Skip to main content

Advertisement

Log in

Species richness and distribution patterns of leaf-inhabiting endophytic fungi in a temperate forest canopy

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

In 2005, researchers at the Leipzig Canopy Crane Research Facility collected living leaves of four temperate tree species at heights of between 15 and 33 m above the ground. Following surface sterilisation of the leaves, leaf-fragments were cultured on malt extract agar which allowed the growth of endophytic fungi into the surrounding medium. Isolated cultures were identified by morphology and sequence analysis of the D1/D2 region of the large subunit rDNA. Phylogenetic analysis established the taxonomic positions of the fungi. A total of 49 different taxa were identified, representing 20 families and ten orders. With the exception of one basidiomycetous yeast, all taxa belonged to filamentous ascomycetes. Species richness was highest on Tilia cordata and lowest on Quercus robur. Species-accumulation curves showed that the sampling effort was not sufficient to cover the majority of the likely species at the investigation site. Most endophytes proved to be ubiquitous within the canopy of the investigation site, but habitat preferences in terms of different tree species, different light regimes and season (sampling times) were obvious for some abundant endophytes. Apiognomonia errabunda and Aspergillus niger occurred predominantly on Q. robur, Diplodina acerina on Acer pseudoplatanus, one species of Phoma significantly prefered shaded leaves from the lower canopy layer whereas Sordaria fimicola prefered sun-exposed leaves from the upper tree crowns. Seasonal patterns were observed, for example, for A. errabunda, which was abundant in young leaves in the spring and almost completely absent in aged autumn-leaves, thus suggesting the accumulation of antifungal secondary plant metabolites during the growing season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abliz P, Fukushima K, Takizawa K, Nishimura K (2004) Identification of pathogenic dematiaceous fungi and related taxa based on large subunit ribosomal DNA D1/D2 domain sequence analysis. FEMS Immunol Med Microbiol 40:41–49

    Article  PubMed  CAS  Google Scholar 

  • Ahlholm JU, Helander M, Lehtimäki S, Wäli P, Saikkonen K (2002) Vertically transmitted fungal endophytes: different responses of host-parasite systems to environmental conditions. Oikos 99:173–183

    Article  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are troical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdivers? Ecol Lett 3:267–274

    Article  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS (2001) Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycol Res 105:1502–1507

    Google Scholar 

  • Aylor DE (1986) A frameowork for examining inter-regional aerial transport of fungal spores. Agric For Meteorol 38:263–288

    Article  Google Scholar 

  • Bahnweg G, Heller W, Stich S, Knappe C, Betz G, Heerdt C, Kehr RD, Ernst D, Langebartels C, Nunn AJ, Rothenburger J, Schubert R, Wallis P, Müller-Starck G, Werner H, Matyssek R, Sandermann H (2005) Beech leaf colonization by the endophyte Apiognomonia errabunda dramatically depends on light exposure and climatic conditions. Plant Biol 7:659–669

    Article  PubMed  CAS  Google Scholar 

  • Bills GF, Polishook JD (1990) Microfungi from Carpinus caroliniana. Can J Bot 69:1477–1482

    Article  Google Scholar 

  • Bohannan BJM, Hughes J (2003) New approaches to analyzing microbial diversity data. Curr Opin Microbiol 6:282–287

    Google Scholar 

  • Bultman TL, Bell GD (2003) Interaction between fungal endophytes and environmental stressors influences plant resistance to insects. Oikos 103:182–190

    Article  Google Scholar 

  • Butin H, Kowalski T (1983a) The natural pruning of branches and their biological conditions 1. the fungal flora of beech (Fagus sylvatica). Eur J For Pathol 13:322–334

    Article  Google Scholar 

  • Butin H, Kowalski T (1983b) The natural pruning of branches and their biological conditions. II. the fungal flora of english oak (Quercus robur L.). Eur J For Pathol 13:428–439

    Article  Google Scholar 

  • Butin H, Kowalski T (1986) The natural pruning of branches and their biological conditions 3. The fungal flora of common maple, gray alder, silver hornbeam and common ash. Eur J For Pathol 16:129–138

    Article  Google Scholar 

  • Butin H, Kowalski T (1990) Natural pruning of branches and its biological conditions 5. The fungal flora of spruce, pine and larch. Eur J For Pathol 20:44–54

