Skip to main content

Tree Ecosystem: Microbial Dynamics and Functionality

  • Chapter
  • First Online:
Microbial Interventions in Agriculture and Environment

Abstract

Trees constitute a dominant component of the agroforestry ecosystem. The forests are dynamic ecological reservoirs. Microbial dynamics in a forest are usually governed by the fires, insect outbreaks, climatic or seasonal variations, and anthropogenic activities occurring across tens to thousands of years. Microbial ecological studies revealed that microbe species are important drivers of various processes taking place in forests as well as respond to these changes. Microbial dynamic studies have been undertaken in temperate and boreal forests, whereas tropical forests are yet to be explored and characterized. Still there is a lack of information and knowledge in this area. The description of the microbial communities is incomplete or biased. Also, scanty information is available on ectomycorrhiza (ECM) and saprophytic wood-decomposing fungi. The microbial taxa actively participating in forest ecosystem services have not yet identified. This chapter describes intensive studies that have been carried out on microbial activity; their interactions with trees and other forest biota are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams AS, Jordan MS, Adams SM (2011) Cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio. Int Soc Microb Ecol 5:1323–1331

    CAS  Google Scholar 

  • Arnstadt T, Hoppe B, Kahl T et al (2016) Dynamics of fungal community composition, decomposition and resulting deadwood properties in logs of Fagus sylvatica, Picea abies and Pinus sylvestris. Forest Ecol and Manag 382:129–142

    Article  Google Scholar 

  • Ashton MS, Tyrrell ML, Spalding D, Gentry B (eds) (2012) Managing forest carbon in a changing climate. Springer Netherlands. https://www.springer.com/in/book/9789400722316. Accessed on 29 Jan 2019

    Google Scholar 

  • Augusto L, Ranger J, Binkley D et al (2002) Impact of several common tree species of European temperate forests on soil fertility. Ann Forest Sci 59(3):233–253

    Article  Google Scholar 

  • Augusto L, De Schrijver A, Vesterdal L et al (2015) Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biol Rev 90(2):444–466

    Article  PubMed  Google Scholar 

  • Bai Y, Eijsink VG, Kielak AM et al (2016) Genomic comparison of chitinolytic enzyme systems from terrestrial and aquatic bacteria. Environ Microbiol 18(1):38–49

    Article  CAS  PubMed  Google Scholar 

  • Bailey BA, Bae H, Strem MD et al (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224(6):1449–1464

    Article  CAS  PubMed  Google Scholar 

  • Bailey BA, Bae H, Strem MD et al (2008) Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biol Control 46(1):24–35

    Article  Google Scholar 

  • Bakker MG, Otto-Hanson L, Lange AJ et al (2013) Plant monocultures produce more antagonistic soil Streptomyces communities than high-diversity plant communities. Soil Biol Biochem 65:304–312

    Article  CAS  Google Scholar 

  • Bal A, Anand R, Berge O et al (2012) Isolation and identification of diazotrophic bacteria from internal tissues of Pinuscontorta and Thujaplicata. Can J of For Res 42(4):807–813

    Article  CAS  Google Scholar 

  • Baldrian P (2008) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1(1):4–12

    Article  Google Scholar 

  • Baldrian P, Kolarik M, Stursova M et al (2012) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. Int Soci Microb Ecol J 6(2):248–258

    CAS  Google Scholar 

  • Baldrian P, Snajdr J, Merhautova V et al (2013) Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol Biochem 56:60–68

    Article  CAS  Google Scholar 

  • Baldrian P, Zrustova P, Tlaskal V et al (2016) Fungi associated with decomposing deadwood in a natural beech-dominated forest. Fungal Ecol 23:109–122

    Article  Google Scholar 

  • Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nat 515(7528):505

    Article  CAS  Google Scholar 

  • Barengo N, Sieber TN, Holdenrieder O (2000) Diversity of endophytic mycobiota in leaves and twigs of pubescent birch (Betula pubescens). Sydowia 52(2):305–320

    Google Scholar 

  • Barlocher F, Boddy L (2016) Aquatic fungal ecol—how does it differ from terrestrial? Fungal Ecol 19:5–13

    Article  Google Scholar 

  • Bartossek R, Nicol GW, Lanzen A et al (2010) Homologues of nitrite reductases in ammonia-oxidizing archaea: diversity and genomic context. Environ Microbiol 12(4):1075–1088

    Article  CAS  PubMed  Google Scholar 

  • Bawa KS, Kress WJ, Nadkarni NM, Lele S, Raven PH, Janzen DH et al (2004) Tropical ecosystems into the 21st century. Science 306(5694):227–228

    Article  CAS  PubMed  Google Scholar 

  • Bebber DP, Watkinson SC, Boddy L et al (2011) Simulated nitrogen deposition affects wood decomposition by cord-forming fungi. Oecol 167(4):1177–1184

    Article  Google Scholar 

  • Beck A, Persoh D, Rambold G (2014) First evidence for seasonal fluctuations in lichen-and bark-colonising fungal communities. Folia Microbiol 59(2):155–157

    Article  CAS  Google Scholar 

  • Beier S, Bertilsson S (2013) Bacterial chitin degradation—mechanisms and ecophysiological strategies. Front Microbiol 4:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berlemont R, Martiny AC (2015) Genomic potential for polysaccharide deconstruction in bacteria. Appl Environ Microbiol 81(4):1513–1519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berthrong S, Yeager CM, Gallegos-Graves L et al (2014) Nitrogen fertilization has a stronger effect on soil N-fixing bacterial communities than elevated atmospheric CO2. Appl Environ Microbiol 80(10):3103–3112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhadra B, Rao RS, Singh PK (2008) Yeasts and yeast-like fungi associated with tree bark: diversity and identification of yeasts producing extracellular endoxylanases. Curr Microbiol 56:489–494

    Article  CAS  PubMed  Google Scholar 

  • Bills GF, Polishook JD (1991) Microfungi from Carpinus caroliniana. Can J Bot 69(7):1477–1482

    Article  Google Scholar 

  • Bisht R, Chaturvedi S, Srivastava R et al (2009) Effect of arbuscular mycorrhizal fungi, Pseudomonas fluorescens and Rhizobium leguminosarum on the growth and nutrient status of Dalbergia sissoo Roxb. Tropical Ecol 50(2):231

    CAS  Google Scholar 

  • Boddey RM, Döbereiner J (1995) Nitrogen fixation associated with grasses and cereals: recent progress and perspectives for the future. In: Nitrogen economy in tropical soils. Springer, Dordrecht, pp 241–250

    Chapter  Google Scholar 

  • Boddy L (1992) Microenvironmental aspects of xylem defenses to wood decay fungi. In: Defense mechanisms of woody plants against fungi. Springer, Berlin/Heidelberg, pp 96–132

    Chapter  Google Scholar 

  • Boddy L, Rayner ADM (1983) Ecological roles of basidiomycetes forming decay communities in attached oak branches. New Phytol 93(1):77–88

    Article  Google Scholar 

  • Bohannan BJ, Hughes J (2003) New approaches to analyzing microbial biodiversity data. Curr Opin Microbiol 6(3):282–287

    Article  CAS  PubMed  Google Scholar 

  • Bonito G, Reynolds H, Robeson MS (2014) Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. Mol Ecol 23(13):3356–3370

