Skip to main content
Log in

Overexpression of the ICL1 gene changes the product ratio of citric acid production by Yarrowia lipolytica

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The yeast Yarrowia lipolytica secretes high amounts of various organic acids, like citric (CA) and isocitric (ICA) acids, triggered by growth limitation caused by different factors and an excess of carbon source. Depending on the carbon source used, Y. lipolytica strains produce a mixture of CA and ICA in a characteristic ratio. To examine whether the CA/ICA product ratio can be influenced by gene-dose-dependent overexpression or by disruption of the isocitrate lyase (ICL)-encoding gene ICL1, recombinant Y. lipolytica strains were constructed, which harbour multiple ICL1 copies or a defective icl1 allele. The high-level expression of ICL in ICL1 multicopy integrative transformants resulted in a strong shift of the CA/ICA ratio into direction of CA. On glycerol, glucose and sucrose, the ICA proportion decreased from 10–12% to 3–6%, on sunflower oil or hexadecane even from 37–45% to 4–7% without influencing the total amount of acids (CA and ICA) produced. In contrast, the loss of ICL activity in icl1-defective strains resulted in a moderate 2–5% increase in the ICA proportion compared to ICL wild-type strains on glucose or glycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akiyama S, Suzuki T, Sumino Y, Nakao Y, Fukuda H (1973) Induction and citric acid productivity of fluoroacetate-sensitive mutant strains of Candida lipolytica. Agric Biol Chem 37:879–888

    Article  CAS  Google Scholar 

  • Anastassiadis S, Rehm H-J (2005) Continuous citric acid secretion by a high specific pH dependent active transport system in yeast Candida oleophila ATCC 20177. Electron J Biotechnol 8:146–161

    Article  CAS  Google Scholar 

  • Anastassiadis S, Rehm H-J (2006) Oxygen and temperature effect on continuous citric acid secretion in Candida oleophila. Electron J Biotechnol 9:414–423

    Google Scholar 

  • BACAS-Belgian Academy Council of Applied Science (2004) Industrial biotechnology and sustainable chemistry. Brussels, pp 1–29. http://wbt.dechema.de/img/wbt_/Literatur/BACAS-Studie.pdf

  • Barth G, Gaillardin C (1996) Yarrowia lipolytica. In: Wolf K (ed) Nonconventional yeasts in biotechnology. Springer, Berlin, pp 313–388

    Chapter  Google Scholar 

  • Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 19:219–237

    Article  CAS  PubMed  Google Scholar 

  • Barth G, Beckerich J-M, Dominguez A, Kerscher S, Ogrydziak D, Titorenko V, Gaillardin C (2003) Functional genetics of Yarrowia lipolytica. In: de Winde JH (ed) Functional genetics of industrial yeasts. Topics in current genetics, vol 1. Springer, Berlin, pp 227–271

    Chapter  Google Scholar 

  • Behrens U, Ringpfeil M, Stottmeister U, Weißbrodt E, Karbaum K, Hubald M (1986) Verfahren zur Herstellung von Citronensäure durch Hefen. DD232309

  • Cassio F, Leao C (1991) Low- and high-affinity transport system for citric acid in the yeast Candida utilis. Appl Environ Microbiol 57:3623–3628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crolla A, Kennedy KJ (2001) Optimization of citric acid production from Candida lipolytica Y-1095 using n-paraffin. J Biotechnol 89:27–40

    Article  CAS  PubMed  Google Scholar 

  • De Hertogh B, Carvajal E, Talla E, Dujon B, Baret P, Goffeau A (2002) Phylogenetic classification of transporters and other membrane proteins from Saccharomyces cerevisiae. Funct Integr Genomics 2:154–170

    Article  PubMed  Google Scholar 

  • Dixon HG, Kornberg HL (1959) Assay methods for key enzymes of the glyoxylate cycle. Biochem J 72:3

