Skip to main content
Log in

Ecology of ligninolytic fungi associated with leaf litter decomposition

  • Miyadi Award
  • Published:
Ecological Research

Abstract

Advances in our understanding of the decomposition processes in forest ecosystems over the past three decades have demonstrated the importance of lignin as a regulating factor in the decomposition of leaf litter. Consequently, increasingly more attention is being focused on the ecology of fungi associated with lignin decomposition. The aim of this review is to provide a critical summary of the ecology of ligninolytic fungi inhabiting leaf litter and forest floor materials. The review focuses on the following aspects of ligninolytic fungi: the taxonomic and functional diversity of ligninolytic fungi, the outcomes of interactions between ligninolytic fungi and other organisms, the activity and abundance of ligninolytic fungi measured by the production of bleached leaves and humus, the activity of ligninolytic enzymes in soil environments, the substratum and seral succession, spatial and temporal patterns in both mycelial abundance and species distribution, and the effect of environmental factors such as nitrogen deposition and global environmental changes on ligninolytic fungi. This review integrates the ecology, diversity, and activity of ligninolytic fungi into the context of an ecosystem in order to provide an understanding of the roles of ligninolytic fungi in decomposition processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Addison JA, Trofymow JA, Marshall VG (2003) Functional role of collembola in successional coastal temperate forests on Vancouver Island, Canada. Appl Soil Ecol 24:247–261

    Google Scholar 

  • Allison SD, Vitousek PM (2004) Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition. Biotropica 36:285–296

    Google Scholar 

  • Amundson R (2001) The carbon budget in soils. Annu Rev Earth Planet Sci 29:535–62

    CAS  Google Scholar 

  • Azhar ES, Verhe R, Proot M, Sandra P, Verstraete W (1986a) Binding of nitrite–N on polyphenols during nitrification. Plant Soil 94:369–382

    CAS  Google Scholar 

  • Azhar ES, Vandenabeele J, Verstraete W (1986b) Nitrification and organic nitrogen formation in soils. Plant Soil 94:383–399

    Google Scholar 

  • Bååth E, Söderström B (1977) Mycelial lengths and fungal biomasses in some Swedish coniferous forest soils, with special reference to a pine forest in central Sweden. Swedish Coniferous Forest Project Technical Report 13, Uppsala

  • Baker CJ, Bateman DF (1978) Cutin degradation by plant pathogenic fungi. Phytopathology 68:1577–1584

    Google Scholar 

  • Baldrian P, Snajdr J (2006) Production of ligninolytic enzymes by litter-decomposing fungi and their ability to decolorize synthetic dyes. Enzyme Microb Technol 39:1023–1029

    CAS  Google Scholar 

  • Baldrian P, Snajdr J, Valásková V (2006) Fungal ligninolytic enzymes in the forest soil environment: occurrence, distribution and role in soil organic matter transformation. In: Meyer W, Pearce C (eds) Proc 8th Int Mycolog Congr. Cairns, Australia, pp 135–138

  • Barder MJ, Crawford DL (1981) Effects of carbon and nitrogen supplementation on lignin and cellulose decomposition by a Streptomyces. Can J Microbiol 27:859–863

    PubMed  CAS  Google Scholar 

  • Bardgett RD, Walker LR (2004) Impact of coloniser plant species on the development of decomposer microbial communities following deglaciation. Soil Biol Biochem 36:555–559

    CAS  Google Scholar 

  • Berg B (1991) FDA-active fungal mycelium and lignin concentrations in some needle and leaf litter types. Scand J For Res 6:451–462

    Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter, decomposition, humus formation, carbon sequestration. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5:1–25

    CAS  Google Scholar 

  • Berg B, Wessén B (1984) Changes in organic-chemical components and ingrowth of fungal mycelium in decomposing birch leaf litter as compared to pine needles. Pedobiologia 26:285–298

    Google Scholar 

  • Berg B, Berg M, Bottner P, Box E, Breymeyer A, Calvo de Anta R, Couteaux M, Gallardo A, Escudero A, Krantz W, Madeira M, Mälkönen E, Meentemeyer V, Muñoz F, Piussi P, Remacle J, Virzo de Santo A (1993) Litter mass loss in pine forests of Europe and eastern United States as compared to actual evapotranspiration on a European scale. Biogeochemistry 20:127–153

    Google Scholar 

  • Berg B, McClaugherty C, Johansson MB (1997) Chemical changes in decomposing litter can be systemized with respect to the initial chemical composition of the litter. Swedish University of Agricultural Sciences report 74, Uppsala

  • Bissett J, Parkinson D (1980) Long-term effects of fire on the composition and activity of the soil microflora of a subalpine, coniferous forest. Can J Bot 58:1704–1721

    Google Scholar 

  • Black RLB, Dix NJ (1976) Utilization of ferulic acid by microfungi from litter and soil. Trans Br Mycol Soc 66:313–317

    Article  Google Scholar 

  • Blondeau R (1989) Biodegradation of natural and synthetic humic acids by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 55:1282–1285

    PubMed  CAS  Google Scholar 

  • Boddy L (1992) Development and function of fungal communities in decomposing wood. In: Carroll GC, Wicklow DT (eds) The fungal community, 2nd edn. Dekker, New York, pp 749–782

    Google Scholar 

  • Brown JC (1958a) Fungal mycelium in dune soils estimated by a modified impression slide technique. Trans Br Mycol Soc 41:81–88

    Google Scholar 

  • Brown JC (1958b) Soil fungi of some British sand dunes in relation to soil type and succession. J Ecol 46:641–664

    Google Scholar 

  • Brunner I, Brunner F, Laursen GA (1992) Characterization and comparison of macrofungal communities in an Alnus tenuifolia and an Alnus crispa forest in Alaska. Can J Bot 70:1247–1258

    Google Scholar 

  • Burke RM, Cairney JWG (2002) Laccases and other polyphenol oxidases in ecto- and ericoid mycorrhizal fungi. Mycorrhiza 12:105–116

    Article  PubMed  CAS  Google Scholar 

  • Butler MJ, Day AW (1998) Fungal melanins: a review. Can J Microbiol 44:1115–1136

    CAS  Google Scholar 

  • Cairney JWG (2005) Basidiomycete mycelia in forest soils: dimensions, dynamics and roles in nutrient distribution. Mycol Res 109:7–20