    Article  Google Scholar 

  • Cannon PF, Simmons CM (2002) Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve, Guyana. Mycologia 94:210–220

    Article  Google Scholar 

  • Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2–9

    Article  Google Scholar 

  • Claydon N, Grove JF, Pople M (1985) Elm bark beetle boring and feeding deterrents from Phomopsis oblonga. Phytochemistry 24:937–943

    Article  CAS  Google Scholar 

  • Collado J, Platas G, Paulus B, Bills GF (2007) High-throughput culturing of fungi from plant litter by a dilution-to-extinction technique. FEMS Microbiol Immunol 60:521–533

    CAS  Google Scholar 

  • Colwell RK (2006) ESTIMATES, Version 8.0: statistical estimation of species richness and shared species from samples (Software and User’s Guide). Freeware for Windows and Mac OS. http://viceroy.eeb.uconn.edu/EstimateS

  • Corpet F (1988) Multiple sequence alignment with hierarchial clustering. Nucleic Acids Res 16:10881–10890

    Google Scholar 

  • Covelo F, Gallardo A (2001) Temporal variation in total leaf phenolics concentration of Quercus robur in forested and harvested stands in northwestern Spain. Can J Bot 79:1262–1269

    Article  CAS  Google Scholar 

  • Crous P, Kang J, Braun U (2001) A phylogenetic redefinition of anamorph genera in Mycosphaerella based on ITS rDNA sequence and morphology. Mycologia 93:1081–1101

    Article  CAS  Google Scholar 

  • Cubit JD (1974) Interactions of seasonally changing physical factors and grazing affecting high intertidal communities on a rocky shore. PhD thesis, University of Oregon, Eugene

  • Diamandis S (1981) Elytroderma torres-juanii Diamandis and Minter. A serious attack on Pinus brutia L. in Greece. In: Miller CS (ed) Current research on conifer needle diseases. Aberdeen University Press, Aberdeen pp 9–12

    Google Scholar 

  • Dudt JF, Shure DJ (1994) The influence of light and nutrients on foliar phenolics and insect herbivory. Ecology 75:86–98

    Article  Google Scholar 

  • Faeth SH, Hammon KE (1996) Fungal endophytes and phytochemistry of oak foliage: determinants of oviposition preference of leafminers? Oecologia 108:728–736

    Article  Google Scholar 

  • Faeth SH, Hammon KE (1997) Fungal endophytes in oak trees: long term patterns of abundance and association with leafminers. Ecology 87:810–819

    Google Scholar 

  • Fell J, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371

    PubMed  CAS  Google Scholar 

  • Frankland JC (1998) Fungal succession-unravelling the unpredictable. Mycol Res 102:1–15

    Article  Google Scholar 

  • Fröhlich J, Hyde K (1999) Biodiversity of palm fungi in the tropics: are global fungal diversity estimates realistic? Biodivers Conserv 8:977–1004

    Article  Google Scholar 

  • Gamboa MA, Laureano S, Bayman P (2002) Measuring diversity of endophytic fungi in leaf fragments: does size matter? Mycopathologia 156:41–45

    Google Scholar 

  • Gange AC (1996) Positive effects of endophyte infection on sycamore aphids. Oikos 75:500–510

    Article  Google Scholar 

  • Gotelli N, Colwell R (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Guo LD, Hyde KD, Liew ECY (2000) Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol 147:617–630

    Article  CAS  Google Scholar 

  • Hall TA (1999) BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Halmschlager E, Butin H, Donaubauer E (1993) Endophytic fungi in leaves and twigs of Quercus petraea. Eur J For Pathol 23:51–63

    Article  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Google Scholar 

  • Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F (2007) Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenet Evol 42:543–555

    Article  PubMed  CAS  Google Scholar 

  • Hughes JB, Hellmann J, Ricketts T, Bohannan B (2001) Counting the uncountable: Statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67:4399–4406

    Article  PubMed  CAS  Google Scholar 

  • Hyde KD, Hawksworth DL (1997) Measuring and monitoring the biodiversity of microfungi. In: KD Hyde (ed) Biodiversity of tropical microfungi. Hong Kong University Press, Hong Kong, pp 11–28

    Google Scholar 

  • Körner Ch, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Peláez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362

    Google Scholar 

  • Kowalski T, Kehr RD (1992) Endophytic fungal colonization of branch bases in several forest tree species. Sydowia 44:137–168