    Google Scholar 

  • Ermakova IT, Shishkanova NV, Melnikova OF, Finogenova TV (1986) Properties of Candida lipolytica mutants with the modified glyoxylate cycle and their ability to produce citric and isocitric acid. I. Physiological, biochemical and cytological characteristics of mutants grown on glucose or hexadecane. Appl Microbiol Biotechnol 23:372–377

    Article  CAS  Google Scholar 

  • Fickers P, Benetti PH, Wache Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543

    Article  CAS  PubMed  Google Scholar 

  • Finogenova TV (1991) Overproduction of metabolites by yeasts and its regulation. In: Finogenova TV, Sharyshev AA (eds) Alkane metabolism and oversynthesis of metabolites by microorganisms. Center for Biological Research, USSR Academy of Science, Pushchino, Russia, pp 96–114

    Google Scholar 

  • Finogenova TV, Shishkanova NV, Ermakova IT, Kataeva IA (1986) Properties of Candida lipolytica mutants with the modified glyoxylate cycle and their ability to produce citric and isocitric acid. II. Synthesis of citric and isocitric acid by Candida lipolytica mutants and peculiarities of their enzyme systems. Appl Microbiol Biotechnol 23:378–383

    Article  CAS  Google Scholar 

  • Finogenova TV, Kamzolova SV, Dedyukhina EG, Shishkanova NV, Il’chenko AP, Morgunov IG, Chernyavskaya OG, Sokolov AP (2002) Biosynthesis of citric and isocitric acids from ethanol by mutant Yarrowia lipolytica N1 under continuous cultivation. Appl Microbiol Biotechnol 59:493–500

    Article  CAS  PubMed  Google Scholar 

  • Finogenova TV, Morgunov IG, Kamzolova SV, Chernyavskaya OG (2005) Organic acid production by the yeast Yarrowia lipolytica: a review of prospects. Appl Biochem Microbiol 41:418–425 (English; and Prikl Biokhim Mikrobiol 41:478–486, Russian)

    Article  CAS  Google Scholar 

  • Förster A, Aurich A, Mauersberger S, Barth G (2007) Citric acid production from sucrose using a recombinant strain of the yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 75:1409–1417 DOI https://doi.org/10.1007/s00253–007–0958–0

    Article  PubMed  Google Scholar 

  • Juretzek T (1999) Entwicklung von Wirts-Vektor-Systemen zur heterologen Expression von Proteinen in der nichtkonventionellen Hefe Yarrowia lipolytica und ihre Anwendung für die Cytochrom P450-katalysierte Stoffumwandlung. Ph.D. thesis, Institut für Mikrobiologie, Technische Universität Dresden

  • Juretzek T, Prinz A, Schunck W-H, Barth G, Mauersberger S (1997) Expressionskassetten zur heterologen Expression von Proteinen in der Hefe Yarrowia lipolytica unter der Kontrolle des regulierbaren Promotors der Isocitratlyase. DE19525282

  • Juretzek T, Le Dall MT, Mauersberger S, Gaillardin C, Barth G, Nicaud JM (2001) Vectors for gene expression and amplification in the yeast Yarrowia lipolytica. Yeast 18:97–113

    Article  CAS  PubMed  Google Scholar 

  • Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272

    Article  CAS  PubMed  Google Scholar 

  • Holz M (2006) Klonierung und Überexpression der mitochondrialen Aconitase in Yarrowia lipolytica und ihre Auswirkung auf die mikrobielle Produktbildung. Diploma thesis, Institut für Mikrobiologie, Technische Universität Dresden

  • Karaffa L, Kubicek CP (2003) Aspergillus niger citric acid accumulation: do we understand this well working black box? Appl Microbiol Biotechnol 61:189–196

    Article  CAS  PubMed  Google Scholar 

  • Kruse K, Förster A, Mauersberger S, Barth G (2004) Method for the biotechnological production of citric acid by means of a genetically modified yeast Yarrowia lipolytica. WO2004/009828, DE10333144