    PubMed  Google Scholar 

  • Carreiro MM, Koske RE (1992a) The effect of temperature and substratum on competition among three species of forest litter microfungi. Mycol Res 96:19–24

    Google Scholar 

  • Carreiro MM, Koske RE (1992b) Effect of temperature on decomposition and development of microfungal communities in leaf litter microcosms. Can J Bot 70:2177–2183

    Google Scholar 

  • Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365

    Google Scholar 

  • Coelho RRR, Sacramento DR, Linhares LF (1997) Amino sugars in fungal melanins and soil humic acids. Eur J Soil Sci 48:425–429

    CAS  Google Scholar 

  • Cooke WMB, Lawrence DB (1959) Soil mould fungi isolated from recently glaciated soils in south-eastern Alaska. J Ecol 47:529–549

    Google Scholar 

  • Cooke RC, Rayner ADM (1984) Ecology of saprotrophic fungi. Longman, London

    Google Scholar 

  • Cooke RC, Whipps JM (1993) Ecophysiology of fungi. Blackwell, Oxford

    Google Scholar 

  • Countess RE, Kendrick B, Trofymow JA (1998) Macrofungal diversity in successional Douglas-fir forests. Northwest Sci 72:110–112

    Google Scholar 

  • Cox P, Wilkinson SP, Anderson JM (2001) Effects of fungal inocula on the decomposition of lignin and structural polysaccharides in Pinus sylvestris litter. Biol Fertil Soils 33:246–251

    CAS  Google Scholar 

  • Criquet S, Farnet AM, Tagger S, Le Petit J (2000) Annual variations of phenoloxidase activities in an evergreen oak litter: influence of certain biotic and abiotic factors. Soil Biol Biochem 32:1505–1513

    CAS  Google Scholar 

  • Criquet S, Tagger S, Vogt G, Le Petit J (2002) Endoglucanase and ß-glycosidase activities in an evergreen oak litter: annual variation and regulating factors. Soil Biol Biochem 34:1111–1120

    CAS  Google Scholar 

  • Dedeyan B, Klonowska A, Tagger S, Tron T, Iacazio G, Gil G, Le Petit J (2000) Biochemical and molecular characterization of a laccase from Marasmius quercophilus. Appl Env Microbiol 66:925–929

    CAS  Google Scholar 

  • DeForest JL, Zak DR, Pregitzer KS, Burton AJ (2004a) Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Sci Soc Am J 68:132–138

    CAS  Google Scholar 

  • DeForest JL, Zak DR, Pregitzer KS, Burton AJ (2004b) Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest. Soil Biol Biochem 36:965–971

    CAS  Google Scholar 

  • de Jong E, Beuling EE, van der Zwan RP, de Bont JAM (1990) Degradation of veratryl alcohol by Penicillium simplicissimum. Appl Microbiol Biotechnol 34:420–425

    Google Scholar 

  • Dighton J, Poskitt JM, Howard DM (1986) Changes in occurrence of basidiomycete fruit bodies during forest stand development: with specific reference to mycorrhizal species. Trans Br Mycol Soc 87:163–171

    Google Scholar 

  • Di Nardo C, Cinquegrana A, Papa S, Fuggi A, Fioretto A (2004) Laccase and peroxidase isoenzymes during leaf litter decomposition of Quercus ilex in a Mediterranean ecosystem. Soil Biol Biochem 36:1539–1544

    CAS  Google Scholar 

  • Dix NJ (1984) Minimum water potentials for growth of some litter-decomposing agarics and other basidiomycetes. Trans Br Mycol Soc 83:152–153

    Google Scholar 

  • Dix NJ (1985) Changes in relationship between water content and water potential after decay and its significance for fungal succession. Trans Br Mycol Soc 85:649–653

    Article  Google Scholar 

  • Dix NJ, Frankland JC (1987) Tolerance of litter-decomposing agarics to water stress in relation to habitat. Trans Br Mycol Soc 88:127–129

    Google Scholar 

  • Dix NJ, Simpson AP (1984) Decay of leaf litter by Collybia peronata. Trans Br Mycol Soc 83:37–41

    Google Scholar 

  • Dix NJ, Webster J (1995) Fungal ecology. Chapman & Hall, London

    Google Scholar 

  • Donnelly PK, Entry JA, Crawford DL, Cromack K Jr (1990) Cellulose and lignin degradation in forest soils: response to moisture, temperature, and acidity. Microb Ecol 20:289–295

    CAS  Google Scholar 

  • Dowson CG, Rayner ADM, Boddy L (1989) Spatial dynamics and interactions of the woodland fairy ring fungus, Clitocybe nebularis. New Phytol 111:699–705

    Google Scholar 

  • Durall DM, Jones MD, Lewis KJ (2005) Effects of forest management on fungal communities. In: Dighton J, White JF, Oudemans P (eds) The fungal community, 3rd edn. Taylor & Francis, New York, pp 833–855

    Google Scholar 

  • Dursun S, Frankland JC, Boddy L, Ineson P (1996a) Sulphite and pH effects on CO2 evolution by fungi growing on decomposing coniferous needles. New Phytol 134:155–166

    CAS  Google Scholar 

  • Dursun S, Ineson P, Frankland JC, Boddy L (1996b) Sulphur dioxide effects on fungi growing on leaf litter and agar media. New Phytol 134:167–176

    CAS  Google Scholar 

  • Edmonds RL (1978) Decomposition and nutrient release in Douglas-fir needle litter in relation to stand development. Can J For Res 9:132–140

    Google Scholar 

  • Entry JA, Donnelly PK, Cromack Jr K (1991) Influence of ectomycorrhizal mat soils on lignin and cellulose degradation. Biol Fertil Soils 11:75–78

    CAS  Google Scholar 

  • Eriksson KE, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Eveling DW, Wilson RN, Gillespie ES, Bataille A (1990) Environmental effects on sporocarp counts over fourteen years in a forest area. Mycol Res 94:998–1002

    Google Scholar 

  • Falcón MA, Rodríguez A, Carnicero A, Regalado V, Perestelo F, Milstein O, de la Fuente G (1995) Isolation of microorganisms with lignin transformation potential from soil of Tenerife Island. Soil Biol Biochem 27:121–126

    Google Scholar 

  • Farnet AM, Criquet S, Cigna M, Gil G, Ferré E (2004) Purification of a laccase from Marasmius quercophilus induced with ferulic acid: reactivity towards natural and xenobiotic aromatic compounds. Enzyme Microb Technol 34:549–554