    Google Scholar 

  • Lacap DC, Hyde KD, Liew ECY (2003) An evaluation of the fungal ‘morphotype’ concept based on ribosomal DNA sequences. Fungal Divers 12:53–66

    Google Scholar 

  • Lodge DJ, Cantrell S (1995) Fungal communities in wet tropical forests: variation in time and space. Can J Bot 73[Suppl 1]:S1391–S1398

    Google Scholar 

  • Lowman MD, Moffett M (1993) The ecology of tropical rain forest canopies. Tree 8:104–107

    Google Scholar 

  • Lundqvist N (1972) Nordic Sordariaceae s. lat. Symb Bot Usalienses 20:1–361

    Google Scholar 

  • McCune B, Mefford MJ (1999) PC-ORD. Multivariate analysis of ecological data, version 4. MjM Software Design, Gleneden Beach, Ore.

  • McElrone A, Reid C, Hoye K, Hart E, Jackson R (2005) Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Glob Chang Biol 11:1828–1836

    Article  Google Scholar 

  • Morawetz W (1998) The Surumoni Project: The botanical approach toward gaining an interdisciplinary understanding of the functions of the rain forest canopy. In: W Barthlott, E Wininger (eds) Biodiversity – a challenge for development research and policy. Springer, Berlin, pp 71–80

    Google Scholar 

  • Morawetz W, Horchler PJ (2004) Leipzig Canopy Crane Project (LAK), Germany. In: Y Basset, V Horlyck, SJ Wright (eds) Studying forest canopies from above: the International Canopy Crane Network. Smithsonian Tropical Research Institute (Panama), United Nations Environmental Programme (UNEP), pp 79–85

  • Nadkarni NM, Parker GG, Rinker HB, Jarzen DM (2004) The nature of forest canopies. In: MD Lowman, HB Rinker (eds) Forest canopies, 2nd edn. Elsevier Academic Press, Amsterdam,pp 3–23

  • Newsham KK, Lewis GC, Greenslade PD, Mcleod AR (1998) Neotyphodium lolii, a fungal leaf endophyte, resuces fertility of Lolium perenne exposed to elevated UV-B radiation. Ann Bot 81:397–403

    Article  Google Scholar 

  • Novotny V, Basset Y (2000) Rare species in communities of tropical insect herbivores: pondering the mystery of singletons. Oikos 89:564–572

    Article  Google Scholar 

  • O’Donnel K (1993) Fusarium and its near relatives. In: DR Reynolds, JW Taylor (eds) Mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB Int, Wallingford, pp 225–233

    Google Scholar 

  • Ozanne CMP, Anhuf D, Boulter SL, Keller M, Kitching RL, Körner C, Meinzer FC, Mitchell AW, Nakashizuka T, Silva Dias PL, Stork NE, Wright SJ, Yoshimura M (2003) Biodiversity meets the atmosphere: a global view of forest canopies. Science 301:183–186

    Article  PubMed  CAS  Google Scholar 

  • Pehl L, Butin H (1994) Endophytische Pilze in Blättern von Laubbäumen und ihre Beziehung zu Blattgallen (Zoocecidien). Mitt Biol Bundesanstalt Land- Forstwirtschaft Berlin-Dahlem 297:1–56

    Google Scholar 

  • Pennisi E (2005) Sky-high experiments: using construction cranes to reach above towering treetops, scientists are achieving a better overview of forest ecology and how trees contribute to global climate change. Science 309:1314–1315

    Article  PubMed  CAS  Google Scholar 

  • Petrini O (1986) Taxonomy of endophytic fungi of aerial plant tissues. In: NJ Fokkema, JV Hueval (eds) Microbiology of the phyllosphere. Cambridge University Press, Cambridge, pp 175–187

    Google Scholar 

  • Petrini O, Sieber TN, Toti L, Viret O (1992) Ecology, metabolite production, and substrate utilization in endophytic fungi. Nat Toxins 1:185–196

    Article  PubMed  CAS  Google Scholar 

  • Rohrschneider M, Horchler PJ, Morawetz W (2007) Measurement of the canopy height and visualisation of its surface structure. In: Unterseher M, Morawetz W, Klotz S, Arndt E (eds) The canopy of a temperate floodplain forest. Results from five years of research at the Leipzig Canopy Crane. University of Leipzig, pp 18–20