    Article  PubMed  Google Scholar 

  • Bowers RM, McLetchie S, Knight R (2011) Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. Int Soc Microb Ecol J 5:601–612

    CAS  Google Scholar 

  • Brabcová V, Nováková M, Davidová A, Baldrian P (2016) Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytologist 210(4):1369–1381

    Article  PubMed  CAS  Google Scholar 

  • Bragina A, Berg C, Berg G (2015) The core microbiome bonds the Alpine bog vegetation to a transkingdom metacommunity. Mol Ecol 24:4795–4807

    Article  PubMed  Google Scholar 

  • Bravo-Velasquez E, Hedger J (1988) The effect of ecological disturbance on competition between Crinipellis perniciosa and other tropical fungi. Proc R Soc Edinburgh, Sect B Biol Sci 94:159–166

    Article  Google Scholar 

  • Brzostek ER, Greco A, Drake JE et al (2013) Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soils. Biogeochem 115(1-3):65–76

    Article  CAS  Google Scholar 

  • Buckeridge KM, Grogan P (2010) Deepened snow increases late thaw biogeochemical pulses in mesic low arctic tundra. Biogeochem 101(1-3):105–121

    Article  Google Scholar 

  • Buée M, Vairelles D, Garbaye J (2005) Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus silvatica) forest subjected to two thinning regimes. Mycorrhiza 15(4):235–245

    Article  PubMed  Google Scholar 

  • Buée M, Courty PE, Mignot D et al (2007) Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community. Soil Biol Biochem 39:1947–1955

    Article  CAS  Google Scholar 

  • Buée M, De Boer W, Martin F et al (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321(1-2):189–212

    Article  CAS  Google Scholar 

  • Buée M, Maurice JP, Zeller B et al (2011) Influence of tree species on richness and diversity of epigeous fungal communities in a French temperate forest stand. Fungal Ecol 4:22–31

    Article  Google Scholar 

  • Büntgen U, Tegel W, Egli S et al (2011) Truffles and climate change. Front Ecol Env 9(3):150–151

    Article  Google Scholar 

  • Cabello P, Roldan MD, Moreno-Vivian C (2004) Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150(11):3527–3546

    Article  CAS  PubMed  Google Scholar 

  • Carrell AA, Frank C (2015) Bacterial endophyte communities in the foliage of coast redwood and giant sequoia Front Microbiol;6:1008

    Google Scholar 

  • Carroll G (1995) Forest endophytes: pattern and process. Can J Bot 73(S1):1316–1324

    Article  Google Scholar 

  • Carroll GC, Carroll FE (1978) Studies on the incidence of coniferous needle endophytes in the Pacific Northwest. Can J Bot 56(24):3034–3043

    Article  Google Scholar 

  • Chao A (1984) Nonparametric estimation of the number of classes in a population Scandinavian. J Stat:265–270

    Google Scholar 

  • Chazdon RL, Colwell RK, Denslow JS et al (1998) Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of northeastern Costa Rica. No Man Biosph 20:285–309

    Google Scholar 

  • Chen Y, Wen X, Sun Y et al (2014) Mulching practices altered soil bacterial community structure and improved orchard productivity and apple quality after five growing seasons. Sci Hort 172:248–257

    Article  Google Scholar 

  • Churchland C, Grayston SJ (2014) Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Front Microbiol 5:261

    Article  PubMed  PubMed Central  Google Scholar 

  • Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecol 69(1):10–16

    Article  Google Scholar 

  • Clemmensen KE, Bahr A, Ovaskainen O et al (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Sci 339(6127):1615–1618

    Article  CAS  Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cy 13(2):623–645

    Article  CAS  Google Scholar 

  • Clissmann F, Fiore-Donno AM, Hoppe B, Krüger D, Kahl T, Unterseher M, Schnittler M (2015) First insight into dead wood protistan diversity: a molecular sampling of bright-spored Myxomycetes (Amoebozoa, slime-moulds) in decaying beech logs. FEMS Microbiol Ecol 91(6)

    Google Scholar 

  • Cobb RC, Filipe JA, Meentemeyer RK et al (2012) Ecosystem transformation by emerging infectious disease: loss of large tanoak from California forests. J Ecol 100(3):712–722

    Article  Google Scholar 

  • Coince A, Cordier T, Lengellé J (2014) Leaf and root-associated fungal assemblages do not follow similar elevational diversity patterns. PloS One 9(6):e100668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colagiero M, Pentimone I, Rosso LC et al (2017) A metagenomic study on the effect of aboveground plant cover on soil bacterial diversity. In: Soil biological communities and ecosystem resilience. Springer, Cham, pp 97–106

    Chapter  Google Scholar 

  • Collignon C, Calvaruso C, Turpault MP (2011) Temporal dynamics of exchangeable K, Ca and Mg in acidic bulk soil and rhizosphere under Norway spruce (Piceaabies abies Karst) and beech (Fagus sylvatica L) stands. Plant and Soil 349(1-2):355–366

    Article  CAS  Google Scholar 

  • Colliver BB, Stephenson T (2000) Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnol Adv 18(3):219–232

    Article  CAS  PubMed  Google Scholar 

  • Cong J, Yang Y, Liu X et al (2015) Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession. Sci Rep 5:10007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corneo PE, Pellegrini A, Cappellin L et al (2013) Microbial community structure in vineyard soils across altitudinal gradients and in different seasons. FEMS Microbiol Ecol 84(3):588–602

    Article  CAS  PubMed  Google Scholar 

  • Courty PE, Franc A, Pierrat JC et al (2008) Temporal changes in the ectomycorrhizal community in two soil horizons of a temperate oak forest. Appl Environ Microbiol 74(18):5792–5801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva MF, Carreira LMM, Tavares AS, Ribeiro IC, Jardim MAG, Lobo MDAGA, Oliveira J (1989) As leguminosas da Amazo#nia Brasileira-Lista Pre$via Acta Bota [nica]. Anais do XXXIX Congresso Nacional de Botanica 2:193–237

    Google Scholar 

  • Davey ML, Heegaard E, Halvorsen R (2012) Seasonal trends in the biomass and structure of bryophyte-associated fungal communities explored by 454 pyrosequencing. New Phytol 195:844–846

    Article  CAS  PubMed  Google Scholar 

  • de Araujo Pereira AP, de Andrade PA, Bini D, Durrer A, Robin A, Bouillet JP, Andreote FD, Cardoso EJ (2017) Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium. PLoS One 12(7):e0180371

    Article  CAS  Google Scholar 

  • De Boer HJ, Kool A, Broberg A et al (2005a) Anti-fungal and anti-bacterial activity of some herbal remedies from Tanzania. J Ethnopharmacol 96(3):461–469

    Article  PubMed  Google Scholar 

  • De Boer W, Folman LB, Summerbell RC et al (2005b) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29(4):795–811

    Article  PubMed  CAS  Google Scholar 

  • De Gannes V, Eudoxie G, Hickey WJ (2014) Impacts of edaphic factors on communities of ammonia-oxidizing archaea, ammonia-oxidizing bacteria and nitrification in tropical soils. PLoS One 9(2):e89568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delhomme N, Sundstrom G, Zamani N (2015) Serendipitous meta-transcriptomics: the fungal community of Norway spruce (Picea abies). PLoS One 10(9):e0139080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demanèche S, Philippot L, David MM et al (2009) Characterization of denitrification gene clusters of soil bacteria via a metagenomic approach. Appl Environ Microbiol 75(2):534–537

