Black BA, Biddy MJ, Dowe N, Beckham GT. Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation. Biotechnol Biofuels. 2016;9:28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawant O. Fungal citric acid production using waste materials: a mini-review. J Microbiol Biotechnol Food Sci. 2018;8:821–8.

    Article  CAS  Google Scholar 

  • Shi X, Chen Y, Ren H, Liu D, Zhao T, Zhao N, Ying H. Economically enhanced succinic acid fermentation from cassava bagasse hydrolysate using Corynebacterium glutamicum immobilized in porous polyurethane filler. Bioresour Technol. 2014;174:190–7.

    Article  CAS  PubMed  Google Scholar 

  • Show PL, Oladele KO, Siew QY, Aziz Zakry FA, Lan JCW, Ling TC. Overview of citric acid production from Aspergillus niger. Front Life Sci. 2015;8:271–83.

    Article  CAS  Google Scholar 

  • Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, Boundy-Mills KL. Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnol Adv. 2014;32(7):1336–60.

    Article  CAS  PubMed  Google Scholar 

  • Song CW, Lee SY. Combining rational metabolic engineering and flux optimization strategies for efficient production of fumaric acid. Appl Microbiol Biotechnol. 2015;99(20):8455–64.

    Article  CAS  PubMed  Google Scholar 

  • Steiger MG, Rassinger A, Mattanovich D, Sauer M. Engineering of the citrate exporter protein enables high citric acid production in Aspergillus niger. Metab Eng. 2019;52:224–31.

    Article  CAS  PubMed  Google Scholar 

  • Stols L, Donnelly MI. Production of succinic acid through overexpression of NAD(+)-dependent malic enzyme in an Escherichia coli mutant. Appl Environ Microbiol. 1997;63:2695–701.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stottmeister U, Aurich A, Wilde H, Andersch J, Schmidt S, Sicker D. White biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses. J Ind Microbiol Biotechnol. 2005;32(11–12):651–64.

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Wu H, Zhao G, Li Z, Wu X, Liu H, et al. Morphological regulation of Aspergillus niger to improve citric acid production by chsC gene silencing. Bioprocess Biosyst Eng. 2018;41:1029–38.

    Article  CAS  PubMed  Google Scholar 

  • Taing O, Taing K. Production of malic and succinic acids by sugar-tolerant yeast Zygosaccharomyces rouxii. Eur Food Res Technol. 2006;224:343–7.

    Article  CAS  Google Scholar 

  • Thakker C, Martínez I, Li W, San K-Y, Bennett G. Metabolic engineering of carbon and redox flow in the production of small organic acids. J Ind Microbiol Biotechnol. 2015;42(3):403–22.

    Article  CAS  PubMed  Google Scholar 

  • Urbance SE, Pometto AL, DiSpirito AA, Denli Y. Evaluation of succinic acid continuous and repeat-batch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Appl Microbiol Biotechnol. 2004;65(6):664–70.

    Article  CAS  PubMed  Google Scholar 

  • Van der Werf MJ, Guettler MV, Jain MK, Zeikus JG. Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. Arch Microbiol. 1997;167(6):332–42.

    Article  PubMed  Google Scholar 

  • Vasco-Cardenas MF, Banos S, Ramos A, Martin JF, Barreiro C. Proteome response of Corynebacterium glutamicum to high concentration of industrially relevant C(4) and C(5) dicarboxylic acids. J Proteome. 2013;85:65–88.

    Article  CAS  Google Scholar 

  • Vieille BDSVJ. Respiratory glycerol metabolism of Actinobacillus succinogenes 130Z for succinate production. J Ind Microbiol Biotechnol. 2014;41:1339–52.

    Article  CAS  PubMed  Google Scholar 

  • Vuoristo KS, Mars AE, Sanders JPM, Eggink G, Weusthuis RA. Metabolic engineering of TCA cycle for production of chemicals. Trends Biotechnol. 2016;34(3):191–7.