    CAS  Google Scholar 

  • Ferris R, Peace AJ, Newton AC (2000) Macrofungal communities of lowland Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karsten.) plantations in England: relationships with site factors and stand structure. For Ecol Manage 131:255–267

    Google Scholar 

  • Fioretto A, Papa S, Curcio E, Sorrentino G, Fuggi A (2000) Enzyme dynamics on decomposing leaf litter of Cistus incanus and Myrtus communis in a Mediterranean ecosystem. Soil Biol Biochem 32:1847–1855

    CAS  Google Scholar 

  • Fioretto A, Papa S, Sorrentino G, Fuggi A (2001) Decomposition of Cistus incanus leaf litter in a Mediterranean maquis ecosystem: mass loss, microbial enzyme activities and nutrient changes. Soil Biol Biochem 33:311–321

    CAS  Google Scholar 

  • Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev 63:433–462

    Google Scholar 

  • Frankland JC (1992) Mechanisms in fungal succession. In: Carroll GC, Wicklow DT (eds) The fungal community, 2nd edn. Marcel Dekker, New York, pp 383–401

    Google Scholar 

  • Frankland JC (1998) Fungal succession – unravelling the unpredictable. Mycol Res 102:1–15

    Google Scholar 

  • Frankland JC, Bailey AD, Gray TRG, Holland AA (1981) Development of an immunological technique for estimating mycelial biomass of Mycena galopus in leaf litter. Soil Biol Biochem 13:87–92

    Google Scholar 

  • Frankland JC, Hedger JN, Swift MJ (1982) Decomposer basidiomycetes, their biology and ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Frankland JC, Poskitt JM, Howard DM (1995) Spatial development of populations of a decomposer fungus, Mycena galopus. Can J Bot 73[Suppl1]:S1399–S1406

    Google Scholar 

  • Fujita H (1989) Succession of higher fungi in a forest of Pinus densiflora. Trans Mycol Soc Jpn 30:125–147

    Google Scholar 

  • Fukiharu T, Kato M (1997) An analysis on the spatial distribution patterns of basidiocarps of Agaricales in a Castanopsis-dominated forest in Kyoto. Mycoscience 38:37–44

    Google Scholar 

  • Gallo M, Amonette R, Lauber C, Sinsabaugh RL, Zak DR (2004) Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils. Microb Ecol 48:218–229

    PubMed  CAS  Google Scholar 

  • Ghosh A, Frankland JC, Thurston CF, Robinson CH (2003) Enzyme production by Mycena galopus mycelium in artificial media and in Picea sitchensis F1 horizon needle litter. Mycol Res 107:996–1008

    PubMed  CAS  Google Scholar 

  • Gourbière F (1983) Pourriture blanche de la litière d’Abies alba Mill. II. Répartition spatio-temporelle et activité annuelle des Basidiomycètes du genre Collybia. Rev Ecol Biol Sol 20:461–474

    Google Scholar 

  • Gramss G, Günther T, Fritsche W (1998) Spot tests for oxidative enzymes in ectomycorrhizal, wood-, and litter decaying fungi. Mycol Res 102:67–72

    CAS  Google Scholar 

  • Grant WD (1976) Microbial degradation of condensed tannins. Science 193:1137–1138

    PubMed  CAS  Google Scholar 

  • Günther T, Perner B, Gramss G (1998) Activities of phenol oxidizing enzymes of ectomycorrhizal fungi in axenic culture and in symbiosis with Scots pine (Pinus sylvestris L.). J Basic Microbiol 38:197–206

    Google Scholar 

  • Hanlon RDG, Anderson JM (1979) The effects of collembola grazing on microbial activity in decomposing leaf litter. Oecology 38:93–99

    Google Scholar 

  • Hansen PA, Tyler G (1992) Statistical evaluation of tree species affinity and soil preference of the macrofungal flora in south Swedish beech, oak and hornbeam forests. Crypt Bot 2:355–361

    Google Scholar 

  • Hao J, Tian X, Song F, He X, Zhang Z, Zhang P (2006) Involvement of lignocellulolytic enzymes in the decomposition of leaf litter in a subtropical forest. J Eukaryot Microbiol 53:193–198

    PubMed  CAS  Google Scholar 

  • Hao J, Song F, Huang F, Yang C, Zhang Z, Zheng Y, Tian X (2007) Production of laccase by a newly isolated deuteromycete fungus Pestalotiopsis sp. and its decolorization of azo dye. J Ind Microbiol Biotechnol 34:233–240

    PubMed  CAS  Google Scholar 

  • Harris GCM (1945) Chemical changes in beech litter due to infection by Marasmius peronatus (Bolt.) Fr. Ann Appl Biol 32:38–39

    CAS  Google Scholar 

  • Hassall M, Parkinson D, Visser S (1986) Effects of the collembolan Onychiurus subtenuis on decomposition of Populus tremuloides leaf litter. Pedobiologia 29:219–225

    Google Scholar 

  • Hattaka A (2001) Biodegradation of lignin. In: Hofman M, Stein A (eds) Biopolymers, vol. 1. Lignin, humic substances and coal. Wiley, Weinheim, pp 129–180

  • Hering TF (1966) The terricolous higher fungi of four lake district woodland. Trans Br Mycol Soc 49:369–383

    Google Scholar 

  • Hintikka V (1970) Studies on white-rot humus formed by higher fungi in forest soils. Commun Inst For Fenn 69.2:1–68

    Google Scholar 

  • Hintikka V (1988) On the macromycete flora in oligotrophic pine forests of different ages in south Finland. Acta Bot Fenn 136:89–94

    Google Scholar 

  • Hintikka V, Korhonen K (1970) Effects of carbon dioxide on the growth of lignicolous and soil-inhabiting hymenomycetes. Commun Inst For Fenn 69.5:1–29

    Google Scholar 

  • Hirobe M, Sabang J, Bhatta BK, Takeda H (2004) Leaf-litter decomposition of 15 tree species in a lowland tropical rain forest in Sarawak: dynamics of carbon, nutrients, and organic constituents. J For Res 9:347–354

    CAS  Google Scholar 

  • Hirose D, Osono T (2006) Development and seasonal variations of Lophodermium populations on Pinus thunbergii needle litter. Mycoscience 47:242–247

    Google Scholar 

  • Hitchcock P, Gray TRG, Frankland JC (1997) Production of a monoclonal antibody specific to Mycena galopus mycelium. Mycol Res 101:1051–1059