    Article  PubMed  CAS  Google Scholar 

  • Devi NB, Yadava PS (2006) Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India. App Soil Ecol 31(3):220–227

    Article  Google Scholar 

  • Domke GM, Perry CH, Walters BF et al (2016) Estimating litter carbon stocks on forest land in the United States. Sci Total Environ 557:469–478

    Article  PubMed  CAS  Google Scholar 

  • Dupuy B, Diahuissie A, Doumbia F et al (1997) Effet de deux types d’éclaircie en foret dense ivoirienne. Bois Forets Des Tropiques 253:5–19

    Google Scholar 

  • Edwards M, Johns DG, Licandro P et al (2006) Ecological status report: results from the CPR survey 2004/2005. SAHFOS Tech Rep (3):1–8

    Google Scholar 

  • Edwards AC, Scalenghe R, Freppaz M (2007) Changes in the seasonal snow cover of alpine regions and its effect on soil processes. Quat Int 162:172–181

    Article  Google Scholar 

  • Eichlerová I, Homolka L, Žifčáková L, Lisá L, Dobiášová P, Baldrian P (2015) Enzymatic systems involved in decomposition reflects the ecology and taxonomy of saprotrophic fungi. Fungal Ecol 13:10–22

    Article  Google Scholar 

  • Ekblad A, Wallander H, Godbold DL et al (2013) The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant Soil 366(1-2):1–27

    Article  CAS  Google Scholar 

  • El Komy MH, Saleh AA, Eranthodi A, Molan YY (2015) Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium wilt. Plant Pathol J 31:50–60

    Article  PubMed  Google Scholar 

  • Esson KC, Lin X, Kumaresan D et al (2016) Alpha and gamma proteobacterial methanotrophs co-dominate the active methane oxidizing communities in an acidic boreal peat bog. Appl Environ Microbiol. 82:2363–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and Biogeogr of soil bacterial communities. Proc Natl Acad Sci 103(3):626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folman LB, Klein Gunnewiek PJ, Boddy L et al (2008) Impact of white-rot fungi on numbers and community composition of bacteria colonizing beech wood from forest soil. FEMS Microbiol Ecol 63(2):181–191

    Article  CAS  PubMed  Google Scholar 

  • Foster NW, Bhatti JS (2006) Forest ecosystems: nutrient cycling Encyclopedia of soil science. Taylor Francis Group, New York, pp 718–721

    Google Scholar 

  • Founoune H, Duponnois R, Ba AM et al (2002) Influence of the dual arbuscular endomycorrhizal/ectomycorrhizal symbiosis on the growth of Acacia holosericea (A. Cunn. ex G. Don) in glasshouse conditions. Ann Forest Sci 59(1):93–98

    Article  Google Scholar 

  • Fransson P, Andersson A, Norström S et al (2016) Ectomycorrhizal exudates and pre-exposure to elevated CO2 affects soil bacterial growth and community structure. Fungal Ecol 20:211–224

    Article  Google Scholar 

  • Frey SD, Drijber R, Smith H et al (2008) Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol Biochem 40(11):2904–2907

    Article  CAS  Google Scholar 

  • Frey B, Niklaus PA, Kremer J et al (2011) Heavy machinery traffic impacts methane emission, abundance of methanogens and community structure in oxic forest soils. Appl Environ Microbiol 77:6060–6068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukami T, Dickie IA, Paula W et al (2010) Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol Lett 13(6):675–684

    Article  PubMed  Google Scholar 

  • Gaby JC, Buckley DH (2011) A global census of nitrogenase diversity. Environ Microbiol 13(7):1790–1799

    Article  CAS  PubMed  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70(2):153–226

    Article  CAS  Google Scholar 

  • García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. Bioengineering 2:183–205

    Article  CAS  Google Scholar 

  • Gennaro M, Gonthier P, Nicolotti G (2003) Fungal endophytic communities in healthy and declining Quercus robur L and Q. cerris L trees in northern Italy. J Phytopathol 151(10):529–534

    Article  Google Scholar 

  • Gibson L, Lee TM, Koh LP et al (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nat 478:378–381

    Article  CAS  Google Scholar 

  • Giordano L, Gonthier P, Varese GC (2009) Mycobiota inhabiting sapwood of healthy and declining Scots pine (Pinus sylvestris L) trees in the Alps. Fungal Divers 38:69–83

    Google Scholar 

  • Goldmann K, Schöning I, Buscot F (2015) Forest management type influences diversity and community composition of soil fungi across temperate forest ecosystems. Front Microbiol 6:1300

    Article  PubMed  PubMed Central  Google Scholar 

  • Grayston SJ, Griffith GS, Mawdsley JL et al (2001) Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol Biochem 33(4-5):533–551

    Article  CAS  Google Scholar 

  • Grube M, Cernava T, Soh J et al (2015) Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. Int Soci Microb Ecol J 9:412–424

    CAS  Google Scholar 

  • Grünig CR, Duò A, Sieber TN (2006) Population genetic analysis of Phialocephala fortinii sl and Acephala applanata in two undisturbed forests in Switzerland and evidence for new cryptic species. Fungal Genet Biol 43(6):410–421

    Article  PubMed  Google Scholar 

  • Grünig CR, Queloz V, Sieber TN et al (2008) Dark septate endophytes (DSE) of the Phialocephala fortinii slAcephala applanata species complex in tree roots: classification, population biology, and ecology. Botany 86(12):1355–1369

    Article  Google Scholar 

  • Hacquard S, Schadt CW (2015) Towards a holistic understanding of the beneficial interactions across the Populus microbiome. New Phytol 205(4):1424–1430

    Article  PubMed  Google Scholar 

  • Haichar ZF, Marol C, Berge O et al (2008) Plant host habitat and root exudates shape soil bacterial community structure. Int Soci Microb Ecol 2(12):1221

    CAS  Google Scholar 

  • Hammond DS (2005) Guianan forest dynamics: geomorphographic control and tropical forest change across diverging landscapes In: Hammond DS, ed. Tropical forests of the Guiana shield; ancient forests in a modern world. CABI Publishing, Wallingford, pp 343–379

    Google Scholar 

  • Hannula SE, Morrien E, de Hollander M et al (2017) Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture. Int Soci Microb Ecol J 11(10):2294

    Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol R 79:293–320

    Article  Google Scholar 

  • Hartmann M, Howes CG, VanInsberghe D et al (2012) Significant and persistent impact of timber harvesting on soil microbial communities in northern coniferous forests. Int Soci Microb Ecol J 6(12):2199–2218

    CAS  Google Scholar 

  • Hartmann M, Niklaus PA, Zimmermann S et al (2014) Resistance and resilience of the forest soil microbiome to logging-associated compaction. Int Soci Microb Ecol J 8(1):226

    CAS  Google Scholar 

  • Hawkes CV, Kivlin SN, Rocca JD (2011) Fungal community responses to precipitation Global Change. Biol 17(4):1637–1645

    Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95(6):641–655

    Article  Google Scholar 

  • Hawksworth DL (2012) Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate? Biodivers Conserv 21(9):2425–2433

    Article  Google Scholar 

  • Hayatsu M, Tago K, Saito M (2008) Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci Plant Nutr 54(1):33–45