  • Rossman AY (1994) A strategy for an all-taxa inventory of fungal biodiversity. In: CI Peng, CH Chou (eds) Biodiversity and terrestrial ecosystems. Institute of Botany, Academia Sinica, Taipei, pp 169–194

    Google Scholar 

  • Ruhnke H, Schädler M, Matthies D, Klotz S, Brandl R (2006) Are sawflies adapted to individual host trees? A test of the adaptive deme formation hypothesis. Evol Ecol Res 8:1039–1048

    Google Scholar 

  • Sawyer AJ, Griggs MH, Wayne R (1994) Dimensions, density, and settling velocity of entomophtoralean conidia: implications for aerial dissemination of spores. J Invertebr Pathol 63:43–55

    Article  Google Scholar 

  • Schnittler M, Unterseher M, Tesmer J (2006) Species richness and ecological characterization of myxomycetes and myxomycete-like organisms in the canopy of a temperate deciduous forest. Mycologia 98:223–232

    Article  PubMed  Google Scholar 

  • Schöne C, Jentsch A (2007) Tree seedling establishment and pattern formation-regeneration dynamics of a floodplain forest in central Europe (Germany). In: Unterseher M, Morawetz W, Klotz S, Arndt E (eds) The canopy of a temperate floodplain forest. Results from five years of research at the Leipzig Canopy Crane. University of Leipzig, pp 21–33

  • Scott B (2001) Epichloe endophytes: fungal symbionts of grasses. Curr Opin Microbiol 4:393–398

    Article  PubMed  CAS  Google Scholar 

  • Sieber T, Hugentobler C (1987) Endophytic fungi in leaves and twigs of healthy and diseased beech trees (Fagus sylvatica L.). Eur J For Pathol 17:411–425

    Article  Google Scholar 

  • Sieber TN, Dorworth CE (1994) An Ecological study about assemblages of endophytic fungi in Acer macrophyllum in British-Columbia - in search of candidate mycoherbicides. Can J Bot 72:1397–1402

    Google Scholar 

  • Stone JK, Polishook JD, White JF, Jr (2004) Endophytic fungi. In: GM Mueller, GF Bills, MS Foster (eds) Biodiversity of fungi. Inventory and monitoring methods. Elsevier Academic Press, Amsterdam, pp 241–270

    Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic Analysis Using Parsiomony (* and other methods). Version 4. Sinauer Assoc, Sunderland

  • Unterseher M, Tal O (2006) Influence of small scale conditions on the diversity of wood decay fungi in a temperate, mixed deciduous forest canopy. Mycol Res 110:169–178

    Article  PubMed  Google Scholar 

  • Unterseher M, Otto P, Morawetz W (2005) Species richness and substrate specificity of lignicolous fungi in the canopy of a temperate, mixed deciduous forest. Mycol Progr 4:117–132

    Article  Google Scholar 

  • Wilson D, Carroll GC (1994) Infection studies of Discula quercina, an endophyte of Quercus garryana. Mycologia 86:653–647

    Article  Google Scholar 

  • Wilson D (1995) Endophyte - the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Helmholtz Centre for Environmental Research Leipzig-Halle – UFZ (Project ID: UFZ 04/2004) and the City of Leipzig, ‘Gruenflaechenamt’) for financial and technical support. Many thanks go to Andreas Sickert (City of Leipzig, Gruenflaechenamt’ section ‘Stadtforsten’), Britta Kummer (Systematic Botany), Prof. Dr. Christian Wilhelm, Dr. Patricia Luis, Susanne Horn (Plant Physiology), Prof. Dr. Hauke Harms, Dr. Bärbel Kiesel, Ute Lohse, Verena Jaschik, and Elke Häusler (all UFZ, Department of Ecological Micorbiology) for technical support. We also appreciate the highly valuable comments of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Unterseher.

Additional information

Wilfried Morawetz died in March 2007.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

11557_2007_541_MOESM1_ESM.xls

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unterseher, M., Reiher, A., Finstermeier, K. et al. Species richness and distribution patterns of leaf-inhabiting endophytic fungi in a temperate forest canopy. Mycol Progress 6, 201–212 (2007). https://doi.org/10.1007/s11557-007-0541-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-007-0541-1

Keywords

Navigation