    Google Scholar 

  • Hobbie SE (2000) Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems 3:484–494

    CAS  Google Scholar 

  • Holmer L, Stenlid J (1991) Population structure and mating system in Marasmius androsaceus Fr. New Phytol 119:307–314

    Google Scholar 

  • Hu YL, Wang SL, Zeng DH (2006) Effects of single Chinese fir and mixed leaf litters on soil chemical, microbial properties and soil enzyme activities. Plant Soil 282:379–386

    CAS  Google Scholar 

  • Hudson HJ (1968) The ecology of fungi on plant remains above the soil. New Phytol 67:837–874

    Google Scholar 

  • Insam H (1996) Microorganisms and humus in soils. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, pp 265–292

    Google Scholar 

  • Ishikawa H, Osono T, Takeda H (2007) Effects of clear-cutting on decomposition processes in leaf litter and the nitrogen and lignin dynamics in a temperate secondary forest. J For Res 12 (in press)

  • Ito A (2002) Soil organic carbon storage as a function of the terrestrial ecosystem with respect to the global carbon cycle (in Japanese with English abstract). Jpn J Ecol 52:189–227

    Google Scholar 

  • Iwabuchi S, Sakai S, Yamaguchi O (1994) Analysis of mushroom diversity in successional young forests and equilibrium evergreen broad-leaved forests. Mycoscience 35:1–14

    Google Scholar 

  • Iwamoto S, Tokumasu S (2001) Dematiaceous hyphomycetes inhabiting decaying blackish needles of Abies firma and their distribution in the Kanto district, Japan. Mycoscience 42:273–279

    Google Scholar 

  • Jumpponen A (2003) Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analysis. New Phytol 158:569–578

    Google Scholar 

  • Kaneko N, McLean MA, Parkinson D (1995) Grazing preference of Onychiurus subtenuis (Collembola) and Oppiella nova (Oribatei) for fungal species inoculated on pine needles. Pedobiologia 39:538–546

    Google Scholar 

  • Kaplan DL, Hartenstein R (1980) Decomposition of lignins by microorganisms. Soil Biol Biochem 12:65–75

    CAS  Google Scholar 

  • Kendrick WB, Burges A (1962) Biological aspects of the decay of Pinus sylvestris leaf litter. Nova Hedwig 4:313–342

    Google Scholar 

  • Kinoshita A, Fukuda H (2004) Difference of fruiting bodies of higher fungi between the sites with and without understory management (in Japanese with English abstract). Jpn J For Environ 46:29–34

    Google Scholar 

  • Kirk TK, Fenn P (1982) Formation and action of the ligninolytic system in basidiomycetes. In: Frankland JC, Hedger JN, Swift MJ (eds) Decomposer basidiomycetes, their biology and ecology. Cambridge University Press, Cambridge, pp 67–90

    Google Scholar 

  • Kirk TK, Connors WJ, Zeikus JG (1976) Requirement for a growth substrate during lignin decomposition by two wood-rotting fungi. Appl Environ Microbiol 32:192–194

    PubMed  CAS  Google Scholar 

  • Kjøller A, Struwe S (1982) Microfungi in ecosystems: fungal occurrence and activity in litter and soil. Oikos 39:389–422

    Google Scholar 

  • Kögel I (1986) Estimation and decomposition pattern of the lignin component in forest humus layers. Soil Biol Biochem 18:589–594

    Google Scholar 

  • Kögel-Knabner I, Ziegler F, Riederer M, Zech W (1989) Distribution and decomposition pattern of cutin and suberin in forest soils. Z Pflanzenernaehr Bodenk 152:409–413

    Google Scholar 

  • Kögel-Knabner I, Hatcher PG, Zech W (1991) Chemical structural studies of forest soil humic acids: aromatic carbon fraction. Soil Sci Soc Am J 55:241–247

    Article  Google Scholar 

  • Koide K, Osono T, Takeda H (2005a) Fungal succession and decomposition of Camellia japonica leaf litter. Ecol Res 20:599–609

    Google Scholar 

  • Koide K, Osono T, Takeda H (2005b) Colonization and lignin decomposition of Camellia japonica leaf litter by endophytic fungi. Mycoscience 46:280–286

    Google Scholar 

  • Kolattukudy PE (1981) Structure, biosynthesis, and biodegradation of cutin and suberin. Annu Rev Plant Physiol 32:539–67

    CAS  Google Scholar 

  • Kontchou CY, Blondeau R (1992) Biodegradation of soil humic acid by Streptomyces viridosporus. Can J Microbiol 38:203–208

    Article  PubMed  CAS  Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Huang WZ (2002) Enzyme activities during litter decomposition of two exotic and two native plant species in hardwood forests of New Jersey. Soil Biol Biochem 34:1207–1218

    CAS  Google Scholar 

  • Kuyper TW, Bokeloh DJ (1994) Ligninolysis and nitrification in vitro by a nitrotolerant and a nitrophobic decomposer basidiomycete. Oikos 70:417–420

    CAS  Google Scholar 

  • Lal R (2005) Forest soils and carbon sequestration. For Ecol Manage 220:242–258

    Google Scholar 

  • Lang E, Eller G, Zadrazil F (1997) Lignocellulose decomposition and production of ligninolytic enzymes during interaction of white rot fungi with soil microorganisms. Microb Ecol 34:1–10

    PubMed  CAS  Google Scholar 

  • Lange M (1993) Macomycetes under twelve tree species in ten plantations on various soil types in Denmark. Opera Bot 120:1–53

    Google Scholar 

  • Latter PM (1977) Decomposition of a moorland litter, in relation to Marasmius androsaceus and soil fauna. Pedobiologia 17:418–427

    Google Scholar 

  • Lewis JA, Starkey RL (1969) Decomposition of plant tannins by some soil microorganisms. Soil Sci 107:235–241

    CAS  Google Scholar 

  • Lin TS, Kolattukudy PE (1980) Isolation and characterization of a cuticular polyester (cutin) hydrolyzing enzyme from phytopathogenic fungi. Physiol Plant Pathol 17:1–15

    CAS  Google Scholar 

  • Lindeberg G (1944) Über die Physiologie ligninabbauender Bodenhymenomyceten. Symb Bot Ups 81:1–183

    Google Scholar 

  • Lindeberg G (1946) On the decomposition of lignin and cellulose in litter caused by soil-inhabiting Hymenomycetes. Ark Bot 33a:1–16