    Article  CAS  Google Scholar 

  • Hibbett DS, Ohman A, Glotzer D et al (2011) Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biol Rev 25(1):38–47

    Article  Google Scholar 

  • Hieber M, Gessner MO (2002) Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecol 83(4):1026–1038

    Article  Google Scholar 

  • Hill TC, Walsh KA, Harris JA, Moffett BF (2003) Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol 43(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Hiscox J, Savoury M, Muller CT (2015) Priority effects during fungal community establishment in beech wood. Int Soci Microb Ecol J 9(10):2246

    Google Scholar 

  • Hoffland E, Kuyper TW, Wallander H (2004) The role of fungi in weathering. Front Ecol Environ 2(5):258–264

    Article  Google Scholar 

  • Högberg P (1986) Soil nutrient availability, root symbioses and tree species composition in tropical Africa. J Trop Ecol 2:359–372

    Article  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N et al (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  • Högberg MN, Briones MJ, Keel SG (2010) Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytol 187(2):485–493

    Article  PubMed  CAS  Google Scholar 

  • Hoppe B, Kruger D, Kahl T (2015) A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of Fagus sylvatica and Picea abies. Sci Rep 5:9456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hottola J, Ovaskainen O, Hanski I (2009) A unified measure of the number, volume and diversity of dead trees and the response of fungal communities. J Ecol 97(6):1320–1328

    Article  Google Scholar 

  • Houlton BZ, Wang YP, Vitousek PM et al (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454(7202):327

    Article  CAS  PubMed  Google Scholar 

  • Hughes JB, Hellmann JJ, Ricketts TH et al (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67(10):4399–4406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingham ER (1999) The soil biology primer chapter 1. The soil foodweb. NRCS Soil Quality Institute, USDA, p 48

    Google Scholar 

  • Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer–broadleaf forests. New Phytol 174(2):430–440

    Article  CAS  PubMed  Google Scholar 

  • Izumi H, Anderson IC, Alexander IJ et al (2006) Endobacteria in some ectomycorrhiza of Scots pine (Pinus sylvestris). FEMS Microbiol Ecol 56(1):34–43

    Article  CAS  PubMed  Google Scholar 

  • Jeanbille M, Buée M, Bach C (2016) Soil parameters drive the structure, diversity and metabolic potentials of the bacterial communities across temperate beech forest soil sequences. Microb Ecol 71(2):482–493

    Article  CAS  PubMed  Google Scholar 

  • Johnston SR, Boddy L, Weightman AJ (2016) Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol Ecol:92–179

    Google Scholar 

  • Jones CM, Stres B, Rosenquist M et al (2008) Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol Biol Evol 25(9):1955–1966

    Article  CAS  PubMed  Google Scholar 

  • Jönsson MT, Edman M, Jonsson BG (2008) Colonization and extinction patterns of wood-decaying fungi in a boreal old-growth Picea abies forest. J Ecol 96(5):1065–1075

    Article  Google Scholar 

  • Joshi S (2018) Rhizospheric bacterial diversity in different Dalbergia sissoo Roxb provenances PhD thesis, G.B. Pant University of Agriculture & Technology, UK, India

    Google Scholar 

  • Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439

    Article  PubMed  Google Scholar 

  • Jumpponen ARI, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140(2):295–310

    Article  PubMed  Google Scholar 

  • Jung J, Yeom J, Han J et al (2012) Seasonal changes in nitrogen-cycle gene abundances and in bacterial communities in acidic forest soils. J Microbiol 50(3):365–373

    Article  CAS  PubMed  Google Scholar 

  • Kaiser C, Koranda M, Kitzler B et al (2010) Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol 187(3):843–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser C, Fuchslueger L, Koranda M et al (2011) Plants control the seasonal dynamics of microbial N cycling in a beech forest soil by belowground C allocation. Ecology 92(5):1036–1051

    Article  PubMed  Google Scholar 

  • Kauserud H, Heegaard E, Buntgen U et al (2012) Warming-induced shift in European mushroom fruiting phenology. Proc Natl Acad Sci 109:14488–14493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44(2):77–87

    Article  CAS  PubMed  Google Scholar 

  • Kluber LA, Smith JE, Myrold DD (2011) Distinctive fungal and bacterial communities are associated with mats formed by ectomycorrhizal fungi. Soil Biol Biochem 43(5):1042–1050

    Article  CAS  Google Scholar 

  • Kohler A, Kuo A, Nagy LG (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410–U176

    Article  CAS  PubMed  Google Scholar 

  • Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence–absence data. J Anim Ecol 72(3):367–382

    Article  Google Scholar 

  • Korkama T, Fritze H, Pakkanen A et al (2007) Interactions between extraradical ectomycorrhizal mycelia, microbes associated with the mycelia and growth rate of Norway spruce (Picea abies) clones. New Phytol 173(4):798–807

    Article  CAS  PubMed  Google Scholar 

  • Kostka JE, Weston DJ, Glass JB (2016) The Sphagnum microbiome: new insights from an ancient plant lineage. New Phytol 211:57–64

    Article  CAS  PubMed  Google Scholar 

  • Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55(1):485–529

    Article  CAS  PubMed  Google Scholar 

  • Kowalski KP, Bacon C, Bickford W et al (2015) Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes. Front Microbiol 6:95

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubartova A, Ottosson E, Dahlberg A et al (2012) Patterns of fungal communities among and within decaying logs, revealed by 454 sequencing. Mol Ecol 21(18):4514–4532

    Article  CAS  PubMed  Google Scholar 

  • Küffer N, Senn-Irlet B (2005) Influence of forest management on the species richness and composition of wood-inhabiting basidiomycetes in Swiss forests. Biodivers Conserv 14(10):2419–2435

    Article  Google Scholar 

  • Kuffner M, Hai B, Rattei T et al (2012) Effects of season and experimental warming on the bacterial community in a temperate mountain forest soil assessed by 16S rRNA gene pyrosequencing. FEMS Microbiol Ecol 82(3):551–562

    Article  CAS  PubMed  Google Scholar 

  • Kulhánkova A, Béguiristain T, Moukoumi J et al (2006) Spatial and temporal diversity of wood decomposer communities in different forest stands, determined by ITS rDNA targeted TGGE. Annals Forest Sci 63(5):547–556

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Blagodatskaya E (2015) Microbial hotspots and hot moments in soil: concept & review. Soil Biol Biochem 83:184–199

    Article  CAS  Google Scholar 

  • Laessøe T, Lodge DJ (1994) Three host-specific Xylaria species. Mycol:436–446

    Google Scholar 

  • Landeweert R, Hoffland E, Finlay RD et al (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16(5):248–254

    Article  CAS  PubMed  Google Scholar 

  • Lang C, Seven J, Polle A (2011) Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European forest. Mycorrhiza 21(4):297–308

    Article  PubMed  Google Scholar 

  • Lau MC, Stackhouse BT, Layton AC et al (2015) An active atmospheric methane sink in high Arctic mineral cryosols. Int Soci Microb Ecol J 9(8):1880

    CAS  Google Scholar 

  • Lauber CL, Strickland MS, Bradford MA et al (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40(9):2407–2415

    Article  CAS  Google Scholar 

  • Lauber CL, Hamady M, Knight R et al (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75(15):5111–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laverman AM, Speksnijder AGCL, Braster M et al (2001) Spatiotemporal stability of an ammonia-oxidizing community in a nitrogen-saturated forest soil. Microb Ecol 42(1):35–45