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lowry O, Rosenbrough N, Farr A, Randall R (1951) Protein measurement with folin-phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Marchal R, Metche M, Vandecasteele J-P (1980) Intracellular concentrations of citric and isocitric acids in cultures of the citric acid-excreting yeast Saccharomycopsis lipolytica grown on alkanes. J Gen Microbiol 116:535–538

    CAS  Google Scholar 

  • Mattey M (1992) The production of organic acids. Crit Rev Biotechnol 12:87–132

    Article  CAS  PubMed  Google Scholar 

  • Mauersberger S, Wang HJ, Gaillardin C, Barth G, Nicaud JM (2001) Insertional mutagenesis in the n-alkane-assimilating yeast Yarrowia lipolytica: generation of tagged mutations in genes involved in hydrophobic substrate utilization. J Bacteriol 183:5102–5109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauersberger S, Kruse K, Barth G (2003) Induction of citric acid/isocitric acid and α-ketoglutaric acid production in the yeast Yarrowia lipolytica. In: Wolf K, Breunig K, Barth G (eds) Non-conventional yeasts in genetics, biochemistry and biotechnology. Practical protocols. Springer, Berlin, pp 393–400

    Chapter  Google Scholar 

  • Netik A, Torres NV, Riol J-M, Kubicek CP (1997) Uptake and export of citric acid by Aspergillus niger is reciprocally regulated by manganese ions. Biochim Biophys Acta 1326:287–294

    Article  CAS  PubMed  Google Scholar 

  • Stottmeister U, Hoppe K (1991) Organische Genußsäuren. In: Ruttloff H (ed) Lebensmittelbiotechnologie. Akademie-Verlag, Berlin, pp 516–547

    Google Scholar 

  • Stottmeister U, Weissbrodt E (1991) Product formation by Yarrowia lipolytica - some generalizing aspects. In: Finogenova TV, Sharyshev AA (eds) Alkane metabolism and oversynthesis of metabolites by microorganisms. Center for Biological Research, USSR Academy of Science, Pushchino, Russia, pp 147–158

    Google Scholar 

  • Stottmeister U, Behrens U, Weissbrodt E, Barth G, Franke-Rinker D, Schulze E (1982) Nutzung von Paraffinen und anderen Nichtkohlenhydrat-Kohlenstoffquellen zur mikrobiellen Citronensäuresynthese. Z Allg Mikrobiol 22:399–424

    Article  CAS  PubMed  Google Scholar 

  • Thevenieau F, LeDall M-T, Nthangeni B, Mauersberger S, Marchal R, Nicaud J-M (2007) Characterization of Yarrowia lipolytica mutants affected in hydrophobic substrate utilization. Fungal Genet Biol 44:531–542 DOI https://doi.org/10.1016/j.fgb.2006.09.001

    Article  CAS  PubMed  Google Scholar 

  • Treton B, Le Dall MT, Heslot H (1978) Excretion of citric and isocitric acid by the yeast Saccharomycopsis lipolytica. Eur J Appl Microbiol Biotechnol 6:67–77

    Article  CAS  Google Scholar 

  • Venter T, Kock JL, Botes PJ, Smit MS, Hugo A, Joseph M (2004) Acetate enhances citric acid production by Yarrowia lipolytica when grown on sunflower oil. Syst Appl Microbiol 27:135–138

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the Bundesministerium für Bildung und Forschung (BMBF) of Germany (Grant No. 0339822) and the Sächsisches Staatsministerium für Umwelt und Landwirtschaft (SMUL) of the Land Saxony, Germany (Grant No. 138811.61/89).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Mauersberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Förster, A., Jacobs, K., Juretzek, T. et al. Overexpression of the ICL1 gene changes the product ratio of citric acid production by Yarrowia lipolytica . Appl Microbiol Biotechnol 77, 861–869 (2007). https://doi.org/10.1007/s00253-007-1205-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1205-4

Keywords

Navigation