    Google Scholar 

  • Liu Y, Lee S, Liao Y (1995) Isolation of a melanolytic fungus and its hydrolytic activity on melanin. Mycologia 87:651–654

    CAS  Google Scholar 

  • Luis P, Walther G, Kellner H, Martin F, Buscot F (2004) Diversity of laccase genes from basidiomycetes in a forest soil. Soil Biol Biochem 36:1025–1036

    CAS  Google Scholar 

  • Luis P, Kellner H, Zimdars B, Langer U, Martin F, Buscot F (2005) Patchiness and spatial distribution of laccase genes of ectomycorrhizal, saprotrophic, and unknown basidiomycetes in the upper horizons of a mixed forest cambisol. Microb Ecol 50:570–579

    PubMed  CAS  Google Scholar 

  • Marín-Pinto P, Vaquerizo H, Peñalver F, Olaizola J, Oria-de-Rueda JA (2006) Early effects of a wildfire on the diversity and production of fungal communities in Mediterranean vegetation types dominated by Cistus ladanifer and Pinus pinaster in Spain. For Ecol Manage 225:296–305

    Google Scholar 

  • Martin JP, Haider K (1980) Microbial degradation and stabilization of 14C-labelled lignins, phenols, and phenolic polymers in relation to soil humus formation. In: Kirk TK, Higuchi T, Chang HM (eds) Lignin biodegradation: microbiology, chemistry, and potential applications, vol. I. CRC, Boca Raton, pp 77–100

    Google Scholar 

  • Mathur SP, Paul EA (1967) Microbial utilization of soil humic acids. Can J Microbiol 13:573–580

    Article  PubMed  CAS  Google Scholar 

  • McClaugherty C, Berg B (1987) Cellulose, lignin and nitrogen concentrations as rate regulating factors in late stages of forest litter decomposition. Pedobiologia 30:101–112

    CAS  Google Scholar 

  • McClaugherty CA, Linkins AE (1990) Temperature responses of enzymes in two forest soils. Soil Biol Biochem 22:29–33

    CAS  Google Scholar 

  • Mikola P (1956) Studies on the decomposition of forest litter by basidiomycetes. Commun Inst For Fenn 48:4–48

    Google Scholar 

  • Mishra B, Srivastava LL (1986) Degradation of humic acid of a forest soil by some fungal isolates. Plant Soil 96:413–416

    CAS  Google Scholar 

  • Mitchell MJ, Parkinson D (1976) Fungal feeding of oribatid mites (Acari: Cryptostigmata) in an aspen woodland soil. Ecology 57:302–312

    Google Scholar 

  • Miyamoto T, Igarashi T (1993) Fungi associated with litter decomposition (I) Seasonal changes and spatial distribution patterns of fruit bodies in some forest tree species (in Japanese). Trans Jpn For Soc 104:635–638

    Google Scholar 

  • Miyamoto T, Igarashi T (2004) Spatial distribution of Collybia pinastris sporophores in a Picea abies forest floor over a 5-year period. Mycoscience 45:24–29

    Google Scholar 

  • Miyamoto T, Igarashi T, Takahashi K (2000) Lignin-degrading ability of litter-decomposing basidiomycetes from Picea forests of Hokkaido. Mycoscience 41:105–110

    CAS  Google Scholar 

  • Murakami Y (1989) Spatial changes of species composition and seasonal fruiting of the Agaricales in Castanopsis cuspidata forest. Trans Mycol Soc Jpn 30:89–103

    Google Scholar 

  • Murphy JF, Miller Jr OK (1997) Diversity and local distribution of mating alleles in Marasmiellus praeacutus and Collybia subnuda (Basidiomycetes, Agaricales). Can J Bot 75:8–17

    Google Scholar 

  • Murphy JF, Miller Jr OK (1993) The population biology of two litter decomposing agarics on a southern Appalachian mountain. Mycologia 85:769–776

    Google Scholar 

  • Newell K (1984a) Interaction between two decomposer basidiomycetes and a collembolan under sitka spruce: distribution, abundance and selective grazing. Soil Biol Biochem 16:227–233

    Google Scholar 

  • Newell K (1984b) Interaction between two decomposer basidiomycetes and a collembolan under sitka spruce: grazing and its potential effects on fungal distribution and litter decomposition. Soil Biol Biochem 16:235–239

    Google Scholar 

  • Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecology 127:153–165

    Google Scholar 

  • Obase K, Tamai Y, Miyamoto T, Yajima T (2005) Macrofungal flora on the volcano Usu, deforested by 2000 eruption. Eurasian J For Res 8:65–70

    Google Scholar 

  • Ohenoja E (1988) Effect of forest management procedures on fungal fruit body production in Finland. Acta Bot Fenn 136:81–84

    Google Scholar 

  • Okabe H (1979) Mycosociological research of Agaricales in natural forests (I) Characteristic plant flora in 5 slopes and main genera in Agaricales. Bull Kyoto Univ For 51:37–45

    Google Scholar 

  • Okabe H (1983) Mycosociological research of Agaricales in natural forests (II) Seasonal changes on each stand and life form. Bull Kyoto Univ For 55:20–32

    Google Scholar 

  • Osono T (2002a) Fungal decomposition of leaf litter in a cool temperate forest. PhD thesis, Kyoto University

  • Osono T (2002b) Phyllosphere fungi on leaf litter of Fagus crenata: occurrence, colonization, and succession. Can J Bot 80:460–469

    Google Scholar 

  • Osono T (2003) Effects of prior decomposition of beech leaf litter by phyllosphere fungi on substrate utilization by fungal decomposers. Mycoscience 44:41–45

    Google Scholar 

  • Osono T (2005) Colonization and succession of fungi during decomposition of Swida controversa leaf litter. Mycologia 97:589–597

    PubMed  Google Scholar 

  • Osono T (2006a) Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can J Microbiol 52:701–716

    PubMed  CAS  Google Scholar 

  • Osono T (2006b) Fungal decomposition of lignin in leaf litter: comparison between tropical and temperate forests. In: Meyer W, Pearce C (eds) Proc 8th Int Mycol Congr. Cairns, Australia, pp 111–117

  • Osono T, Takeda H (1999) Decomposing ability of interior and surface fungal colonizers of beech leaves with reference to lignin decomposition. Eur J Soil Biol 35:51–56