    Article  CAS  PubMed  Google Scholar 

  • Lazzaro A, Hilfiker D, Zeyer J (2015) Structures of microbial communities in alpine soils: seasonal and elevational effects. Front Microbiol 6:1330

    Article  PubMed  PubMed Central  Google Scholar 

  • Lederberg J (2006) The microbe’s contribution to biology-50 years after. Int Microbiol 9(3):155

    PubMed  Google Scholar 

  • Leininger S, Urich T, Schloter M et al (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nat 442(7104):806

    Article  CAS  Google Scholar 

  • Lejon DP, Chaussod R, Ranger J et al (2005) Microbial community structure and density under different tree species in an acid forest soil (Morvan, France). Microb Ecol 50(4):614–625

    Article  PubMed  Google Scholar 

  • Lewis G, Schrire B, Mackinder B, Lock M (2005) Legumes of the World, Royal Botanic Gardens, Kew:p592

    Google Scholar 

  • Libois Q, PicardG FJL, Arnaud L et al (2013) Influence of grain shape on light penetration in snow. The Cryosphere 7(6):1803–1818

    Article  Google Scholar 

  • Lilleskov EA, Fahey TJ, Horton TR et al (2002) Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83(1):104–115

    Article  Google Scholar 

  • Lindahl BD, Tunlid A (2015) Ectomycorrhizal fungi–potential organic matter decomposers, yet not saprotrophs. New Phytol 205(4):1443–1447

    Article  CAS  PubMed  Google Scholar 

  • Lindahl B, Stenlid JAN, Olsson S et al (1999) Translocation of 32P between interacting mycelia of a wood-decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytol 144(1):183–193

    Article  CAS  Google Scholar 

  • Lindahl BD, Ihrmark K, Boberg J et al (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173(3):611–620

    Article  CAS  PubMed  Google Scholar 

  • Lindahl BD, De Boer W, Finlay RD (2010) Disruption of root carbon transport into forest humus stimulates fungal opportunists at the expense of mycorrhizal fungi. Int Soci Microb Ecol J 4(7):872

    Google Scholar 

  • Lindner DL, Banik MT (2011) Intragenomic variation in the ITS rDNA region obscures phylogenetic relationships and inflates estimates of operational taxonomic units in genus Laetiporus. Mycology 103(4):731–740

    Article  Google Scholar 

  • Lipson DA, Schmidt SK, Monson RK (1999) Links between microbial population dynamics and nitrogen availability in an alpine ecosystem. Ecol 80(5):1623–1631

    Article  Google Scholar 

  • Lipson DA, Schadt CW, Schmidt SK (2002) Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt. Microb Ecol 43(3):307–314

    Article  CAS  PubMed  Google Scholar 

  • Lladó S, Zifcakova L, Vetrovsky T et al (2016) Functional screening of abundant bacteria from acidic forest soil indicates the metabolic potential of Acidobacteria subdivision 1 for polysaccharide decomposition. Biol Fert Soils 52(2):251–260

    Article  CAS  Google Scholar 

  • Lladó S, López-Mondéjar R, Baldrian P (2017) Forest soil Bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev 81(2)

    Google Scholar 

  • Long X, Chen C, Xu Z et al (2012) Abundance and community structure of ammonia-oxidizing bacteria and archaea in a temperate forest ecosystem under ten-years elevated CO2. Soil Biol Biochem 46:163–171

    Article  CAS  Google Scholar 

  • López-Bucio J, Pelagio-Flores R, Herrera-Estrell A (2015) Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic. 196:109–123

    Article  Google Scholar 

  • Lopez-Mondejar R, Voriskova J, Vetrovsky T et al (2015) The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics. Soil Biol Biochem 87:43–50

    Article  CAS  Google Scholar 

  • López-Mondejar R, Zühlke D, Becher D et al (2016) Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep 6:25279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lukesova T, Kohout P, Vetrovsky T (2015) The potential of dark septate endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle European forest plants. PLoS One 10:e124752

    Article  CAS  Google Scholar 

  • Malchair S, Carnol M (2012) AOB community structure and richness under European beech, sessile oak, Norway spruce and Douglas fir at three temperate forest sites. Plant Soil 366:521–535

    Article  CAS  Google Scholar 

  • Marupakula S, Mahmood S, Finlay RD (2016) Analysis of single root tip microbiomes suggests that distinctive bacterial communities are selected by Pinus sylvestris roots colonized by different ectomycorrhizal fungi. Environ Microbiol 18(5):1470–1483

    Article  CAS  PubMed  Google Scholar 

  • McLaren JR, Turkington R (2011) Plant identity influences decomposition through more than one mechanism. PLoS One 6(8)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLaughlin DJ, Hibbett DS, Lutzoni F et al (2009) The search for the fungal tree of life. Trends Microbiol 17(11):488–497

    Article  CAS  PubMed  Google Scholar 

  • McMahon SM, Harrison SP, Armbruster WS et al (2011) Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trends Ecol Evol 26(5):249–259

    Article  PubMed  Google Scholar 

  • Mirza BS, Potisap C, Nüsslein K et al (2014) Response of free-living nitrogen-fixing microorganisms to land use change in the Amazon rainforest. Appl Environ Microbiol 80(1):281–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monson RK, Lipson DL, Burns SP et al (2006) Winter forest soil respiration controlled by climate and microbial community composition. Nat 439(7077):711

    Article  CAS  Google Scholar 

  • Moreira FMS, Franco AA (1994) Rhizobia-host interactions in tropical ecosystems in Brazil. In: Sprent JI, McKey D (eds) Advances in legume systematics, Part 5: the nitrogen factor, vol 5. R BotGard, Kew, pp 63–74

    Google Scholar 

  • Moyes AB, Kueppers LM, Pett-Ridge J et al (2016) Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer. New Phytol 210(2):657–668

    Article  CAS  PubMed  Google Scholar 

  • Müller MM, Valjakka R, Suokko A et al (2001) Diversity of endophytic fungi of single Norway spruce needles and their role as pioneer decomposers. Mol Ecol 10(7):1801–1810

    Article  PubMed  Google Scholar 

  • Nacke H, Goldmann K, Schöning I et al (2016) Fine spatial scale variation of soil microbial communities under European beech and Norway spruce. Front Microbiol 7:2067

    Article  PubMed  PubMed Central  Google Scholar 

  • Nazaries L, Murrell JC, Millard P et al (2013) Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ Microbiol 15(9):2395–2417

    Article  CAS  PubMed  Google Scholar 

  • Newcombe G, Martin F, Kohler A (2010) Defense and nutrient mutualisms in Populus. In: Genetics and genomics of populus. Springer, New York, pp 247–277

    Chapter  Google Scholar 

  • Newton RJ, Jones SE, Eiler A et al (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol R 75:14–49

    Article  CAS  Google Scholar 

  • Nicol GW, Schleper C (2006) Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol 14(5):207–212

    Article  CAS  PubMed  Google Scholar 

  • Nitrogen Cycling Down: https://organicsoiltechnologycom/nitrogen-cycling-downhtml

    Google Scholar 

  • Noguez AM, Arita HT, Escalante AE et al (2005) Microbial macroecology: highly structured prokaryotic soil assemblages in a tropical deciduous forest. Global Ecol Biogeogr 14(3):241–248