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Zhao X, Chamu J, Shanmugam KT. Isolation, characterization and evolution of a new thermophilic Bacillus licheniformis for lactic acid production in mineral salts medium. Bioresour Technol. 2011;102(17):8152–8.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhang B, Zhang J, Wang H, Zhao M, Wang N, Dong L, Zhou X, Wang D. Enhanced succinic acid production and magnesium utilization by overexpression of magnesium transporter mgtA in Escherichia coli mutant. Bioresour Technol. 2014;170:125–31.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhang J, Cao Z, Wang Y, Gao Q, Zhang J, et al. Inhibition of oxidative phosphorylation for enhancing citric acid production by Aspergillus niger. Microb Cell Factories. 2015;14:7.

    Article  CAS  Google Scholar 

  • Wang L, Cao Z, Hou L, Yin L, Wang D, Gao Q, et al. The opposite roles of agdA and glaA on citric acid production in Aspergillus niger. Appl Environ Microbiol. 2016;100:5791–803.

    CAS  Google Scholar 

  • Werpy TA, Holladay JE, White JF. Top value added chemicals from biomass: I. results of screening for potential candidates from sugars and synthesis gas. Synth Fuels. 2004; https://doi.org/10.2172/926125.

  • West TP. Malic acid production from thin stillage by Aspergillus species. Biotechnol Lett. 2011;33:2463–7.

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Li Q, Li ZM, Ye Q. Succinic acid production and CO2 fixation using a metabolically engineered Escherichia coli in a bioreactor equipped with a self-inducing agitator. Bioresour Technol. 2012;107:376–84.

    Article  CAS  PubMed  Google Scholar 

  • Xie G, West TP. Citric acid production by Aspergillus niger ATCC 9142 from a treated ethanol fermentation co-product using solid-state fermentation. Lett Appl Microbiol. 2009;48:639–44.

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Su X-F, Bao J-W, Zhang H-J, Zeng X, Tang L, Wang K, Zhang J-H, Chen X-S, Mao Z-G. A novel cleaner production process of citric acid by recycling its treated wastewater. Bioresour Technol. 2016;211:645–53.

    Article  CAS  PubMed  Google Scholar 

  • Yan D, Wang C, Zhou J, Liu Y, Yang M, Xing J. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Bioresour Technol. 2014a;156:232–9.

    Article  CAS  PubMed  Google Scholar 

  • Yan Q, Zheng P, Dong J-J, Sun Z-H. A fibrous bed bioreactor to improve the productivity of succinic acid by Actinobacillus succinogenes. J Chem Technol Biotechnol. 2014b;89(11):1760–6.

    Article  CAS  Google Scholar 

  • Yang G, Jahan MS, Ahsan L, Zheng L, Ni Y. Recovery of acetic acid from pre-hydrolysis liquor of hardwood kraft-based dissolving pulp production process by reactive extraction with triisooctylamine. Bioresour Technol. 2013;138:253–8.

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Honda K, Morimoto Y, Okano K, Ohtake H. Direct conversion of glucose to malate by synthetic metabolic engineering. J Biotechnol. 2013a;164(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Zhou X, Hudari MS, Li Z, Wu JC. Highly efficient production of l-lactic acid from xylose by newly isolated Bacillus coagulans C106. Bioresour Technol. 2013b;132:38–44.

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Madzak C, Du G, Zhou J, Chen J. Enhanced alpha-ketoglutaric acid production in Yarrowia lipolytica WSH-Z06 by regulation of the pyruvate carboxylation pathway. Appl Microbiol Biotechnol. 2012;96(6):1527–37.

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Li JH, Shin HD, Du GC, Liu L, Chen J. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms. Advances and prospects. Biotechnol Adv. 2015;33(6):830–41.

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Shin HD, Li J, Du G, Liu L, Chen J. Comparative genomics and transcriptome analysis of Aspergillus niger and metabolic engineering for citrate production. Sci Rep. 2017;7:41040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yovkova V, Otto C, Aurich A, Mauersberger S, Barth G. Engineering the α-ketoglutarate overproduction from raw glycerol by overexpression of the genes encoding NADP+-dependent isocitrate dehydrogenase and pyruvate carboxylase in Yarrowia lipolytica. Appl Microbiol Biotechnol. 2014;98(5):2003–13.