    Google Scholar 

  • Osono T, Takeda H (2001a) Effects of organic chemical quality and mineral nitrogen addition on lignin and holocellulose decomposition of beech leaf litter by Xylaria sp. Eur J Soil Biol 37:17–23

    CAS  Google Scholar 

  • Osono T, Takeda H (2001b) Organic chemical and nutrient dynamics in decomposing beech leaf litter in relation to fungal ingrowth and succession during 3-year decomposition processes in a cool temperate deciduous forest in Japan. Ecol Res 16:649–670

    CAS  Google Scholar 

  • Osono T, Takeda H (2002) Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan. Mycologia 94:421–427

    CAS  Google Scholar 

  • Osono T, Takeda H (2004) Accumulation and release of nitrogen and phosphorus in relation to lignin decomposition in leaf litter of 14 tree species in a cool temperate forest. Ecol Res 19:593–602

    Google Scholar 

  • Osono T, Takeda H (2005a) Decomposition of lignin, holocellulose, polyphenol and soluble carbohydrate in leaf litter of 14 tree species in a cool temperate forest. Ecol Res 20:41–49

    CAS  Google Scholar 

  • Osono T, Takeda H (2005b) Limit values for decomposition and convergence process of lignocellulose fraction in decomposing leaf litter of 14 tree species in a cool temperate forest. Ecol Res 20:51–58

    CAS  Google Scholar 

  • Osono T, Takeda H (2006) Fungal decomposition of Abies needle and Betula leaf litter. Mycologia 98:172–179

    PubMed  CAS  Google Scholar 

  • Osono T, Hobara S, Fujiwara S, Koba K, Kameda K (2002) Abundance, diversity, and species composition of fungal communities in a temperate forest affected by excreta of the Great Cormorant Phalacrocorax carbo. Soil Biol Biochem 34:1537–1547

    CAS  Google Scholar 

  • Osono T, Ono Y, Takeda H (2003a) Fungal ingrowth on forest floor and decomposing needle litter of Chamaecyparis obtusa in relation to resource availability and moisture condition. Soil Biol Biochem 35:1423–1431

    CAS  Google Scholar 

  • Osono T, Fukasawa Y, Takeda H (2003b) Roles of diverse fungi in larch needle-litter decomposition. Mycologia 95:820–826

    Google Scholar 

  • Osono T, Bhatta BK, Takeda H (2004) Phyllosphere fungi on living and decomposing leaves of giant dogwood. Mycoscience 45:35–41

    Google Scholar 

  • Osono T, Hobara S, Koba K, Kameda K, Takeda H (2006a) Immobilization of avian excreta-derived nutrients and reduced lignin decomposition in needle and twig litter in a temperate coniferous forest. Soil Biol Biochem 38:517–525

    CAS  Google Scholar 

  • Osono T, Hobara S, Koba K, Kameda K (2006b) Reduction of fungal growth and lignin decomposition in needle litter by avian excreta. Soil Biol Biochem 38:1623–1630

    CAS  Google Scholar 

  • Osono T, Hirose D, Fujimaki R (2006c) Fungal colonization as affected by litter depth and decomposition stage of needle litter. Soil Biol Biochem 38:2743–2752

    CAS  Google Scholar 

  • Osono T, Takeda H, Azuma JI (2007) Carbon isotope dynamics during leaf litter decomposition with reference to lignin fractions. Ecol Res 22 (in press)

  • Outerbridge RAM (2002) Macrofungus ecology and diversity under different conifer monocultures on southern Vancouver Island. PhD thesis, University of Victoria, Victoria, B.C., Canada

  • Paim S, Linhares LF, Mangrich AS, Martin JP (1990) Characterization of fungal melanins and soil humic acids by chemical analysis and infrared spectroscopy. Biol Fertil Soils 10:72–76

    CAS  Google Scholar 

  • Parkinson D, Visser S, Whittaker JB (1979) Effects of collembolan grazing on fungal colonization of leaf litter. Soil Biol Biochem 11:529–535

    Google Scholar 

  • Ponge JF (1991) Succession of fungi and fauna during decomposition of needles in a small area of Scots pine litter. Plant Soil 138:99–113

    Google Scholar 

  • Preston CM, Trofymow JA, Sayer BG, Niu J (1997) 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies. Can J Bot 75:1601–1613

    CAS  Google Scholar 

  • Rai B, Upadhyay RS, Srivastava AK (1988) Utilization of cellulose and gallic acid by litter inhabiting fungi and its possible implication in litter decomposition of a tropical deciduous forest. Pedobiologia 32:157–165

    CAS  Google Scholar 

  • Rastin N, Schlechte G, Hüttermann A (1990a) Soil macrofungi and some soil biological, biochemical and chemical investigations on the upper and lower slope of a spruce forest. Soil Biol Biochem 22:1039–1047

    CAS  Google Scholar 

  • Rastin N, Schlechte G, Hüttermann A, Rosenplänter K (1990b) Seasonal fluctuation of some biological and biochemical soil factors and their dependence on certain soil factors on the upper and lower slope of a spruce forest. Soil Biol Biochem 22:1049–1061

    CAS  Google Scholar 

  • Rayner ADM, Boddy L (1988) Fungal decomposition of wood: its biology and ecology. Wiley, Chichester

    Google Scholar 

  • Rayner ADM, Todd NK (1979) Population and community structure and dynamics of fungi in decaying wood. Adv Bot Res 7:333–420

    Google Scholar 

  • Rayner ADM, Webber JF (1984) Interspecific mycelial interactions – an overview. IN: Jennings DH, Rayner ADM (eds) The ecology and physiology of fungal mycelium. Cambridge University Press, Cambridge, pp 383–417

    Google Scholar 

  • Richard F, Moreau PA, Selosse MA, Gardes M (2004) Diversity and fruiting patterns of ectomycorrhizal and saprobic fungi in an old-growth Mediterranean forest dominated by Quercus ilex L. Can J Bot 82:1711–1729

    Google Scholar 

  • Rodríguez A, Carnicero A, Perestelo F, de la Fuente G, Milstein O, Falcón MA (1994) Effect of Penicillium chrysogenum on lignin transformation. Appl Environ Microbiol 60:2971–2976

    PubMed  Google Scholar 

  • Ruscoe QW (1971) The soil mycoflora of a hard beech forest. NZ J Sci 14:554–567

    Google Scholar 

  • Saito T (1956) Microbiological decomposition of beech litter. Ecol Rev 14:141–147