    Article  Google Scholar 

  • Okubo T, Tsukui T, Maita H et al (2012) Complete genome sequence of Bradyrhizobium sp S23321: insights into symbiosis evolution in soil oligotrophs. Microb Environ 27(3):306–315

    Article  Google Scholar 

  • Öpik M, Moora M, Zobel M (2008) High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. New Phytol 179:867–876

    Article  PubMed  CAS  Google Scholar 

  • Orellana LH, Rodriguez-R LM, Higgins S et al (2014) Detecting nitrous oxide reductase (nosZ) genes in soil metagenomes: method development and implications for the nitrogen cycle. Mol Biol 5(3):e01193–e01114

    CAS  Google Scholar 

  • Osono T (2007) Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol Res 22(6):955–974

    Article  Google Scholar 

  • Pajares S, Bohannan BJ (2016) Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Front Microbiol 7:1045

    PubMed  PubMed Central  Google Scholar 

  • Parfitt D, Hunt J, Dockrell D et al (2010) Do all trees carry the seeds of their own destruction? PCR reveals numerous wood decay fungi latently present in sapwood of a wide range of angiosperm trees. Fungal Ecol 3(4):338–346

    Article  Google Scholar 

  • Peh KSH, Corlett RT, Bergeron Y (2015) Routledge Handbook of Forest Ecology. Routledge

    Google Scholar 

  • Peršoh D (2015) Plant-associated fungal communities in the light of meta’omics. Fungal Divers 75:1–25

    Article  Google Scholar 

  • Pester M, Rattei T, Flechl S et al (2012) amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol 14(2):525–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philippot L, Hallin S, Schloter M (2007) Ecology of denitrifying prokaryotes in agricultural soil. Adv Agro 96:249–305

    Article  CAS  Google Scholar 

  • Philpott TJ, Prescott CE, Chapman WK et al (2014) Nitrogen translocation and accumulation by a cord-forming fungus (Hypholomaf asciculare) into simulated woody debris. Forest Ecol Manag 315:121–128

    Article  Google Scholar 

  • Piri T (1996) The spreading of the S type of Heterobasidion annosum from Norway spruce stumps to the subsequent tree stand. Eur J Forest Pathol 26(4):193–204

    Article  Google Scholar 

  • Pons TL, Perreijn K, Van Kessel C et al (2007) Symbiotic nitrogen fixation in a tropical rainforest: 15N natural abundance measurements supported by experimental isotopic enrichment. New Phytol 173(1):154–167

    Article  CAS  PubMed  Google Scholar 

  • Prescott CE, Grayston SJ (2013) Tree species influence on microbial communities in litter and soil: current knowledge and research needs. Forest Ecol Manag 309:19–27

    Article  Google Scholar 

  • Prevost-Boure NC, Maron PA, Ranjard L et al (2011) Seasonal dynamics of the bacterial community in forest soils under different quantities of leaf litter. Appl Soil Ecol 47(1):14–23

    Article  Google Scholar 

  • Priyanka J, Koel M (2015) Diversity study of nitrate reducing bacteria from soil samples-a metagenomics approach. J Comp Sci Syst Biol 8(4):191

    CAS  Google Scholar 

  • Puig H, Riera B, Lescure JP (1990) Phytomasse et productivite. Bois Forets Des Tropiques 220:25–32

    Google Scholar 

  • Purahong W, Hoppe B, Kahl T et al (2014) Changes within a single land-use category alter microbial diversity and community structure: Molecular evidence from wood-inhabiting fungi in forest ecosystems. J Environ Manag 139:109–119

    Article  CAS  Google Scholar 

  • Purahong W, Kapturska D, Pecyna MJ et al (2015) Effects of forest management practices in temperate beech forests on bacterial and fungal communities involved in leaf litter degradation. Microb Ecol 69(4):905–913

    Article  PubMed  Google Scholar 

  • Rachid CTCC, Balieiro FC, Peixoto RS et al (2013) Mixed plantations can promote microbial integration and soil nitrate increases with changes in the N cycling genes. Soil Biol Biochem 66:146–153

    Article  CAS  Google Scholar 

  • Rajala T, Peltoniemi M, Pennanen T et al (2010) Relationship between wood-inhabiting fungi determined by molecular analysis (denaturing gradient gel electrophoresis) and quality of decaying logs. Can J Forest Res 40(12):2384–2397

    Article  CAS  Google Scholar 

  • Rajala T, Peltoniemi M, Hantula J et al (2011) RNA reveals a succession of active fungi during the decay of Norway spruce logs. Fungal Ecol 4(6):437–448

    Article  Google Scholar 

  • Rajala T, Peltoniemi M, Pennanen T et al (2012) Fungal community dynamics in relation to substrate quality of decaying Norway spruce (Picea abies [L] Karst) logs in boreal forests. FEMS Microbiol Ecol 81(2):494–505

    Article  CAS  PubMed  Google Scholar 

  • Rajala T, Tuomivirta T, Pennanen T et al (2015) Habitat models of wood inhabiting fungi along a decay gradient of Norway spruce logs. Fungal Ecol 18:48–55

    Article  Google Scholar 

  • Rakesh M (2013) Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA. FEMS Microbiol Ecol 83(2):478–493

    Article  CAS  Google Scholar 

  • Rasche F, Knapp D, Kaiser C et al (2011) Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. Int Soci Microb Ecol J 5(3):389

    CAS  Google Scholar 

  • Rayner AD, Boddy L (1988) Fungal decomposition of wood. Its biology and ecology. Wiley, New York

    Google Scholar 

  • Redford AJ, Bowers RM, Knight R et al (2010) The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12(11):2885–2893

    Article  PubMed  PubMed Central  Google Scholar 

  • Reed SC, Townsend AR, Cleveland CC et al (2010) Microbial community shifts influence patterns in tropical forest nitrogen fixation. Oecol 164(2):521–531

    Article  Google Scholar 

  • Reed BM, Sarasan V, Kane M et al (2011) Biodiversity conservation and conservation biotechnology tools. In vitro Cell Dev Biol-Pl 47(1):1–4

    Article  CAS  Google Scholar 

  • Renvall P (1995) Community structure and dynamics of wood-rotting Basidiomycetes on decomposing conifer trunks in northern Finland. Karstenia 35:1–51

    Article  Google Scholar 

  • Riley R, Salamov AA, Brown DW et al (2014) Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci111(27):9923-9928

    Google Scholar 

  • Rincón A, Pueyo JJ (2010) Effect of fire severity and site slope on diversity and structure of the ectomycorrhizal fungal community associated with post-fire regenerated Pinus pinaster Ait seedlings. Forest Ecol Manag 260(3):361–369

    Article  Google Scholar 

  • Rineau F, Roth D, Shah F et al (2012) The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry. Environ Microbiol 14(6):1477–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues KF (1993) Endophytic species of Xylaria: cultural and isozymic studies. Sydowia 45:116–138

    Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE et al (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330

    Article  CAS  PubMed  Google Scholar 

  • Rosling A, Landeweert R, Lindahl BD et al (2003) Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol 159(3):775–783

    Article  CAS  PubMed  Google Scholar 

  • Rossman AY, Palm-Hernández ME (2008) Systematics of plant pathogenic fungi: why it matters. Plant Dis 92(10):1376–1386