    Article  CAS  PubMed  Google Scholar 

  • Yuzbashev TV, Yuzbasheva EY, Sobolevskaya TI, Laptev IA, Vybornaya TV, Larina AS, Matsui K, Fukui K, Sineoky SP. Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica. Biotechnol Bioeng. 2010;107(4):673–82.

    Article  CAS  PubMed  Google Scholar 

  • Yuzbashev TV, Bondarenko PY, Sobolevskaya TI, Yuzbasheva EY, Laptev IA, Kachala VV, Fedorov AS, Vybornaya TV, Larina AS, Sineoky SP. Metabolic evolution and (13) C flux analysis of a succinate dehydrogenase deficient strain of Yarrowia lipolytica. Biotechnol Bioeng. 2016;113(11):2425–32.

    Article  CAS  PubMed  Google Scholar 

  • Zambanini T, Sarikaya E, Kleineberg W, Buescher JM, Meurer G, Wierckx N, Blank LM. Efficient malic acid production from glycerol with Ustilago trichophora TZ1. Biotechnol Biofuels. 2016a;9:67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zambanini T, Kleineberg W, Sarikaya E, Buescher JM, Meurer G, Wierckx N, Blank LM. Enhanced malic acid production from glycerol with high-cell density Ustilago trichophora TZ1 cultivations. Biotechnol Biofuels. 2016b;9:135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelle RM, de Hulster E, Van Winden WA, De Waard P, Dijkema C, Winkler AA, Geertman JMA, Van Dijken JP, Pronk JT, Van Maris AJA. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol. 2008;74:2766–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelle RM, de Huister E, Kloezen W, Pronk JT, van Maris AJA. Key process conditions for production of C4 dicarboxylic acids in bioreactor batch cultures of an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol. 2010;76:744–50.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wang X, Shanmugam KT, Ingram LO. L-malate production by metabolically engineered Escherichia coli. Appl Environ Microbiol. 2011;77:427–34.

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Jiang JC, Yang J, Wei M, Zhao J, Xu H, et al. Citric acid production from acorn starch by tannin tolerance mutant Aspergillus niger AA120. Appl Biochem Biotechnol. 2018;188(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Wang L, Ma C, Yang C, Xu P, Ma Y. Repeated open fermentative production of optically pure L-lactic acid using a thermophilic Bacillus sp. strain. Bioresour Technol. 2010;101(16):6494–8.

    Article  CAS  PubMed  Google Scholar 

  • Zheng P, Dong J-J, Sun Z-H, Ni Y, Fang L. Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes. Bioresour Technol. 2009a;100(8):2425–9.

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Ohno Y, Nakamori T, Suye S. Production of l-malic acid with fixation of HCO3− by malic enzyme-catalyzed reaction based on regeneration of coenzyme on electrode modified by layer-by-layer self-assembly method. J Biosci Bioeng. 2009b;107:16–20.

    Article  CAS  PubMed  Google Scholar 

  • Zheng P, Zhang K, Yan Q, Xu Y, Sun Z. Enhanced succinic acid production by Actinobacillus succinogenes after genome shuffling. J Ind Microbiol Biotechnol. 2013;40(8):831–40.

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Yin X, Madzak C, Du G, Chen J. Enhanced α-ketoglutarate production in Yarrowia lipolytica WSH-Z06 by alteration of the acetyl-CoA metabolism. J Biotechnol. 2012;161(3):257–64.

    Article  CAS  PubMed  Google Scholar 

  • Zou X, Zhou Y, Yang ST. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis. Biotechnol Bioeng. 2013;110:2105–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lv, X. et al. (2019). Microbial Production of Functional Organic Acids. In: Liu, L., Chen, J. (eds) Systems and Synthetic Biotechnology for Production of Nutraceuticals . Springer, Singapore. https://doi.org/10.1007/978-981-15-0446-4_3

Download citation

Publish with us

Policies and ethics