    CAS  Google Scholar 

  • Saito T (1957) Chemical changes in beech litter under microbiological decomposition. Ecol Rev 14:209–216

    CAS  Google Scholar 

  • Saito T (1960) An approach to the mechanism of microbial decomposition of beech litter. Sci Rep Tohoku Univ Ser IV (Biol) 25:125–131

    Google Scholar 

  • Saito T (1966) Sequential pattern of decomposition of beech litter with special reference to microbial succession. Ecol Rev 16:245–254

    Google Scholar 

  • Såstad SM (1995) Fungi-vegetation relationships in a Pinus sylvestris forest in central Norway. Can J Bot 73:807–816

    Google Scholar 

  • Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–1315

    CAS  Google Scholar 

  • Savoie JM, Mata G, Billette C (1998) Extracellular laccase production during hyphal interactions between Trichoderma sp. and Shiitake, Lentinula edodes. Appl Microbiol Biotechnol 49:589–593

    CAS  Google Scholar 

  • Scheu S (1993) Litter microflora-soil macrofauna interactions in lignin decomposition: a laboratory experiment with 14C-labelled lignin. Soil Biol Biochem 25:1703–1711

    CAS  Google Scholar 

  • Schnitzer M, Chan YK (1986) Structural characteristics of a fungal melanin and a soil humic acid. Soil Sci Soc Am J 50:67–71

    Article  CAS  Google Scholar 

  • Sedia EG, Ehrenfeld JG (2006) Differential effects of lichens and mosses on soil enzyme activity and litter decomposition. Biol Fertil Soils 43:177–189

    CAS  Google Scholar 

  • Shantz HL, Piemeisel RL (1917) Fungus fairy rings in eastern Colorado and their effect on vegetation. J Agric Res 11:191–245

    Google Scholar 

  • Sinsabaugh RL (1994) Enzymic analysis of microbial pattern and process. Biol Fertil Soils 17:69–74

    CAS  Google Scholar 

  • Sinsabaugh RL (2005) Fungal enzymes at the community scale. In: Dighton J, White JF, Oudemans P (eds) The fungal community, 3rd edn. Taylor & Francis, New York, pp 349–360

    Google Scholar 

  • Sinsabaugh RL, Liptak MA (1997) Enzymatic conversion of plant biomass. In: Wicklow DT, Söderström B (eds) The Mycota IV, environmental and microbial relationships. Springer, Berlin Heidelberg New York, pp 347–357

    Google Scholar 

  • Sinsabaugh RL, Antibus RK, Linkins AE (1991) An enzymic approach to the analysis of microbial activity during plant litter decomposition. Agric Ecosyst Environ 34:43–54

    CAS  Google Scholar 

  • Sinsabaugh RL, Carreiro MM, Repert DA (2002) Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 60:1–24

    CAS  Google Scholar 

  • Sinsabaugh RL, Gallo ME, Lauber C, Waldrop MP, Zak DR (2005) Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry 75:201–215

    CAS  Google Scholar 

  • Soma K, Saito T (1979) Ecological studies of soil organisms with references to the decomposition of pine needles. I. Soil macrofaunal and mycofloral surveys in coastal pine plantations. Rev Ecol Biol Sol 16:337–354

    Google Scholar 

  • Soponsathien S (1998) Some characteristics of ammonia fungi. 1. In relation to their ligninolytic enzyme activities. J Gen Appl Microbiol 44:337–345

    PubMed  CAS  Google Scholar 

  • Sprague R, Lawrence DB (1959a) The fungi on deglaciated Alaskan terrain of known age (Part I). Res Stud 27:110–128

    Google Scholar 

  • Sprague R, Lawrence DB (1959b) The fungi on deglaciated Alaskan terrain of known age (Part II). Res Stud 27:214–229

    Google Scholar 

  • Sprague R, Lawrence DB (1960) The fungi on deglaciated Alaskan terrain of known age (Part III). Res Stud 28:1–20

    Google Scholar 

  • Steffen KT (2003) Degradation of recalcitrant biopolymers and polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. PhD thesis, University of Helsinki, Finland

  • Steffen KT, Hofrichter M, Hatakka A (2000) Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 54:819–825

    PubMed  CAS  Google Scholar 

  • Steffen KT, Hofrichter M, Hatakka A (2002a) Purification and characterization of manganese peroxidases from the litter-decomposing basidiomycetes Agrocybe praecox and Stropharia coronilla. Enzyme Microb Technol 30:550–555

    CAS  Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2002b) Degradation of humic acids by the litter-decomposing basidiomycete Collybia dryophila. Appl Environ Microbiol 68:3442–3448

    PubMed  CAS  Google Scholar 

  • Straatsma G, Ayer F, Egli S (2001) Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a Swiss forest plot. Mycol Res 105:515–523

    Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Studies in ecology, vol. 7. Blackwell, Oxford

    Google Scholar 

  • Tabak HH, Cooke WMB (1968) The effects of gaseous environments on the growth and metabolism of fungi. Bot Rev 34:126–252

    Article  CAS  Google Scholar 

  • Tagger S, Perissol C, Gil G, Vogt G, Le Petit J (1998) Phenoloxidases of the white-rot fungus Marasmius quercophilus isolated from an evergreen oak litter (Quercus ilex L.). Enzyme Microb Technol 23:372–379

    CAS  Google Scholar 

  • Takeda H (1998) Decomposition processes of litter along a latitudinal gradient. In: Sassa K (ed) Environmental forest science. Kluwer, Dordrecht, pp 197–206

    Google Scholar 

  • Takeda H, Abe T (2001) Templates of food-habitat resources for the organization of soil animals in temperate and tropical forests. Ecol Res 16:961–973

    Google Scholar 

  • Tillett R, Walker JRL (1990) Metabolism of ferulic acid by Penicillium sp. Arch Microbiol 154:206–208

    CAS  Google Scholar 

  • Tokumasu S (1996a) Effects of global warming on terrestrial saprophytic microfungal communities (in Japanese). Nippon Kingakukai Kaiho 37:105–110

    Google Scholar 

  • Tokumasu S (1996b) Mycofloral succession on Pinus densiflora needles on a moder site. Mycoscience 37:313–321

    Google Scholar 

  • Tokumasu S (1998) Fungal succession on pine needles fallen at different seasons: the succession of interior colonizers. Mycoscience 39:409–416

    Google Scholar 

  • Tokumasu S (2001) Geographical distribution of Sproridesmium goidanichii in pine forests of Japan. Mycoscience 42:575–589