    Article  PubMed  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63(12):4704–4712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rousk J, Baath E, Brookes PC et al (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. Int Soci Microb Ecol J 4(10):1340

    Google Scholar 

  • Rousk J, Brookes PC, Baath E (2011) Fungal and bacterial growth responses to N fertilization and pH in the 150-year ‘Park Grass’ UK grassland experiment. FEMS Microbiol Ecol 76(1):89–99

    Article  CAS  PubMed  Google Scholar 

  • Rytioja J, Hilden K, Yuzon J et al (2014) Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol Molr Biol Rev 78(4):614–649

    Article  Google Scholar 

  • Sabatier D (1994) Diversité des arbres et du peuplement forestier en Guyane. Gestion de l’écosysteme forestier et aménagement de l’espace régional, pp 41–47

    Google Scholar 

  • Savi F, Di Bene C, Canfora L et al (2016) Environmental and biological controls on CH4 exchange over an evergreen Mediterranean forest. Agri Forest Meteorol 226:67–79

    Article  Google Scholar 

  • Schilling JS, Kaffenberger JT, Liew FJ et al (2015) SigNat wood modifications reveal decomposer community history. PloS one 10(3):e0120679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schloss PD, Delalibera I, Handelsman J (2006) Bacteria associated with the guts of two wood-boring beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae). Environ Entomol 35:625–629

    Article  Google Scholar 

  • Schmalenberger A, Duran AL, Bray AW et al (2015) Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals. Sci Rep 5:12187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt SK, Lipson DA (2004) Microbial growth under the snow: implications for nutrient and allelochemical availability in temperate soils. Plant Soil 259(1–2):1–7

    Article  CAS  Google Scholar 

  • Schmidt O, Horn MA, Kolb S (2015) Temperature impacts differentially on the methanogenic food web of cellulose supplemented peatland soil. Environ Microbiol 17:720–734

    Article  CAS  PubMed  Google Scholar 

  • Seibold S, Bassler C, Brandl R et al (2015) Experimental studies of dead-wood biodiversity—a review identifying global gaps in knowledge. Biol Conserv 191:139–149

    Article  Google Scholar 

  • Selosse MA, Vohník M, Chauvet E (2008) Out of the rivers: are some aquatic hyphomycetes plant endophytes? New Phytol 178(1):3–7

    Article  PubMed  Google Scholar 

  • Serkebaeva YM, Kim Y, Liesack W (2013) Pyrosequencing-based assessment of the bacteria diversity in surface and subsurface peat layers of a Northern Wetland, with focus on poorly studied phyla and candidate divisions. PLoS One 8:e63394

    Article  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. Urbana: University of Illinois Press, Champaign

    Google Scholar 

  • Shaw LJ, Nicol GW, Smith Z et al (2006) Nitrosospira spp can produce nitrous oxide via a nitrifier denitrification pathway. Environ Microbiol 8(2):214–222

    Article  CAS  PubMed  Google Scholar 

  • Shoun H, Kim DH, Uchiyama H et al (1992) Denitrification by fungi. FEMS Microbiol Lett 94(3):277–281

    Article  CAS  Google Scholar 

  • Sieber TN, Rys J, Holdenrieder O (1999) Mycobiota in symptomless needles of Pinusmugo ssp uncinata. Mycol Res 103(3):306–310

    Article  Google Scholar 

  • Sieber-Canavesi F, Sieber TN (1993) Successional patterns of fungal communities in needles of European silver fir (Abies alba Mill). New Phytol 125(1):149–161

    Article  PubMed  Google Scholar 

  • Simard SW, Beiler KJ, Bingham MA et al (2012) Mycorrhizal networks: mechanisms, ecology and modeling. Fungal Biol Rev 26(1):39–60

    Article  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Song Y, Chen D, Lu K et al (2015) Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front Plant Sci 6:786

    PubMed  PubMed Central  Google Scholar 

  • Sprent JL (1995) Legume trees and shrubs in the tropics N2-fixation in perspective. Soil Biol Biochem 27:401–407

    Article  CAS  Google Scholar 

  • Sprent JI (2005) Nodulated legume trees. In: Werner D, Newton WE (eds) Nitrogen fixation in agriculture, forestry, ecology and the environment. Springer, New York, pp 113–141

    Google Scholar 

  • Sprent JI (2009) Legume nodulation: global perspective. Wiley-Blackwell, Oxford

    Google Scholar 

  • Stenlid J, Penttila R, Dahlberg A (2008) Wood-decay basidiomycetes in boreal forests: distribution and community development. In: British mycological society symposia series, vol 28. Academic, pp 239–262

    Google Scholar 

  • Stokland JN, Siitonen J, Jonsson BG (2012) Biodiversity in dead wood Cambridge University Press

    Google Scholar 

  • Stork NE, Coddington JA, Colwell RK et al (2009) Vulnerability and resilience of tropical forest species to land-use change. Conserv Biol 23:1438–1447

    Article  PubMed  Google Scholar 

  • Stursova M, Snajdr J, Cajthaml T (2014) When the forest dies: the response of forest soil fungi to a bark beetle-induced tree dieback. Int Soci for Microb Ecol J 8:1920–1931

    Google Scholar 

  • Sutherland JM, and Sprent JI (1993) Nitrogen fixation by legume trees Symbiosis in Nitrogen fixing trees. 33-63

    Google Scholar 

  • Svensson M, Johansson V, Dahlberg A (2016) The relative importance of stand and dead wood types for wood dependent lichens in managed boreal forests. Fungal Ecol 20:166–174

    Article  Google Scholar 

  • Szink I, Davis EL, Ricks KD et al (2016) New evidence for broad trophic status of leaf endophytic fungi of Quercus gambelii. Fungal Ecol 22:2–9

    Article  Google Scholar 

  • Szukics U, Hackl E, Zechmeister-Boltenstern S et al (2012) Rapid and dissimilar response of ammonia oxidizing archaea and bacteria to nitrogen and water amendment in two temperate forest soils. Microbiol Res 167(2):103–109

    Article  CAS  PubMed  Google Scholar 

  • Talbot JM, Bruns TD, Taylor JW et al (2014) Endemism and functional convergence across the North American soil mycobiome. Proc Natl Acad Sci 111:6341–6346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Nara K (2009) Phylogenetic diversity of non-nodulating Rhizobium associated with pine ectomycorrhizae. FEMS Microbiol Ecol 69(3):329–343

    Article  CAS  PubMed  Google Scholar 

  • Taylor AE, Zeglin LH, Wanzek TA et al (2012) Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials. Int Soci Microb Ecol J 6(11):2024

    CAS  Google Scholar 

  • Tedersoo L, Suvi T, Jairus T (2008) Forest microsite effects on community composition of ectomycorrhizal fungi on seedlings of Picea abies and Betula pendula. Environ Microbiol 10(5):1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Polme S et al (2014) Global diversity and geography of soil fungi. Sci 346:1078–1087

    CAS  Google Scholar 

  • Tedersoo L, Bahram M, Cajthaml T et al (2016) Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. Int Soci Microb Ecol J 10(2):346–362

    CAS  Google Scholar 

  • Ter Steege H, Sabatier D, Castellanos H et al (2000) An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana Shield. J Tropical Ecol 16:801–828