    Google Scholar 

  • Tresner HD, Backus MP, Curtis JT (1954) Soil microfungi in relation to the hardwood forest continuum in southern Wisconsin. Mycologia 46:314–333

    Google Scholar 

  • Trofymow JA, Moore TR, Titus B, Prescott C, Morrison I, Siltanen M, Smith S, Fyles J, Wein R, Camiré C, Duschene L, Kozak L, Kranabetter M, Visser S (2002) Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Can J For Res 32:789–804

    Google Scholar 

  • Tsujiyama S, Minami M (2005) Production of phenol-oxidizing enzymes in the interaction between white-rot fungi. Mycoscience 46:268–271

    CAS  Google Scholar 

  • Tuomela M, Steffen KT, Kerko E, Hartikainen H, Hofrichter M, Hatakka A (2005) Influence of Pb contamination in boreal forest soil on the growth and ligninolytic activity of litter-decomposing fungi. FEMS Microbiol Ecol 53:179–186

    PubMed  CAS  Google Scholar 

  • Tyler G (1985) Macrofungal flora of Swedish beech forest related to soil organic matter and acidity characteristics. For Ecol Manage 10:13–29

    Google Scholar 

  • Tyler G (1991) Effects of litter treatments on the sporophore production of beech forest macrofungi. Mycol Res 95:1137–1139

    Google Scholar 

  • Tyler G (1992) Tree species affinity of decomposer and ectomycorrhizal macrofungi in beech (Fagus sylvatica L.), oak (Quercus robur L.) and hornbeam (Carpinus betulus L.) forests. For Ecol Manage 47:269–284

    Google Scholar 

  • Villeneuve N, Grandtner MM, Fortin JA (1989) Frequency and diversity of ectomycorrhizal and saprophytic macrofungi in the Laurentide Mountains of Quebec. Can J Bot 67:2616–2629

    Google Scholar 

  • Virzo de Santo A, Rutigliano FA, Berg B, Fioretto A, Puppi G, Alfani A (2002) Fungal mycelium and decomposition of needle litter in three contrasting coniferous forests. Acta Oecol 23:247–259

    Google Scholar 

  • Visser S (1995) Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol 129:389–401

    Google Scholar 

  • Visser S, Whittaker JB (1977) Feeding preferences for certain litter fungi by Onychiurus subtenuis (Collembola). Oikos 29:320–325

    Google Scholar 

  • Visser S, Whittaker JB, Parkinson D (1981) Effects of collembolan grazing on nutrient release and respiration of a leaf litter inhabiting fungus. Soil Biol Biochem 13:215–218

    CAS  Google Scholar 

  • Waldrop MP, Zak DR (2006) Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems 9:921–933

    CAS  Google Scholar 

  • Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32:1837–1846

    CAS  Google Scholar 

  • Waldrop MP, McColl JG, Powers RF (2003) Effects of forest postharvest management practices on enzyme activities in decomposing litter. Soil Sci Soc Am J 67:1250–1256

    Article  CAS  Google Scholar 

  • Waldrop MP, Zak DR, Sinsabaugh RL, Gallo M, Lauber C (2004a) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol Appl 14:1172–1177

    Google Scholar 

  • Waldrop MP, Zak DR, Sinsabaugh RL (2004b) Microbial community response to nitrogen deposition in northern forest ecosystems. Soil Biol Biochem 36:1443–1451

    CAS  Google Scholar 

  • Weaver T (1975) Fairy-ring fungi as decomposers. Proc Mont Acad Sci 35:34–38

    CAS  Google Scholar 

  • White NA, Boddy L (1992) Extracellular enzyme localization during interspecific fungal interactions. FEMS Microbiol Lett 98:75–80

    CAS  Google Scholar 

  • Widden P (1984) The effects of temperature on competition for spruce needles among sympatric species of Trichoderma. Mycologia 76:873–883

    Google Scholar 

  • Widden P, Parkinson D (1975) The effects of a forest fire on soil microfungi. Soil Biol Biochem 7:125–138

    Google Scholar 

  • Widden P, Hsu D (1987) Competition between Trichoderma species: effects of temperature and litter type. Soil Biol Biochem 19:89–93

    Google Scholar 

  • Widden P, Scattolin V (1988) Competitive interactions and ecological strategies of Trichoderma species colonizing spruce litter. Mycologia 80:795–803

    Google Scholar 

  • Worrall JJ, Anagnost SE, Zabel RA (1997) Comparison of wood decay among diverse lignicolous fungi. Mycologia 89:199–219

    Google Scholar 

  • Whalley AJS (1996) The xylariaceous way of life. Mycol Res 100:897–922

    Google Scholar 

  • Wicklow DT, Whittingham WF (1974) Soil microfungal changes among the profiles of disturbed conifer-hardwood forests. Ecology 55:3–16

    Google Scholar 

  • Yamanaka T (1995) Changes in organic matter composition of forset soil treated with a large amount of urea to promote ammonia fungi and the abilities of these fungi to decomposer organic matter. Mycoscience 36:17–23

    Google Scholar 

  • Yamashita S, Hijii N (2004) Relationships between seasonal appearance and longevity of fruitbodies of Agaricales and meteorological factors in a Japanese red pine forest. J For Res 9:165–171

    Google Scholar 

  • Yamashita S, Hijii N (2006) Spatial distribution of the fruiting bodies of Agaricales in a Japanese red pine (Pinus densiflora) forest. J For Res 11:181–189

    Google Scholar 

  • Zhang Q, Liang Y (1995) Effects of gap size on nutrient release from plant litter decomposition in a natural forest ecosystem. Can J For Res 25:1627–1638

    Google Scholar 

Download references

Acknowledgments

I thank Dr. Hiroshi Takeda and Dr. Seiji Tokumasu for encouragement and useful comments on the ecology of fungi; Dr. Dai Hirose and Ms. Kanade Koide for useful discussions; Dr. Tony Trofymow for comments on decomposition; Dr. Caroline M. Preston for helpful comments on chemical analysis; and Dr. Kari T. Steffen for comments on ligninolytic enzymes of litter-decomposing basidiomycetes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Osono.

Additional information

Takashi Osono is the recipient of the 11th Denzaburo Miyadi Award.

About this article

Cite this article

Osono, T. Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol Res 22, 955–974 (2007). https://doi.org/10.1007/s11284-007-0390-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-007-0390-z

Keywords

Navigation