    Article  Google Scholar 

  • Thomson BC, Tisserant E, Plassart P et al (2015) Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites. Soil Biol Biochem 88:403–413

    Article  CAS  Google Scholar 

  • Tiedje JM, Sexstone AJ, Myrold DD et al (1983) Denitrification: ecological niches, competition and survival. Anton Leeuw 48(6):569–583

    Article  Google Scholar 

  • Treseder KK, Lennon JT (2015) Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev 79(2):243–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treseder KK, Vitousek PM (2001) Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecol 82(4):946–954

    Article  Google Scholar 

  • Treusch AH, Leininger S, Kletzin A et al (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7(12):1985–1995

    Article  CAS  PubMed  Google Scholar 

  • Trivedi P, Trivedi C, Grinyer J (2016) Harnessing host-vector microbiome for sustainable plant disease management of phloem-limited bacteria. Front Plant Sci 7:1423

    PubMed  PubMed Central  Google Scholar 

  • Tuomisto H (2010) A diversity of beta diversities: straightening up a concept gone awry Part 1 Defining beta diversity as a function of alpha and gamma diversity. Ecography 33:2–22

    Article  Google Scholar 

  • Turner BL, Yavitt JB, Harms KE et al (2013) Seasonal changes and treatment effects on soil inorganic nutrients following a decade of fertilizer addition in a lowland tropical forest. Soil Sci Soci Am J 77(4):1357–1369

    Article  CAS  Google Scholar 

  • Unterseher M, Reiher A, Finstermeier K et al (2007) Species richness and distribution patterns of leaf-inhabiting endophytic fungi in a temperate forest canopy. Mycol Prog 6(3):201–212

    Article  Google Scholar 

  • Unterseher M, Persoh D, Schnittler M (2013) Leaf-inhabiting endophytic fungi of European Beech (Fagus sylvatica L) co-occur in leaf litter but are rare on decaying wood of the same host. Fungal Divers 60(1):43–54

    Article  Google Scholar 

  • Urbanova M, Snajdr J, Baldrian P (2015) Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol Biochem 84:53–64

    Article  CAS  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP et al (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17(8):378–387

    Article  CAS  PubMed  Google Scholar 

  • Uroz S, Oger P, Morin E et al (2012) Distinct ectomycorrhizospheres share similar bacterial communities as revealed by pyrosequencing-based analysis of 16S rRNA genes. Appl Environ Microbiol 78:3020–3024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uroz S, Ioannidis P, Lengelle J et al (2013) Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation. PLoS One 8(2):e55929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uroz S, Oger P, Tisserand E et al (2016) Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Sci Rep 6:27756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valaskova V, De Boer W, Gunnewiek PJK et al (2009) Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. Int Soci Microb Ecol J 3(10):1218

    CAS  Google Scholar 

  • Van Cleve K, Chapin FS, Dyrness CT et al (1991) Element cycling in taiga forests: state-factor control. BioSci 41(2):78–88

    Article  Google Scholar 

  • Van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310

    Article  PubMed  Google Scholar 

  • Van der Wal A, Ottosson E, de Boer W (2015) Neglected role of fungal community composition in explaining variation in wood decay rates. Ecol 96(1):124–133

    Article  Google Scholar 

  • Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes factors affecting enzymes, conversion and synergy. Biotechnol Adv 30(6):1458–1480

    Article  PubMed  CAS  Google Scholar 

  • Van Insberghe D, Maas KR, Cardenas E et al (2015) Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils. Int Soci Microb Ecol J 9(11):2435

    Google Scholar 

  • Vik U, Logares R, Blaalid R et al (2013) Different bacterial communities in ectomycorrhizae and surrounding soil. Sci Rep 3:3471

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C et al (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochem 57:1–45

    Article  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  • Voriskova J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. Int Soci Microb Ecol J 7(3):477

    CAS  Google Scholar 

  • Vořiškova J, Brabcova V, Cajthaml T et al (2014) Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytol 201(1):269–278

    Article  PubMed  CAS  Google Scholar 

  • Walker JK, Cohen H, Higgins LM et al (2014) Testing the link between community structure and function for ectomycorrhizal fungi involved in a global tripartite symbiosis. New Phytol 202(1):287–296

    Article  CAS  PubMed  Google Scholar 

  • Wallenstein MD, Hall EK (2012) A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochem 109(1-3):35–47

    Article  Google Scholar 

  • Wang Y, Li C, Wang Q et al (2016) Environmental behaviors of phenolic acids dominated their rhizodeposition in boreal poplar plantation forest soils. J Soils Sediments 16:1858–1870

    Article  CAS  Google Scholar 

  • Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305(5683):509–513

    Article  CAS  PubMed  Google Scholar 

  • Wells JM, Boddy L (1995) Phosphorus translocation by saprotrophic basidiomycete mycelial cord systems on the floor of mixed deciduous woodland. Mycol Res 99(8):977–980

    Article  CAS  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monogr 30(3):279–338

    Article  Google Scholar 

  • Wu F, Yang W, Zhang J et al (2010) Litter decomposition in two subalpine forests during the freeze–thaw season. Acta Oecol 36(1):135–140

    Article  Google Scholar 

  • Wubet T, Christ S, Schoning I et al (2012) Differences in soil fungal communities between European beech (Fagus sylvatica L) dominated forests are related to soil and understory vegetation. PloS One 7(10):e47500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia M, Talhelm AF, Pregitzer KS (2015) Fine roots are the dominant source of recalcitrant plant litter in sugar mapledominated northern hardwood forests. New Phytol 208:715–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yahara T, Javadi F, Onoda Y et al (2013) Global legume diversity assessment: concepts, key indicators, and strategies. Taxon 62(2):249–266

    Article  Google Scholar 

  • Yamashita S, Hattori T, Abe H (2010) Host preference and species richness of wood-inhabiting aphyllophoraceous fungi in a cool temperate area of Japan. Mycol 102(1):11–19

    Article  Google Scholar 

  • Zehr JP, Jenkins BD, Short SM et al (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5(7):539–554

    Article  CAS  PubMed  Google Scholar 

  • Zhalnina K, de Quadros PD, Camargo FA et al (2012) Drivers of archaeal ammonia-oxidizing communities in soil. Front Microbiol 3:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Deng Y, Shen L et al (2016) Temperature mediates continental-scale diversity of microbes in forest soils. Nat Commun 7:12083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Žifčáková L, Dobiasova P, Kolarova Z et al (2011) Enzyme activities of fungi associated with Picea abies needles. Fungal Ecol 4(6):427–436

    Article  Google Scholar 

  • Žifčáková L, Vetrovsky T, Howe A (2016) Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ Microbiol 18:288–301

    Article  PubMed  CAS  Google Scholar 

  • Zinger L, Lejon DP, Baptist F et al (2011) Contrasting diversity patterns of crenarchaeal, bacterial and fungal soil communities in an alpine landscape. PLoS One 75:5863–5870

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial assistance provided by ICAR and GOI. They also want to thank the State Forest Department of Tanakpur and Lachiwala range in Uttarakhand for allowing the sampling of natural sisso forests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, S., Sahgal, M., Tewari, S.K., Johri, B.N. (2019). Tree Ecosystem: Microbial Dynamics and Functionality. In: Singh, D., Gupta, V., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-8383-0_14

Download citation

Publish with us

Policies and ethics